博碩士論文 111226040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.137.170.76
姓名 黃晨媛(Chen-Yuan Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於漸逝波及損耗模態共振原理設計製作側磨D形光纖感測器
相關論文
★ 白光LED於住宅照明之設計與應用★ 超廣角車用鏡頭設計
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 光學變焦之軌跡優化控制★ LED光源暨LED與太陽光混和照明於室內照明之模擬與分析
★ 利用光展量概念之微型投影機光學設計方法與實作★ 光學顯微鏡之鏡頭設計
★ 手機上隱藏式指紋辨識設計★ DLP微型投影系統之光路設計
★ 高效率藍光碟片讀取頭★ 模組化雙波長光學讀寫頭的設計與光學讀寫頭應用在角度量測的研究
★ 數位相機之鏡頭設計★ 單光電偵測器之複合式光學讀寫頭
★ 三百萬畫素二點七五倍光學變焦手機鏡頭設計★ 稜鏡玻璃選取對色差的影響與校正
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-4以後開放)
摘要(中) 本研究旨在開發高靈敏度、多功能的光纖感測器,以克服現有電子式感
測器的問題。主要研究目標包括使用側磨拋光技術製作D形多模和單模光
纖,並應用電子鎗蒸鍍技術沉積不同材料(如??2?5、???2、??3)的單層
薄膜於光纖拋光面,進而設計及製作高靈敏度漸逝波(Evanescent Wave)與損
耗模態共振(LMR)的光纖感測器。本研究設計開發新型的葡萄糖水溶液
折射率、環境溫度和二氧化碳濃度三種光纖感測器,並優化感測器的製程參
數以提升其靈敏度和性能。實驗結果顯示,這些光纖感測器在葡萄糖水溶液
折射率、環境溫度和二氧化碳濃度感測方面均具有較高的靈敏度,顯示出在
環境參數監測中的潛力。
本研究於D形單模和多模光纖上鍍製100 nm ??2?5薄膜,測得葡萄糖
水溶液折射率感測的靈敏度分別為6406.44 nm/RIU和27.723 dB/RIU;在環
境溫度感測方面,鍍製80 nm ???2薄膜的D形光纖感測器在30℃至150℃
範圍內,單模和多模光纖的靈敏度分別為1.61 nm/℃和7.68×10-3 dB/℃;在
二氧化碳濃度感測方面,鍍製 90 nm ??3薄膜的 D 形光纖感測器在 500
ppm至9000 ppm範圍內,單模和多模光纖的靈敏度分別為3.56 counts /ppm
和3.18 counts /ppm。本研究結果顯示,不同金屬氧化物薄膜應用於側磨D
形光纖感測器能夠有效地提升特定環境參數的靈敏度,並在抗電磁干擾、高
靈敏度、耐環境性、安全性、遠距離傳輸和高速監測等方面具有優勢。
摘要(英) This study aims to develop highly sensitive and multifunctional fiber optic
sensors to overcome the issues associated with existing electronic sensors. The
main research objectives include the fabrication of D-shaped multimode and
single-mode fibers using side-polishing techniques and the deposition of various
materials (such as ??2?5 ???2, ??3) as single-layer thin films on the polished
surfaces using electron gun evaporation. This will lead to the design and
fabrication of high-sensitivity evanescent wave and loss mode resonance (LMR)
fiber optic sensors. The study involves designing and developing three types of
novel fiber optic sensors for glucose solution refractive index, ambient
temperature, and carbon dioxide concentration, as well as optimizing the sensor
fabrication parameters to enhance sensitivity and performance.
Experimental results indicate that the proposed fiber optic sensors exhibit
high sensitivity in detecting the refractive index of glucose solutions, ambient
temperature, and carbon dioxide concentration, demonstrating their potential in
environmental parameter monitoring. For glucose solution refractive index
sensing, D-shaped single-mode and multimode fibers coated with 100 nm ??2?5
thin film, the sensitivity is 6406.44 nm/RIU and 27.723 dB/RIU, respectively. For
temperature sensing in the range of 30°C to 150°C, D-shaped fiber optic sensors
coated with 80 nm ???2 thin film showed the sensitivity is 1.61 nm/°C and
7.68×10-3 dB/°C for single-mode and multimode fibers, respectively. For carbon
dioxide concentration sensing in the range of 500 ppm to 9000 ppm, D-shaped
fiber optic sensors coated with 90 nm ??3 thin film exhibit the the sensitivity is 3.56 counts/ppm and 3.18 counts/ppm for single-mode and multimode fibers,
respectively.
This study′s results indicate that applying different metal oxide films on side
polishing D-shaped fiber optic sensors can effectively enhance the sensitivity to
specific environmental parameters. These evanescent waves and LMR fiber-optic
sensors have advantages in terms of electromagnetic interference resistance, high
sensitivity, environmental durability, safety, long-distance transmission, and high
speed monitoring.
關鍵字(中) ★ 側磨拋光技術
★ 損耗模態共振
★ 電子鎗蒸鍍技術
★ 葡萄糖水溶液折射率感測器
★ 環境溫度感測器
★ 二氧化碳濃度感測器
關鍵字(英) ★ Side-polishing technique
★ loss mode resonance (LMR)
★ electron gun evaporation
★ glucose solution refractive index sensor
★ temperature sensor
★ carbon dioxide concentration sensor
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 文獻回顧 3
1-3-1 光纖感測器的種類 3
1-3-2 側磨D形光纖製作 7
1-3-3 損耗模態共振(LMR) 9
1-3-4 光纖液體折射率感測器 11
1-3-5 光纖相對溫溼度感測器 14
1-3-6 光纖氣體感測器 12
1-4 研究方法 19
第二章 基本理論 23
2-1 側磨光纖 25
2-2 漸逝波 28
2-3 鍍膜光纖共振原理 31
2-3-1 損耗模態共振與表面電漿共振差異 32
2-3-2 損耗模態共振之薄膜理論 35
第三章 實驗設計與方法 38
3-1 實驗流程 39
3-2 側磨D形光纖製作 40
3-3 光學薄膜製程技術 41
3-3-1 電子鎗蒸鍍技術 43
3-3-2 離子輔助沉積技術 44
3-4 側磨光纖感測器實驗架構 44
3-4-1 葡萄糖水溶液折射率感測實驗 44
3-4-2 溫度感測實驗 46
3-4-3 二氧化碳濃度感測實驗 47
第四章 實驗結果與討論 48
4-1側磨D形光纖光譜量測 48
4-2基於損耗模態共振的側磨光纖感測器架構 50
4-3葡萄糖水溶液折射率感測實驗 54
4-3-1單模側磨光纖葡萄糖水折射率感測器 54
4-3-2多模側磨光纖葡萄糖水折射率感測器 56
4-4溫度感測實驗 59
4-4-1單模側磨光纖環境溫度感測器 60
4-4-2多模側磨光纖環境溫度感測器 62
4-5二氧化碳濃度感測實驗 65
4-5-1單模側磨光纖二氧化碳濃度感測器 66
4-5-2多模側磨光纖二氧化碳濃度感測器 67
第五章 結論 71
5-1研究成果 71
5-2未來展望 72
參考文獻 73
參考文獻 [1]L. Zhu, Q. Lin, K. Yao, N. Zhao, P. Yang, & Z. Jiang, “ Intensity-demodulated fiber-optic vector magnetic field sensor based on fiber-optic evanescent field.” Optics & Laser Technology, 152, 108087 (2022).
[2]S.K. han, S. Le Calvé, & D. Newport, “A review of optical interferometry techniques for VOC detection.” Sensors and Actuators A: Physical, 302, 111782 (2020).
[3]S. Zhang, S. J. Tang, S. Feng, Y. F. Xiao, W. Cui, X. Wang, ... & Y. Zhang, “High‐Q polymer microcavities integrated on a multicore fiber facet for vapor sensing.” Advanced Optical Materials, 7(20), 1900602 (2019).
[4]F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, & C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing.” Analytical and bioanalytical chemistry, 402, 109-116. (2012).
[5]J. Yang, R. Shen, P. Yan, Y. Liu, X. Li, P. Zhang, & W. Chen, “Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber.” Sensors and Actuators B: Chemical, 306, 127585 (2020).
[6]S. H. Yeom, B. H. Kang, C. T. Seo, D. I. Lee, H. J. Shin, S. C. Lim, ... & S. W. Kang, “VOCs detection based on evanescent wave coupling of dye-coated optical fiber.” IEEE Sensors Journal, 15(5), 3021-3025. (2014).
[7]P. Wang, W. Chen, F. Wan, J. Wang, & J. Hu, “A review of cavity-enhanced Raman spectroscopy as a gas sensing method.” Applied Spectroscopy Reviews, 55(5), 393-417. (2020).
[8]Vikas, S. K. Mishra, A. K. Mishra, P. Saccomandi, R. K. Verma, “Recent Advances in Lossy Mode Resonance-Based Fiber Optic Sensors: A Review.” Micromachines, 13(11), 19-21. (2022).
[9]Y. Liu, & W. Peng, “Fiber-optic surface plasmon resonance sensors and biochemical applications: a review.” Journal of Lightwave Technology, 39(12), 3781-3791. (2020).
[10]B. Redding, & H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer.” Optics letters, 37(16), 3384-3386. (2012).
[11]Q. Qi, L. Chu, W. Zhou, P. Zhang, X. Wang, S. Dai, & T. Xu, “A gas-liquid sensor functionalized with graphene-oxide on chalcogenide tapered fiber by chemical etching.” Journal of Lightwave Technology, 39(21), 6976-6984. (2021).
[12]H. S. Mackenzie, & F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre.” Electronics Letters, 21(26), 1744-1745. (1990).
[13]L. Zhuo, J. Tang, W. Zhu, H. Zheng, H. Guan, H. Lu, ... & Z. Chen, “Side polished fiber: a versatile platform for compact fiber devices and sensors.” Photonic Sensors, 13(1), 230120 (2023).
[14]J. Zhao, G. Yin, C. Liao, S. Liu, B. Sun, J. He, ... & X. Xu, “Side-polished fibers with rough surface scratches for sensing applications.” In 2015 Opto-Electronics and Communications Conference (OECC) (pp. 1-3). IEEE. June(2015).
[15]代小爽, 王双, 谭珂, 霍彤, 江俊峰, & 刘铁根. “TiO2 奈米粒子增强的光纤损失模式共振折射率传感器.” Acta Optica Sinica, 43(10), 1006003-1006003. (2023).
[16]I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, ... & I. R. Matias, “Optical sensors based on lossy-mode resonances.” Sensors and Actuators B: Chemical, 240, 174-185. (2017).
[17]J. Xiao, X. Li, W. M. Zhao, & Q. Wang, “Lossy mode resonance sensor modified with TiO_2TiO2/PSS&Au-nanoparticles bilayers for highly sensitive refractive index sensing.” Optical Fiber Technology, 68, 102735 (2022).
[18]J. Imas, C. R. Zamarreño, I. Del Villar, J. C. C. Da Silva, V. Oliveira, & I. R. Matías, “Optical fiber thermo-refractometer.” Optics Express, 30(7), 11036-11045. (2022).
[19]S. K. Mishra, S. P. Usha, & B. D. Gupta, “A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles.” Measurement Science and Technology, 27(4), 045103 (2016).
[20]A. K. C. Theoderaj, D. J. Inbaraj, & C. Mangalaraj, “CdS coated clad-modified fiber optic sensor for detection of NO2 gas.” Materials Research Express, 6(10), 1050c8 (2019).
[21]S. O. Kasap, “Optoelectronics and photonics.” Pearson Education UK. (p. 54)(2013).
[22]S. M. Tseng, & C. L. Chen, “Side-polished fibers.” Applied optics, 31(18), 3438-3447. (1992).
[23]B. M. Bolotovskii, “Vavilov–Cherenkov radiation: its discovery and application.” Physics-Uspekhi, 52(11), 1099 (2009).
[24]A. W.S nyder, & J. D. Love, “Goos-Hänchen shift.” Applied optics, 15(1), 236-238. (1976).
[25]P.J. Rivero, J. Goicoechea, M. Hernaez, A.B. Socorro, I.R. Matias, & F.J. Arregui,“Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings.” Microsystem Tech. 22, 1821–1829. (2016).
[26]A.B. Socorro, I.D. Villar, J.M. Corres, F.J. Arregui, & I.R. Matias, “Tapered single mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin film.” IEEE Sens. J. 12, 2598–2603 (2012).
[27]C.R. Zamarreño, M. Hernáez, I.D. Villar, I.R. Matías, & F.J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings.” Sens. Act. B Chem. 155, 290–297. (2011).
[28]P.J. Rivero, A. Urrutia, J. Goicoechea, & F.J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles.” Sens. Act. B Chem. 173, 244–249 (2012).
[29]A. Urrutia, J. Goicoechea, P.J. Rivero, A. Pildain, & F.J. Arregui, “Optical fiber sensors based on gold nanorods embedded in polymeric thin films.” Sens. Act. B Chem. 255, 2105–2112 (2018)
[30]C.R. Zamarreno, P. Zubiate, M. Sagües, I.R. Matias, & F.J. Arregui, “Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations.” Opt. Lett. 38, 2481–2483 (2013).
[31]A.B. Socorro, J.M. Corres, I.D. Villar, F.J. Arregui, & I.R. Matias, “Fiber optic biosensor based on lossy mode resonances.” Sens. Act. B Chem. 174, 263–269 (2012).
[32]M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi, & Z. Ohtaki, “Ionic conductivity and mobility in network polymers from poly (propylene oxide) containing lithium perchlorate.” J. App. Phys. 57, 123–128 (1985).
[33]Y. Sadaoka, Y. Sakai, & H. Akiyama, “A humidity sensor using alkali salt Poly (ethylene oxdide) hybrid films.” J. Mater. Sci. 21, 235–240 (1986).
[34]A. Andreev, B.S. Zafirova, E. Karakoleva, A.O. Dikovska, & P.A. Atanasov, “Highly sensitive refractometers based on a side polished single-mode fibre coupled with a metal oxide thin-film planar waveguide.” J. Opt. A Pure Appl. Opt. 10, 035303 (2008).
[35]S.P. Usha, S.K. Mishra, & B.D. Gupta, “Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance.” Sens. Act. B Chem. 218, 196–204 (2015).
[36]S.P. Usha, A.M. Shrivastav, & B.D. Gupta, “A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film.” Biosens. Bioelectron. 87, 178–186 (2017).
[37]S.P. Usha, & B.D. Gupta, “Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens. Bioelect.” 101, 134–145 (2018).
[38]S.P. Usha, S.K. Mishra, & B.D. Gupta, “Zinc oxide thin film/nanorods based lossy mode resonance hydrogen sulphide gas sensor.” Mater. Res. Exp., 2, 095003 (2015).
[39]N. Paliwal, & J. John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor.” IEEE Sens. J. 18, 209–215 (2017).
[40]P.A. Rodnyi, & I.V. Khodyuk, “Optical and luminescence properties of zinc oxide.” Opt. Spect. 111, 776–785 (2011).
[41]Z.L. Wang, “Zinc oxide nanostructures: Growth, properties and applications.” J. Phys. Condens. Matter. 16, R829 (2004).
[42]S.P. Usha, & B.D. Gupta, “Semiconductor metal oxide/polymer based fiber optic lossy mode resonance sensors: A contemporary study.” Opt. Fiber Tech. 45, 146–166 (2018).
[43]P. Sanchez, C.R. Zamarreno, M. Hernaez, I.R. Matias, & F.J. Arregui, “Optical fiber refractometers based on Lossy Mode Resonances by means of 〖SnO〗_2 sputtered coatings.” Sens. Act. B Chem. 202, 154–159 (2014).
[44]J. Ascorbe, J.M. Corres, I.R. Matias, & F.J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances.” Sens. Act. B Chem. 233, 7–16 (2016).
[45]C.L. Tien, H.L. Lin, & S.H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm.” Advances in Condensed Matter Physics. 2018, 2303740 (2018).
[46]X. Wang, Q. Wang, Z. Song, & K. Qi, “Simulation of a microstructure fiber pressure sensor based on lossy mode resonance.” AIP Advances, 9(9). (2019).
[47]A. Ozcariz, C.R. Zamarreño, P. Zubiate, & F.J. Arregui, “Is there a frontier in sensitivity with Lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7, 10280 (2017).
[48]S. Sharma, & B.D. Gupta, “Lossy Mode Resonance-Based Fiber Optic Sensor for the Detection of As (III) using α-Fe_2 O_3/〖SnO〗_2 Core–Shell Nanostructures.” IEEE Sens. J. 18, 7077–7084 (2018).
[49]A. Vicente, D. Santano, P. Zubiate, A. Urrutia, I.D. Villar, & C.R. Zamarreño, “Lossy mode resonance sensors based on nanocoated multimode-coreless-multimode fibre.” Sens. Act. B Chem. 304, 126955 (2020).
[50]F. Shao, M.W.G. Hoffmann, J.D. Prades, J.R. Morante, N. Lopez, & F.H. Ramirez, “Interaction mechanisms of ammonia and tin oxide: A combined analysis using single nanowire devices and DFT calculations.” J. Phys. Chem. C 117, 3520–3526 (2013).
[51]M. Hernaez, I.D. Villar, C.R. Zamarreno, F.J. Arregui, & I.R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO_2 coatings.” Appl. Opt. 49, 3980–3985 (2010).
[52]N. Paliwal, & J. John, “Theoretical modeling and investigations of AZO coated LMR based fiber optic tapered tip sensor utilizing an additional TiO2 layer for sensitivity enhancement.” Sens. Act. B Chem. 238, 1–8 (2017).
[53]D. Tiwari, K. Mullaney, S. Korposh, S.W. James, S.W. Lee, & R.P. Tatam, “An ammonia sensor based on lossy mode resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide.” Sens. Act. B Chem. 242, 645–652 (2017).
[54]I.D. Villar, M. Hernaez, C.R. Zamarreño, P. Sánchez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, “Design rules for lossy mode resonance based sensors.” Appl. Opt. 51, 4298–4307 (2012).
[55]N. Paliwal, & J. John, “Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO2 bilayers. Appl.” Opt. 53, 3241–3246 (2014)
[56]A.B. Socorro, M. Hernaez, I.D. Villar, J. Corres, F.J. Arregui, & I.R. Matias, “Single-mode—Multimode—Single-mode and lossy mode resonance-based devices: A comparative study for sensing applications.” Microsyst. Technol. 22, 1633–1638 (2016).
[57]C.L. Tien, T.C. Mao, & C.Y. Li, “Lossy Mode Resonance Sensors Fabricated by RF Magnetron Sputtering GZO Thin Film and D-shaped Fibers” Coatings, 10 (1), 29 (2020)
[58]J.M. Corres, I.D. Villar, F.J. Arregui, & I.R. Matias, “Analysis of lossy mode resonances on thin-film coated cladding removed plastic fiber.” Opt. Lett. 40, 4867–4870 (2015).
[59]C.R. Zamarreno, P. Sanchez, M. Hernaez, I.D. Villar, C.F. Valdivielso, & I.R. Matias, “Sensing properties of indium oxide coated optical fiber devices based on lossy mode resonances.” IEEE Sens. J. 12, 151–155 (2012).
[60]P. Sanchez, C.R. Zamarreno, M. Hernaez, I.D. Villar, C.F. Valdivielso, I.R. Matias, & F.J. Arregui, “Lossy mode resonances toward the fabrication of optical fiber humidity sensors.” Meas. Sci. Tech. 23, 014002 (2011).
[61]C.R. Zamarreño, P. Sanchez, M. Hernaez, I.D. Villar, C.F. Valdivielso, I.R. Matias, & F.J. Arregui, “Dual-peak resonance-based optical fiber refractometers.” IEEE Photonics Tech. Lett. 22, 1778–1780 (2010).
[62]P. Sanchez, K. Gonzalez, C.R. Zamarreño, M. Hernaez, I.R. Matias, & F.J. Arregui, “High-sensitive lossy mode resonance-based optical fiber refractometers by means of sputtered indium oxide thin-films.” In Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems; International Society for Optics and Photonics: Washington, DC, USA, Volume 9517, p. 95171V (2015).
[63]R.K. Verma, A. Joy, N. Sharma, Vikas. “Performance study of surface plasmon resonance and lossy mode resonance based fiber optic sensors utilizing silver and indium oxide layers: An experimental investigation.” Opt. Laser Techn. 112, 420–425 (2019).
[64]D. Zhang, C. Li, X. Liu, S. Han, T. Tang, & C. Zhou, “Doping dependent NH3 sensing of indium oxide nanowires.” Appl. Phys. Lett. 83, 1845–1847 (2003).
[65]M. Liess, “Electric-field-induced migration of chemisorbed gas molecules on a sensitive film-a new chemical sensor.” Thin Solid Film. 410, 183–187 (2002).
[66]I.D. Villar, C.R. Zamarreño, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers.” J. Opt. 12 (2010).
[67]D.B. Buchholz, L. Zeng, M.J. Bedzyk, & R.P.H. Chang, “Differences between amorphous indium oxide thin films.” Prog. Nat. Sci. Mater. Int. 23, 475–480 (2013).
[68]D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, & R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide.” Sensors and Actuators B: Chemical, 242, 645-652 (2017).
[69]S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, & T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.” Optics express, 23(11), 13880-13888 (2015).
[70]毛皓陞,“利用光學鍍膜技術研製高靈敏度D形光纖感測器”,逢甲大學電機工程研究所碩士論文,(2017)。
[71]王婷儀,“基於損耗模態共振的薄膜型D形光纖感測器”,逢甲大學電機工程研究所碩士論文,(2019)。
[72]C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, & F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region.” IEEE Sensors Journal, 10(2), 365-366 (2009).
[73]D. P. Sudas, V. A. Jitov, G. G. Yakushcheva, & P. I. Kuznetsov, “Increasing the sensitivity of chemically resistant lossy mode resonance-based sensors on Al2O3 coatings.” Optical Materials, 149, 115031 (2024).
[74]N. Paliwal, N. Punjabi, J. John, & S. Mukherji, “Design and fabrication of lossy mode resonance based U-shaped fiber optic refractometer utilizing dual sensing phenomenon.” Journal of Lightwave Technology, 34(17), 4187-4194 (2016).
[75]C.L. Tien, H.S. Mao, & T.C. Mao, “Refractive index and salinity sensors by gallium-doped zinc oxide thin film coated on side-polished fibers,” Optica Applicata, Vol. 51, 23-36 (2021).
[76]O. Fuentes, J. M. Corres, I. Domínguez, Del Villar, I., & Matias, I. R. “Simultaneous Measurement of Refractive Index and Temperature using LMR on planar waveguide.” In 2020 IEEE SENSORS (pp. 1-4). IEEE. October (2020).
[77]S. Zhang, X. Dong, T. Li, C. C. Chan, & P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating.” Optics Communications, 303, 42-45 (2013).
[78]A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, & F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating.” Sensors and Actuators B: Chemical, 227, 135-141 (2016).
[79]G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H.K. Rasmussen, & O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.” Optics Express, 24(2), 1253-1260 (2016).
[80]B. Renganathan, & A. R. Ganesan, “Fiber optic gas sensor with nanocrystalline ZnO.” Optical Fiber Technology, 20(1), 48-52 (2014).
[81]B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, & A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides.” Sensors and actuators B: Chemical, 156(1), 263-270 (2011).
指導教授 孫文信(Wen-Shing Sun) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明