摘要(英) |
This study expands into a bi-directional skyhook active isolation system by orthogonally stacking two sets of unidirectional skyhook active isolation systems to address bi-directional seismic inputs. Due to orthogonality, two directions can be assumed to be completely independent. Using unidirectional skyhook active isolation systems and considering stroke restraint, the equations of motion and control laws are detailed for numerical simulations and harmonic wave experiment validation. The skyhook active isolation system is based on traditional skyhook control theory, with improvements in calculating active control forces. The design adjusts feedback signals based on the system′s relative ground velocity and feedforward signals as integrated filtered ground velocity, forming a hybrid feedforward-feedback control system. This design enhances the convenience and stability of signal measurements and considers the impact of the system′s inherent damping. Additionally, a control force filter is introduced to remove unexpected high-frequency signals. The system is extended to include integral filters and control force filters, considering their impact during the optimization design process. The improved active control force is non-full-state feedback, thus direct output feedback is adopted. The goal is to minimize the system′s absolute acceleration, and control force gain parameters are optimized through parameter iteration updates. To address stroke restraint, initial control is achieved by reducing ground velocity gain parameters, and when displacement increases beyond a threshold, stroke restraint forces are incorporated into the active control force for further displacement control. Firstly, design damping ratio parameters are analyzed to determine the optimal settings for the isolation system. The system′s characteristics are analyzed to apply active control forces, shifting natural frequencies away from the dominant earthquake frequencies and reducing resonance. Frequency response functions and seismic time-history analyses demonstrate that the skyhook active isolation system outperforms passive isolation systems in seismic isolation. Stability analysis shows that variations in relative ground velocity gain parameters affect system stability, while ground velocity gain parameter variations do not, allowing for stroke displacement adjustments. Time delay stability analysis confirms the impact of active control force delays on system stability. Introducing stroke restraint control laws and conducting seismic time-history analyses reveal that the system effectively reduces stroke displacement while achieving optimal isolation effects, thus protecting the isolation system. In order to validate the numerical simulation results, harmonic wave experiments were conducted using a shaking table, verifying similar trends between experimental data and analytical results. Furthermore, considering the different characteristics of floor acceleration responses from seismic waves post-structure interaction, the study conducts floor acceleration time-history analysis for a more realistic application scenario. Since the system is primarily used to provide isolation protection for critical instruments in high-tech factories, it is subjected to floor acceleration. Results show that the skyhook active isolation system maintains significant isolation performance under floor acceleration effects, and systems with stroke restraint effectively protect against excessive displacement. |
參考文獻 |
[1] 內政部營建署,「建築物耐震設計規範及解說」,內政部營建署台內營字第1110810765號令 (2022)。
[2] 黃振興、黃尹男、黃仁傑,「微電子廠採用隔震設計之可行性試驗研究」,國家地震工程研究中心,編號 NCREE 02-023 (2002)。
[3] 栗正暐、黃宣諭,「高科技半導體廠結構設計之關鍵考量」,土木水利,第四十六卷,第六期,社團法人中國土木水利工程學會30-37頁 (2019)。
[4] Soong T. T. and Spencer B. F., Jr., “Active, semi-active and hybrid control of structures”, Bulletin of the New Zealand Society for Earthquake Engineering, vol. 33, no. 3, pp. 387-402. (2000)
[5] Kelly J. M. and Tsai H. C., “Seismic Response of Light Internal Equipment in Base-Isolated Structures”, Earthquake Engineering and Structural Dynamics, Vol. 13, no. 6, pp. 711-732. (1985)
[6] Reggio A. and De Angelis M., “Combined primary-secondary system approach to the design of an equipment isolation system with High-Damping Rubber Bearings”, Journal of Sound and Vibration, vol. 333, no.9, pp. 2386-2403. (2014)
[7] 李姿瑩、盧煉元、陳奕翔、洪文孝,「含變頻式摩擦單擺支承與抗拉拔裝置橋梁之水平雙向振動台試驗」,中華民國力學學會第四十五屆全國力學會議,0160 (CTAM 2021)。
[8] 陳奕翔,「含變頻式摩擦單擺支承與抗拉拔裝置橋梁之水平雙向振動台試驗」,碩士論文,國立中央大學土木工程學系 (2021)。
[9] 汪向榮、林旺春、游忠翰、楊卓諺,「應用斜面滾動隔震技術提升重要設備耐震性能」,土木水利,第四十四卷,第一期 (2017)。
[10] 許丁友、汪向榮,「斜面式滾動隔震平台應用於重要設備耐震性能提升」,國家地震工程研究中心簡訊,第89期 (2014)。
[11] Yang C. Y., Chiao D., Lai Y. A., Chang C. M. and Chung L. L., “Evaluation and Performance Testing of Eccentric Rolling Isolation System”, Structural Control and Health Monitoring, vol. 2024, no. 1, Article ID 8845965. (2024)
[12] Venanzi I., Ierimonti L. and Materazzi A. L., “Active Base Isolation of Museum Artifacts under Seismic Excitation”, Journal of Earthquake Engineering, vol. 24, no. 3, pp. 506-527. (2018)
[13] Rodellar J., Garcia G., Vidal Y., Acho L. and Pozo F., “Hysteresis based vibration control of base-isolated structures”, X International Conference on Structural Dynamics, EURODYN., vol. 199, pp. 1798–1803. (2017)
[14] Chang C. M. and Spencer B. F., Jr., “Active base isolation of buildings subjected to seismic excitations”, Earthquake Engineering and Structural Dynamics, vol. 39, no. 13, pp. 1493-1512. (2010)
[15] Zuo L., Slotine J. J. E. and Nayfeh S. A., “Experimental study of a novel adaptive controller for active vibration isolation”, Proceeding of American Control Conference, vol. 4, no. 4, pp. 3863-3868. (2004)
[16] Beijen M. A., “Self-tuning feedforward control for active vibration isolation of precision machines”, IFAC Proceedings Volumes, vol. 47, no. 3, pp. 5611-5616. (2014)
[17] 陳佳恩,「天鉤主動隔震系統應用於單自由度機構分析與實驗驗證」,碩士論文,國立中央大學土木工程學系 (2021)。
[18] 吳柏諺,「天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證」,碩士論文,國立中央大學土木工程學系 (2022)。
[19] 蔡元峰,「設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證」,碩士論文,國立中央大學土木工程學系 (2023)。
[20] 盧煉元、陳乙震、林錦隆、劉永田,「壓電式半主動隔震系統於設備防震之應用」,中國土木水利工程學刊,第二十二卷,第一期,65-83頁 (2010)。
[21] Yoshioka H., Ramallo J. C. and Spencer B. F., Jr., ““Smart” Base Isolation Strategies Employing Magnetorheological Dampers” Journal of Engineering Mechanics, vol.128, no. 5, pp. 540-551. (2002)
[22] Liu C., Chen L., Yang X., Zhang X. and Yang Y., “General Theory of Skyhook Control and Its Application to Semi-Active Suspension Control Strategy Design” IEEE Access, vol. 7, pp. 101552-101560. (2019)
[23] Poussot-Vassal C., Sename O., Dugard L., Ramirez-Mendoza R. and Flores L., “Optimal Skyhook Control for Semi-Active Suspensions”, IFAC Proceedings Volumes, vol. 39, no. 16, pp. 608-613. (2006)
[24] Shamsi A. and Choupani N., "Continuous and discontinuous shock absorber control through skyhook strategy in semi-active suspension system (4DOF model)", International Journal of Aerospace and Mechanical Engineering, vol. 2, no. 5, pp. 697-701. (2008)
[25] Kashem S. B. A., Ektesabi M. and Nagarajah R., "Comparison between different sets of suspension parameters and introduction of new modified skyhook control strategy incorporating varying road condition", International Journal of Vehicle Mechanics and Mobility, vol. 50, no. 7, pp. 1173-1190, Jul. (2012)
[26] Diaz-Choque C. S., Félix-Herrán L. C. and Ramirez-Mendoza R. A., “Optimal Skyhook and Groundhook Control for Semiactive Suspension: A Comprehensive Methodology”, Journal of Shock and Vibration., vol. 2021, Article ID 8084343. (2021)
[27] Shahi S. K. and Baker J. W., “An Empirically Calibrated Framework for Including the Effects of Near-Fault Directivity in Probabilistic Seismic Hazard Analysis”, Bulletin of the Seismological Society of America, vol. 101, No. 2, pp. 742-755. (2011)
[28] Shahi S. K. and Baker J. W., “An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions”, Bulletin of the Seismological Society of America, vol. 104, No. 5, pp. 2456-2466. (2014)
[29] 莊子霆、曾冠証、許丁友,「結合強震預警與之半主動滾動隔震支承研發」,中華民國力學學會第四十七屆全國力學會議,S052002 (CTAM 2023)。
[30] 陳克宜,「應用深度強化學習於地震特性控制模組與壓電式智能滑動隔減震系統之研發」,碩士論文,國立陽明交通大學土木工程研究所 (2022)。
[31] 林錦隆、張名斌,「半主動電磁式隔震系統之開迴路控制振動台試驗」,中華民國力學學會第四十七屆全國力學會議,S052001 (CTAM 2023)。
[32] 林錦隆、黃譯醇,「半主動電磁阻尼隔震系統之研發與性能驗證」,國家科學及技術委員會補助專題研究計畫報告 (2021)。
[33] 林錦隆、黃譯醇、李奕寰、林建佐,「具飛輪之電磁阻尼隔震系統之研發與效能驗證」,科技部補助專題研究計畫報告 (2020)。
[34] 林芃妤,「建築物隔震補強及其位移限制機制設計」,碩士論文,國立臺灣大學工學院土木工程學系 (2019)。
[35] 賴柏壬,「具離合器慣質設計之斜面滾動隔震支承研究」,碩士論文,國立臺灣科技大學營建工程系 (2023)。
[36] 王勝宣,「隔震系統最佳化設計流程及摩擦消能水平雙向隔震試驗之研究」,碩士論文,國立臺灣大學土木工程學研究所 (2014)。
[37] 宋柏賢,「考慮近斷層脈衝影響及地震雙向作用之鉛心橡膠隔震系統設計程序」,碩士論文,國立臺灣大學工學院土木工程學系 (2022)。
[38] 洪鎮韋,「具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證」,碩士論文,國立中央大學土木工程學系 (2023)。
[39] 陳鉅昌,「樓高放大地震加速度反應分析」,碩士論文,國立中興大學土木工程學系 (2000)。
[40] 梁家瑋,「利用初達波特徵推估最大樓板加速度反應之研究」,碩士論文,國立臺灣科技大學營建工程系 (2017)。
[41] 高培修,「黏滯型及摩擦型隔震系統消能參數之最佳化設計公式」,碩士論文,國立臺灣大學土木工程學系 (2011)。
[42] D2T伺服馬達驅動器操作手冊,大銀微系統股份有限公司。
[43] 黃淨慧,「科技廠房之結構損傷探測分析」,碩士論文,國立交通大學土木工程系所 (2013)。 |