博碩士論文 111322015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.118.166.130
姓名 夏昕薇(Xin-Wei Xia)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用積層製造技術及物質點法探討IPU材料特性
相關論文
★ 探討物質點法應用於極限條件下之結構反應★ 多孔材料幾何形狀與力學性質關係之探討
★ 利用物質點法探討金屬板靶於子彈衝擊下之行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 隨著現代科技的發展,材料的使用種類及產品設計需求明顯增多且複
雜。以材料的發展而言,學者專家致力於追求重量更輕、強度更高與成本更
低等特性之材料。而產品的設計,更是越趨複雜以因應越來越多的外在條件
下之作用。然而,複雜的設計於過往經常造成工業製造上的極大挑戰,與極
大的成本支出。為了能有效克服此困境,積層製造技術便應運而生,而此技
術也在近二十年間在各工程領域(如汽車、航太和生醫等)都有蓬勃發展,
甚至被稱為第三次工業革命。
INGROWS PU 簡稱為IPU 為近年來由可成生技公司新研發之線材,其
系與積層製造常用線材TPU (熱塑性聚氨酯)有相似特性,亦同屬熱成型塑
膠類材料;然而,因此線材於一般文獻中不易找到精確的材料參數,且無法
確認在不同列印方式,甚至是環境因素下是否會對材料特性及參數造成影
響。故此本研究主要欲結合積層製造與IPU 線材,探討IPU 線材成型之力
學特性。主要探討方式將由實際試驗與數值模擬同時著手,探討材料成型後
之受力行為與其相對應之彈性與塑性特性。實際試驗系利用計有泛能試驗
機進行抗拉與抗壓試驗;數值分析則使用物質點法。此外,本論文亦將深入
分析各材料參數,如楊氏模數與塑性階段時之切線模數。
綜上所述,此一系列之IPU 線材成型後之力學試驗與數值分析成果均
可作為後續產品設計與開發時之重要參考依據。
摘要(英) With the advancement of modern technology, the variety of materials used
and the demands of product design have significantly increased and become more
complex. In terms of material development, scholars and experts are dedicated to
pursuing materials that are lighter, stronger, and more cost-effective. Product
design has also become increasingly intricate to meet the growing number of
external conditions and requirements. However, complex designs have
historically posed significant challenges and incurred substantial costs in
industrial manufacturing. To effectively overcome these difficulties, additive
manufacturing technology emerged. Over the past two decades, this technology
has flourished in various engineering fields, such as automotive, aerospace, and
biomedical industries, and has even been referred to as the Third Industrial
Revolution.
INGROWS PU, abbreviated as IPU, is a newly developed filament by Acme
Biotechnology. It shares similar properties with TPU (thermoplastic
polyurethane), a material commonly used in additive manufacturing, and belongs
to the category of thermoplastic materials. However, precise material parameters
for this filament are difficult to find in common literature, and it is unclear whether
different printing methods or even environmental factors might affect its
IV
properties and parameters. Therefore, this study aims to combine additive
manufacturing with IPU filament to investigate the mechanical properties of IPU
filament formation. The main approach will involve both experimental testing and
numerical simulation to examine the material′s behavior under stress and its
corresponding elastic and plastic characteristics. The experimental tests will be
conducted using a universal testing machine for tensile and compressive tests,
while the numerical analysis will employ the Material Point Method. Additionally,
this thesis will delve into various material parameters, such as the Young′s
modulus and the tangent modulus during the plastic stage.
In summary, the results of the mechanical tests and numerical analyses of the
IPU filament series can serve as important reference data for future product design
and development.
關鍵字(中) ★ 積層製造
★ 物質點法
★ 熔融沉積成型
★ 3D 列印
關鍵字(英)
論文目次 摘要 ........................................................................................................................ I
Abstract ............................................................................................................... III
目錄 ..................................................................................................................... VI
表目錄 ................................................................................................................. IX
圖目錄 .................................................................................................................. X
符號說明 ............................................................................................................ XII
第一章 緒論 ......................................................................................................... 1
1.1 前言 ................................................................................................... 1
1.2 研究動機與目的 ............................................................................... 3
1.3 研究內容與方法 ............................................................................... 4
1.4 論文架構 ........................................................................................... 5
第二章 文獻回顧與整理 ..................................................................................... 6
2.1 積層製造介紹 ................................................................................... 6
2.2 3D 列印積層製造技術的優缺點 ..................................................... 7
2.2.1 3D 列印優點 ............................................................................. 7
2.2.2 3D 列印缺點 ............................................................................. 8
2.3 常見熱塑性塑料介紹 ....................................................................... 9
2.4 熱塑性材料成型力學試驗 ............................................................. 10
VII
2.5 積層製造技術在球形鉑奈米粒子之力學特性分子動力分析 .... 11
2.6 計算力學之研究介紹 ..................................................................... 12
2.6.1 計算力學之分析流程 ............................................................. 12
2.6.2 計算力學之相關研究 ............................................................. 13
2.7 常見計算力學數值方法 ................................................................. 14
2.7.1 有限元素法 ............................................................................. 14
2.7.2 物質點法 ................................................................................. 15
2.7.2.1 物質點法之發展 ..................................................................... 15
2.7.2.2 物質點法基本概念 ................................................................. 16
第三章 IPU 線材力學參數試驗規劃與流程 ................................................... 20
3.1 前言 ................................................................................................. 20
3.2 試驗規劃 ......................................................................................... 20
3.3 研究參數 ......................................................................................... 21
3.4 試體製作 ......................................................................................... 21
3.5 試驗設備 ......................................................................................... 23
3.6 試驗方法 ......................................................................................... 24
第四章 實驗結果 ............................................................................................... 31
4.1 抗拉強度試驗 ................................................................................. 31
4.2 抗壓強度試驗 ................................................................................. 40
VIII
第五章 數值分析方法:物質點法 ................................................................... 50
5.1 物體的運動與變形 ......................................................................... 51
5.2 物質點法應用於連續體之控制方程式 ......................................... 52
5.2.1 質量守恆方程式 ..................................................................... 53
5.2.2 動量守恆方程式 ..................................................................... 54
5.3 物質點法計算流程 ......................................................................... 55
5.4 物質點法研究與分析結果 ............................................................. 56
六、結論與展望 ................................................................................................. 62
6.1 結論 ................................................................................................. 62
6.2 展望 ................................................................................................. 63
參考文獻 ............................................................................................................. 65
參考文獻 〔1〕Jiménez, M., et al,“Additive manufacturing technologies: an overview about 3D printing methods and future prospects ”, Complexity, Vol 2019(1), February 2019, pp. 9656938.
〔2〕李佳旻等編著:「建立有限元素模型來描述羽球拍之機械行為」,華人運動生物力學期刊,(10),2014,30-36 頁。
〔3〕洪振發和陳建邦:「船舶雙層殼結構抗撞能力估算法研究」,中國造船暨輪機工程學刊,26(3),2007,139-150 頁。
〔4〕許哲愷,〈彈體撞擊多層間隔靶體之動態分析〉,2010。
〔5〕 Pachauri, S., et al, “Analysis of compressive strength of printed PLA sample through FDM ”, AIP Conference Proceedings, AIP Publishing, 2023.
〔6〕 Dave, H. K., et al, “Compressive strength of PLA based scaffolds: effect
of layer height, infill density and print speed ”, Int. J. Mod. Manuf. Technol , 11(1), pp. 21-27.
〔7〕Kianian, B, “Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report: Chapter Title: The Middle East ”, 2016.
〔8〕Battegazzore, D., et al, “Crystallization kinetics of poly (lactic acid)-talc composites ”, Express Polym, Lett , 5(10), 2011, pp. 849-858.
〔9 〕Xu, T., et al, “Mechanical properties of additively manufactured thermoplastic polyurethane (TPU) material affected by various processing parameters ”, Polymers, 12(12), 2020, pp. 3010.
〔10 〕Barmouz, M. and A. Hossein Behravesh., “Foaming and thermal characteristics of bio-based polylactic acid–thermoplastic polyurethane blends ”, Journal of Cellular Plastics, 54(6), 2018, pp. 931-955.
〔11 〕Orellana Barrasa, J., et al. “Characterisation and modelling of PLA filaments and evolution with time ” Polymers , 2021, 13(17), pp. 2899.
〔12〕Rodríguez-Parada, L., et al, “Influence of 3D-printed TPU properties for the design of elastic products ”, Polymers, 2021, 13(15), pp. 2519.
〔13〕Hong, H., et al, “A novel composite coupled hardness with flexibleness— polylactic acid toughen with thermoplastic polyurethane ”, Journal of applied
polymer science, 2011, 121(2), pp. 855-861.
〔14〕Wang, J., et al, “Research of TPU materials for 3D printing aiming at nonpneumatic tires by FDM method ”, Polymers , 2020, 12(11), pp. 2492.
〔15〕Dave, H. K., et al, “Compressive strength of PLA based scaffolds: effect of layer height, infill density and print speed ”, Int. J. Mod. Manuf. Technol , 2019, 11(1), pp. 21-27.
〔16〕Brischetto, S. and R. Torre, “Tensile and compressive behavior in the experimental tests for PLA specimens produced via fused deposition modelling technique ”, Journal of Composites Science, 4(3), 2020, pp. 140.
〔17〕Brackbill, J. U., et al, “FLIP: a low-dissipation, particle-in-cell method for fluid flow ”, Computer Physics Communications, 1988, 48(1), pp. 25-38.
〔18〕張雄等編著,物質點法,清華大學計算力學叢書,民國一百零二年。
〔19〕廉豔平等編著,「物質點法的理論和應用」,力學進展,第四十三卷第二期,237~264 夜,民國一百零二年。
〔20〕Brackbill, J. U., et al, “FLIP: a low-dissipation, particle-in-cell method for
fluid flow ”, Computer Physics Communications, 1988, 48(1), pp. 25-38.
〔21〕陳鎮鵬等人,「耦合有限元物質點法及其在流固耦合問題中的應用」,Engineering Mechanics/Gongcheng Lixue,第34 卷第12 期,民國一百零六
年。
〔22〕張雄棳,張帆,「流固耦合不可壓物質點法及其在晃動問題中的應用」,民國一百零五年。
〔23〕王斌,馮夏庭,潘鵬志和李邵軍,「物質點法在邊坡穩定性評價中的應用研究」,岩石力學與工程學報,第36 卷第9 期,2146~2155 頁,民國一百零六年。
〔24〕王安禮,王雙,石露,白冰和李小春,「物質點局部強度折減法及其在邊坡中的應用」,交通科學與工程,第32 卷第4 期,1~9 頁,民國一百零五年。
〔25〕孫玉進,宋二祥,「大位移滑坡形態的物質點法模擬」,岩土工程學報,第37 卷第7 期,1218~1225 頁,民國一百零四年。
〔26〕厲成陽,張巍,吳方東,解朝陽和史蔔濤,「海底滑坡運動全過程的物質點法模擬」,Journal of Engineering Geology/Gongcheng Dizhi Xuebao,第26 卷,民國一百零六年。
〔27〕張雄棳,張帆,「流固耦合不可壓物質點法及其在晃動問題中的應用」,民國一百零五年。
〔28〕楊婷婷,楊永森和邱流潮,「基於物質點法的土體流動大變形過程數值模擬」,工程地質學報,第26 卷第6 期,1463~1472 頁,民國一百零七年。
指導教授 蘇昱臻 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明