參考文獻 |
[1]L. Zhu, Q. Lin, K. Yao, N. Zhao, P. Yang, & Z. Jiang, “ Intensity-demodulated fiber-optic vector magnetic field sensor based on fiber-optic evanescent field.” Optics & Laser Technology, 152, 108087 (2022).
[2]S.K. han, S. Le Calvé, & D. Newport, “A review of optical interferometry techniques for VOC detection.” Sensors and Actuators A: Physical, 302, 111782 (2020).
[3]S. Zhang, S. J. Tang, S. Feng, Y. F. Xiao, W. Cui, X. Wang, ... & Y. Zhang, “High‐Q polymer microcavities integrated on a multicore fiber facet for vapor sensing.” Advanced Optical Materials, 7(20), 1900602 (2019).
[4]F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, & C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing.” Analytical and bioanalytical chemistry, 402, 109-116. (2012).
[5]J. Yang, R. Shen, P. Yan, Y. Liu, X. Li, P. Zhang, & W. Chen, “Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber.” Sensors and Actuators B: Chemical, 306, 127585 (2020).
[6]S. H. Yeom, B. H. Kang, C. T. Seo, D. I. Lee, H. J. Shin, S. C. Lim, ... & S. W. Kang, “VOCs detection based on evanescent wave coupling of dye-coated optical fiber.” IEEE Sensors Journal, 15(5), 3021-3025. (2014).
[7]P. Wang, W. Chen, F. Wan, J. Wang, & J. Hu, “A review of cavity-enhanced Raman spectroscopy as a gas sensing method.” Applied Spectroscopy Reviews, 55(5), 393-417. (2020).
[8]Vikas, S. K. Mishra, A. K. Mishra, P. Saccomandi, R. K. Verma, “Recent Advances in Lossy Mode Resonance-Based Fiber Optic Sensors: A Review.” Micromachines, 13(11), 19-21. (2022).
[9]Y. Liu, & W. Peng, “Fiber-optic surface plasmon resonance sensors and biochemical applications: a review.” Journal of Lightwave Technology, 39(12), 3781-3791. (2020).
[10]B. Redding, & H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer.” Optics letters, 37(16), 3384-3386. (2012).
[11]Q. Qi, L. Chu, W. Zhou, P. Zhang, X. Wang, S. Dai, & T. Xu, “A gas-liquid sensor functionalized with graphene-oxide on chalcogenide tapered fiber by chemical etching.” Journal of Lightwave Technology, 39(21), 6976-6984. (2021).
[12]H. S. Mackenzie, & F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre.” Electronics Letters, 21(26), 1744-1745. (1990).
[13]L. Zhuo, J. Tang, W. Zhu, H. Zheng, H. Guan, H. Lu, ... & Z. Chen, “Side polished fiber: a versatile platform for compact fiber devices and sensors.” Photonic Sensors, 13(1), 230120 (2023).
[14]J. Zhao, G. Yin, C. Liao, S. Liu, B. Sun, J. He, ... & X. Xu, “Side-polished fibers with rough surface scratches for sensing applications.” In 2015 Opto-Electronics and Communications Conference (OECC) (pp. 1-3). IEEE. June(2015).
[15]代小爽, 王双, 谭珂, 霍彤, 江俊峰, & 刘铁根. “TiO2 奈米粒子增强的光纤损失模式共振折射率传感器.” Acta Optica Sinica, 43(10), 1006003-1006003. (2023).
[16]I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, ... & I. R. Matias, “Optical sensors based on lossy-mode resonances.” Sensors and Actuators B: Chemical, 240, 174-185. (2017).
[17]J. Xiao, X. Li, W. M. Zhao, & Q. Wang, “Lossy mode resonance sensor modified with TiO_2TiO2/PSS&Au-nanoparticles bilayers for highly sensitive refractive index sensing.” Optical Fiber Technology, 68, 102735 (2022).
[18]J. Imas, C. R. Zamarreño, I. Del Villar, J. C. C. Da Silva, V. Oliveira, & I. R. Matías, “Optical fiber thermo-refractometer.” Optics Express, 30(7), 11036-11045. (2022).
[19]S. K. Mishra, S. P. Usha, & B. D. Gupta, “A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles.” Measurement Science and Technology, 27(4), 045103 (2016).
[20]A. K. C. Theoderaj, D. J. Inbaraj, & C. Mangalaraj, “CdS coated clad-modified fiber optic sensor for detection of NO2 gas.” Materials Research Express, 6(10), 1050c8 (2019).
[21]S. O. Kasap, “Optoelectronics and photonics.” Pearson Education UK. (p. 54)(2013).
[22]S. M. Tseng, & C. L. Chen, “Side-polished fibers.” Applied optics, 31(18), 3438-3447. (1992).
[23]B. M. Bolotovskii, “Vavilov–Cherenkov radiation: its discovery and application.” Physics-Uspekhi, 52(11), 1099 (2009).
[24]A. W.S nyder, & J. D. Love, “Goos-Hänchen shift.” Applied optics, 15(1), 236-238. (1976).
[25]P.J. Rivero, J. Goicoechea, M. Hernaez, A.B. Socorro, I.R. Matias, & F.J. Arregui,“Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings.” Microsystem Tech. 22, 1821–1829. (2016).
[26]A.B. Socorro, I.D. Villar, J.M. Corres, F.J. Arregui, & I.R. Matias, “Tapered single mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin film.” IEEE Sens. J. 12, 2598–2603 (2012).
[27]C.R. Zamarreño, M. Hernáez, I.D. Villar, I.R. Matías, & F.J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings.” Sens. Act. B Chem. 155, 290–297. (2011).
[28]P.J. Rivero, A. Urrutia, J. Goicoechea, & F.J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles.” Sens. Act. B Chem. 173, 244–249 (2012).
[29]A. Urrutia, J. Goicoechea, P.J. Rivero, A. Pildain, & F.J. Arregui, “Optical fiber sensors based on gold nanorods embedded in polymeric thin films.” Sens. Act. B Chem. 255, 2105–2112 (2018)
[30]C.R. Zamarreno, P. Zubiate, M. Sagües, I.R. Matias, & F.J. Arregui, “Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations.” Opt. Lett. 38, 2481–2483 (2013).
[31]A.B. Socorro, J.M. Corres, I.D. Villar, F.J. Arregui, & I.R. Matias, “Fiber optic biosensor based on lossy mode resonances.” Sens. Act. B Chem. 174, 263–269 (2012).
[32]M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi, & Z. Ohtaki, “Ionic conductivity and mobility in network polymers from poly (propylene oxide) containing lithium perchlorate.” J. App. Phys. 57, 123–128 (1985).
[33]Y. Sadaoka, Y. Sakai, & H. Akiyama, “A humidity sensor using alkali salt Poly (ethylene oxdide) hybrid films.” J. Mater. Sci. 21, 235–240 (1986).
[34]A. Andreev, B.S. Zafirova, E. Karakoleva, A.O. Dikovska, & P.A. Atanasov, “Highly sensitive refractometers based on a side polished single-mode fibre coupled with a metal oxide thin-film planar waveguide.” J. Opt. A Pure Appl. Opt. 10, 035303 (2008).
[35]S.P. Usha, S.K. Mishra, & B.D. Gupta, “Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance.” Sens. Act. B Chem. 218, 196–204 (2015).
[36]S.P. Usha, A.M. Shrivastav, & B.D. Gupta, “A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film.” Biosens. Bioelectron. 87, 178–186 (2017).
[37]S.P. Usha, & B.D. Gupta, “Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens. Bioelect.” 101, 134–145 (2018).
[38]S.P. Usha, S.K. Mishra, & B.D. Gupta, “Zinc oxide thin film/nanorods based lossy mode resonance hydrogen sulphide gas sensor.” Mater. Res. Exp., 2, 095003 (2015).
[39]N. Paliwal, & J. John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor.” IEEE Sens. J. 18, 209–215 (2017).
[40]P.A. Rodnyi, & I.V. Khodyuk, “Optical and luminescence properties of zinc oxide.” Opt. Spect. 111, 776–785 (2011).
[41]Z.L. Wang, “Zinc oxide nanostructures: Growth, properties and applications.” J. Phys. Condens. Matter. 16, R829 (2004).
[42]S.P. Usha, & B.D. Gupta, “Semiconductor metal oxide/polymer based fiber optic lossy mode resonance sensors: A contemporary study.” Opt. Fiber Tech. 45, 146–166 (2018).
[43]P. Sanchez, C.R. Zamarreno, M. Hernaez, I.R. Matias, & F.J. Arregui, “Optical fiber refractometers based on Lossy Mode Resonances by means of 〖SnO〗_2 sputtered coatings.” Sens. Act. B Chem. 202, 154–159 (2014).
[44]J. Ascorbe, J.M. Corres, I.R. Matias, & F.J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances.” Sens. Act. B Chem. 233, 7–16 (2016).
[45]C.L. Tien, H.L. Lin, & S.H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm.” Advances in Condensed Matter Physics. 2018, 2303740 (2018).
[46]X. Wang, Q. Wang, Z. Song, & K. Qi, “Simulation of a microstructure fiber pressure sensor based on lossy mode resonance.” AIP Advances, 9(9). (2019).
[47]A. Ozcariz, C.R. Zamarreño, P. Zubiate, & F.J. Arregui, “Is there a frontier in sensitivity with Lossy mode resonance (LMR) based refractometers?” Sci. Rep. 7, 10280 (2017).
[48]S. Sharma, & B.D. Gupta, “Lossy Mode Resonance-Based Fiber Optic Sensor for the Detection of As (III) using α-Fe_2 O_3/〖SnO〗_2 Core–Shell Nanostructures.” IEEE Sens. J. 18, 7077–7084 (2018).
[49]A. Vicente, D. Santano, P. Zubiate, A. Urrutia, I.D. Villar, & C.R. Zamarreño, “Lossy mode resonance sensors based on nanocoated multimode-coreless-multimode fibre.” Sens. Act. B Chem. 304, 126955 (2020).
[50]F. Shao, M.W.G. Hoffmann, J.D. Prades, J.R. Morante, N. Lopez, & F.H. Ramirez, “Interaction mechanisms of ammonia and tin oxide: A combined analysis using single nanowire devices and DFT calculations.” J. Phys. Chem. C 117, 3520–3526 (2013).
[51]M. Hernaez, I.D. Villar, C.R. Zamarreno, F.J. Arregui, & I.R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO_2 coatings.” Appl. Opt. 49, 3980–3985 (2010).
[52]N. Paliwal, & J. John, “Theoretical modeling and investigations of AZO coated LMR based fiber optic tapered tip sensor utilizing an additional TiO2 layer for sensitivity enhancement.” Sens. Act. B Chem. 238, 1–8 (2017).
[53]D. Tiwari, K. Mullaney, S. Korposh, S.W. James, S.W. Lee, & R.P. Tatam, “An ammonia sensor based on lossy mode resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide.” Sens. Act. B Chem. 242, 645–652 (2017).
[54]I.D. Villar, M. Hernaez, C.R. Zamarreño, P. Sánchez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, “Design rules for lossy mode resonance based sensors.” Appl. Opt. 51, 4298–4307 (2012).
[55]N. Paliwal, & J. John, “Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO2 bilayers. Appl.” Opt. 53, 3241–3246 (2014)
[56]A.B. Socorro, M. Hernaez, I.D. Villar, J. Corres, F.J. Arregui, & I.R. Matias, “Single-mode—Multimode—Single-mode and lossy mode resonance-based devices: A comparative study for sensing applications.” Microsyst. Technol. 22, 1633–1638 (2016).
[57]C.L. Tien, T.C. Mao, & C.Y. Li, “Lossy Mode Resonance Sensors Fabricated by RF Magnetron Sputtering GZO Thin Film and D-shaped Fibers” Coatings, 10 (1), 29 (2020)
[58]J.M. Corres, I.D. Villar, F.J. Arregui, & I.R. Matias, “Analysis of lossy mode resonances on thin-film coated cladding removed plastic fiber.” Opt. Lett. 40, 4867–4870 (2015).
[59]C.R. Zamarreno, P. Sanchez, M. Hernaez, I.D. Villar, C.F. Valdivielso, & I.R. Matias, “Sensing properties of indium oxide coated optical fiber devices based on lossy mode resonances.” IEEE Sens. J. 12, 151–155 (2012).
[60]P. Sanchez, C.R. Zamarreno, M. Hernaez, I.D. Villar, C.F. Valdivielso, I.R. Matias, & F.J. Arregui, “Lossy mode resonances toward the fabrication of optical fiber humidity sensors.” Meas. Sci. Tech. 23, 014002 (2011).
[61]C.R. Zamarreño, P. Sanchez, M. Hernaez, I.D. Villar, C.F. Valdivielso, I.R. Matias, & F.J. Arregui, “Dual-peak resonance-based optical fiber refractometers.” IEEE Photonics Tech. Lett. 22, 1778–1780 (2010).
[62]P. Sanchez, K. Gonzalez, C.R. Zamarreño, M. Hernaez, I.R. Matias, & F.J. Arregui, “High-sensitive lossy mode resonance-based optical fiber refractometers by means of sputtered indium oxide thin-films.” In Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems; International Society for Optics and Photonics: Washington, DC, USA, Volume 9517, p. 95171V (2015).
[63]R.K. Verma, A. Joy, N. Sharma, Vikas. “Performance study of surface plasmon resonance and lossy mode resonance based fiber optic sensors utilizing silver and indium oxide layers: An experimental investigation.” Opt. Laser Techn. 112, 420–425 (2019).
[64]D. Zhang, C. Li, X. Liu, S. Han, T. Tang, & C. Zhou, “Doping dependent NH3 sensing of indium oxide nanowires.” Appl. Phys. Lett. 83, 1845–1847 (2003).
[65]M. Liess, “Electric-field-induced migration of chemisorbed gas molecules on a sensitive film-a new chemical sensor.” Thin Solid Film. 410, 183–187 (2002).
[66]I.D. Villar, C.R. Zamarreño, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers.” J. Opt. 12 (2010).
[67]D.B. Buchholz, L. Zeng, M.J. Bedzyk, & R.P.H. Chang, “Differences between amorphous indium oxide thin films.” Prog. Nat. Sci. Mater. Int. 23, 475–480 (2013).
[68]D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, & R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide.” Sensors and Actuators B: Chemical, 242, 645-652 (2017).
[69]S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, & T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.” Optics express, 23(11), 13880-13888 (2015).
[70]毛皓陞,“利用光學鍍膜技術研製高靈敏度D形光纖感測器”,逢甲大學電機工程研究所碩士論文,(2017)。
[71]王婷儀,“基於損耗模態共振的薄膜型D形光纖感測器”,逢甲大學電機工程研究所碩士論文,(2019)。
[72]C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, & F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region.” IEEE Sensors Journal, 10(2), 365-366 (2009).
[73]D. P. Sudas, V. A. Jitov, G. G. Yakushcheva, & P. I. Kuznetsov, “Increasing the sensitivity of chemically resistant lossy mode resonance-based sensors on Al2O3 coatings.” Optical Materials, 149, 115031 (2024).
[74]N. Paliwal, N. Punjabi, J. John, & S. Mukherji, “Design and fabrication of lossy mode resonance based U-shaped fiber optic refractometer utilizing dual sensing phenomenon.” Journal of Lightwave Technology, 34(17), 4187-4194 (2016).
[75]C.L. Tien, H.S. Mao, & T.C. Mao, “Refractive index and salinity sensors by gallium-doped zinc oxide thin film coated on side-polished fibers,” Optica Applicata, Vol. 51, 23-36 (2021).
[76]O. Fuentes, J. M. Corres, I. Domínguez, Del Villar, I., & Matias, I. R. “Simultaneous Measurement of Refractive Index and Temperature using LMR on planar waveguide.” In 2020 IEEE SENSORS (pp. 1-4). IEEE. October (2020).
[77]S. Zhang, X. Dong, T. Li, C. C. Chan, & P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating.” Optics Communications, 303, 42-45 (2013).
[78]A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, & F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating.” Sensors and Actuators B: Chemical, 227, 135-141 (2016).
[79]G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H.K. Rasmussen, & O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.” Optics Express, 24(2), 1253-1260 (2016).
[80]B. Renganathan, & A. R. Ganesan, “Fiber optic gas sensor with nanocrystalline ZnO.” Optical Fiber Technology, 20(1), 48-52 (2014).
[81]B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, & A. C. Bose, “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides.” Sensors and actuators B: Chemical, 156(1), 263-270 (2011). |