博碩士論文 111322013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.227.111.126
姓名 劉曉陽(Hsiao-Yang Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 多孔材料幾何形狀與力學性質關係之探討
(Investigation of the Relationship Between the Geometric Shape and Mechanical Properties of Porous Materials)
相關論文
★ 探討物質點法應用於極限條件下之結構反應★ 利用物質點法探討金屬板靶於子彈衝擊下之行為
★ 利用積層製造技術及物質點法探討IPU材料特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 多孔材料是一種特殊的材料結構,其發展已經具有千年的歷史,相較於實心材料,材料內適當的孔隙配置能使其整體更具有輕質、吸震、抗衝擊、隔音、保溫、高透氣等特徵,在許多工程領域都發揮了重要的作用,如:建築、航空航太、汽車工業和生物醫學工程等。車輪框、 桁架結構、人工骨骼以及機翼的設計就是現階段多孔材料的應用。而早在人類文明發現多孔隙材料的優點前,生物的演化就已將上述優點充分發揮,在自然界中已經自然的進化出了許多低相對密度、高勁度 和強度的多孔結構材料,鳥喙與鳥骨骼、蜂巢中之蜂窩結構便是極具代表性的例子。
近年來,隨著3D列印以及計算能力及方法的提升,使得材料的使用與孔隙組成的排列更為多元與複雜,進而可將研究的觸角更加延伸。可以製造更複雜結構的多孔材料,各種材料如PLA、TPU,都可以設計複雜的幾何結構再透過3D列印順利完成。
本論文即基於前述背景,使用數值模擬方法中之有限元素法進行多孔材料之力學數值模擬,探討多孔材料內部結構材料組成、材料強度與力學行為彼此間之關係。本論文主要分析內容分別為結構孔隙材料的受壓、受剪力與動力分析;壓力分析與剪力分析探討了不同種類的多孔結構,如孔隙尺寸、排列方式、幾何形狀與承載力之關係,動力分析則是探討多孔材料於衝擊波作用下對應力波傳遞之影響。
摘要(英) Porous materials are a unique material structure with a development history spanning thousands of years. Compared to solid materials, the appropriate arrangement of pores within these materials can make them lighter overall and impart features such as shock absorption, impact resistance, sound insulation, thermal insulation, and high breathability. These characteristics have made porous materials play important roles in many engineering fields, including construction, aerospace, automotive industry, and biomedical engineering. Current applications of porous materials include wheel frames, truss structures, artificial bones, and wing designs.Even before human civilization discovered the advantages of porous materials, biological evolution had already fully utilized these benefits. Many low-density, high-stiffness, and high-strength porous structural materials have naturally evolved in the natural world. Notable examples include the beaks and bones of birds, and the honeycomb structures within beehives.
In recent years, advancements in 3D printing, along with improvements in computational capabilities and methods, have made the use of materials and the arrangement of pores more diverse and complex, extending the reach of research even further. Porous materials with more intricate structures can now be manufactured, and various materials such as polylactic acid (PLA) and thermoplastic polyurethane (TPU) can be designed with complex geometries and successfully produced through 3D printing.
This thesis is based on the aforementioned background and uses the finite element method (FEM) in numerical simulation to study the mechanics of porous materials. It explores the relationships between the internal structural composition, material strength, and mechanical behavior of porous materials. The main analytical content of this thesis includes compression, shear force, and dynamic analysis of structural porous materials.
The pressure and shear force analyses investigate the relationships between various types of porous structures—such as pore size, arrangement, geometric shape, and load-bearing capacity. The dynamic analysis examines the effect of porous materials on stress wave propagation under the action of shock waves.
關鍵字(中) ★ 多孔材料
★ 有限元素法
★ 3D列印
關鍵字(英) ★ porous materials
★ finite element method
★ 3D printing
論文目次 中文摘要……………………………………………………………………………….i
ABSTRACT…………………………………………………………………………...ii
目錄…………………………………………………………………………………...iv
表目錄………………………………………………………………………………...vi
圖目錄……………………………………………………………………………….viii
第一章 緒論…………………………………………………………………………..1
1-1研究背景………………………………………………………..………………1
1-2研究動機………………………………………………………………………..2
1-3研究目的………………………………………………………………………..2
1-4論文架構………………………………………………………………………..2
第二章 文獻探討……………………………………………………………………..4
2-1多孔材料的介紹………………………………………………………………..4
2-2多孔材料的設計………………………………………………………………..7
2-3多孔材料的最佳化……………………………………………………………..9
第三章 多孔材料受壓力之力學性質分析 ………………………………………..11
3-1模型幾何形狀與尺寸…………………………………………………………12
3-2分析規劃………………………………………………………………………18
3-2-1受力方向………………………………………………………………...20
3-2-2分析組合………………………………………………………………...22
3-3分析結果………………………………………………………………………23
3-3-1多孔材料抗壓強度比較………………………………………………...23
3-3-2多孔材料受力方向之分析……………………………………………...28
3-3-3多孔材料幾何形狀之分析……………………………………………...35
3-3-4多孔材料排列方式之分析……………………………………………...42
3-3-5多孔材料相對密度之分析……………………………………………...49
第四章 多孔材料受剪力之力學性質分析…………………………………………59
4-1模型幾何形狀與尺寸…………………………………………………………60
4-2分析規劃………………………………………………………………………64
4-2-1受力方向………………………………………………………………...65
4-2-2分析組合………………………………………………………………...66
4-3分析結果………………………………………………………………………66
第五章 添加多孔材料設計之動力分析…………………………………………..77
5-1分析規劃………………………………………………………………………77
5-2分析結果………………………………………………………………………86
第六章 有限元素分析軟體概述及操作指南……………………………………..109
6-1概述…………………………………………………………………………..109
6-2操作指南……………………………………………………………………..117
第七章 結論與建議………………………………………………………………..122
7-1結論…………………………………………………………………………..122
7-2未來研究方向………………………………………………………………..124
7-2-1可以完成實驗部分…………………………………………………….124
7-2-2探討無弱軸材料封閉………………………………………………….128
7-2-3孔生成如球對稱來減少弱軸的影響………………………………….128
參考文獻……………………………………………………………………………129
參考文獻 [1] YU, Bosco, et al. The design of “Grain Boundary Engineered” architected cellular materials: The role of 5-7 defects in hexagonal honeycombs. Acta Materialia, 2023, 243: 118513.
[2] Schaedler, T. A., & Carter, W. B. (2016). Architected cellular materials. Annual Review of Materials Research, 46, 187-210.
[3] BARTON, Thomas J., et al. Tailored porous materials. Chemistry of Materials, 1999, 11.10: 2633-2656.
[4] ATTENBOROUGH, Keith. Acoustical characteristics of porous materials. Physics reports, 1982, 82.3: 179-227.
[5] MIKI, Yasushi. Acoustical properties of porous materials-Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 1990, 11.1: 19-24.
[6] SMITH, David S., et al. Thermal conductivity of porous materials. Journal of Materials Research, 2013, 28.17: 2260-2272.
[7] SUMIRAT, Iwan; ANDO, Y.; SHIMAMURA, S. Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. Journal of Porous Materials, 2006, 13: 439-443.
[8] MYERS, A. L. Thermodynamics of adsorption in porous materials. AIChE journal, 2002, 48.1: 145-160.
[9] SIMSKE, Steven J.; AYERS, REED A.; BATEMAN, T. A. Porous materials for bone engineering. In: Materials Science Forum. Trans Tech Publications Ltd, 1997. p. 151-182.
[10] KITAGAWA, Susumu. Future porous materials. Accounts of chemical research, 2017, 50.3: 514-516.
[11] ZHENG, Xiaoyang, et al. Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices. Science and Technology of Advanced Materials, 2023, 24.1: 2157682.
[12] VALDEVIT, Lorenzo, et al. Protocols for the optimal design of multi‐functional cellular structures: from hypersonics to micro‐architected materials. Journal of the American Ceramic Society, 2011, 94: s15-s34.
[13] KAUR, Manpreet; HAN, Seung Min; KIM, Woo Soo. Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications. MRS Communications, 2017, 7.1: 8-19.
[14] SARVESTANI, H. Yazdani, et al. 3D printed architected polymeric sandwich panels: Energy absorption and structural performance. Composite Structures, 2018, 200: 886-909.
[15] YANG, Xiao-Yu, et al. Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46.2: 481-558.
[16] PARLETT, Christopher MA; WILSON, Karen; LEE, Adam F. Hierarchical porous materials: catalytic applications. Chemical Society Reviews, 2013, 42.9: 3876-3893.
[17] KLADOVASILAKIS, Nikolaos, et al. Architected materials for additive manufacturing: A comprehensive review. Materials, 2022, 15.17: 5919.
[18] RO, Christopher J.; ROPER, Christopher S. Analytical models of the geometric properties of solid and hollow architected lattice cellular materials. Journal of Materials Research, 2018, 33.3: 264-273.
[19] OSANOV, Mikhail; GUEST, James K. Topology optimization for architected materials design. Annual Review of Materials Research, 2016, 46: 211-233.

[20] ONGARO, F., et al. Mechanics of filled cellular materials. Mechanics of Materials, 2016, 97: 26-47.
[21] BERTOLDI, Katia. Harnessing instabilities to design tunable architected cellular materials. Annual Review of Materials Research, 2017, 47: 51-61.
[22] RAMIREZ-CHAVEZ, Irving E., et al. A classification of aperiodic architected cellular materials. Designs, 2022, 6.4: 63.
[23] GREER, Julia R.; DESHPANDE, Vikram S. Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior. MRS Bulletin, 2019, 44.10: 750-757.
[24] MONTEMURRO, Marco; BERTOLINO, Giulia; PANETTIERI, Enrico. Topology optimisation of architected cellular materials from additive manufacturing: analysis, design, and experiments. In: Structures. Elsevier, 2023. p. 2220-2239.
[25] WANG, Fangzhou, et al. Predicting thermal and mechanical performance of stochastic and architected foams. International Journal of Heat and Mass Transfer, 2021, 171: 121139.
[26] BENNETT, Thomas D., et al. The changing state of porous materials. Nature Materials, 2021, 20.9: 1179-1187.
[27] SLATER, Anna G.; COOPER, Andrew I. Function-led design of new porous materials. Science, 2015, 348.6238: aaa8075.
[28] PEREGO, Carlo; MILLINI, Roberto. Porous materials in catalysis: challenges for mesoporous materials. Chemical Society Reviews, 2013, 42.9: 3956-3976.
[29] NGUYEN, C.; DO, D. D. A new method for the characterization of porous materials. Langmuir, 1999, 15.10: 3608-3615.
[30] ZDRAVKOV, Borislav, et al. Pore classification in the characterization of porous materials: A perspective. Open Chemistry, 2007, 5.2: 385-395.
[31] LU, A.‐H.; SCHÜTH, Ferdi. Nanocasting: a versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18.14: 1793-1805.
[32] LANDERS, John; GOR, Gennady Yu; NEIMARK, Alexander V. Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437: 3-32.
[33] KOVÁČIK, Jaroslav. Correlation between Young′s modulus and porosity in porous materials. Journal of materials science letters, 1999, 18.13: 1007-1010.
[34] SING, Kenneth. The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187: 3-9.
[35] WHITE, Robin J., et al. Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 2009, 38.2: 481-494.
[36] MAKAL, Trevor A., et al. Methane storage in advanced porous materials. Chemical Society Reviews, 2012, 41.23: 7761-7779.
[37] TANG, Fengqiu, et al. Preparation of porous materials with controlled pore size and porosity. Journal of the European Ceramic Society, 2004, 24.2: 341-344.
指導教授 蘇昱臻(Yu-Chen Su) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明