博碩士論文 111322046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.218.45.80
姓名 馬子琁(Zi-Xuan Ma)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 土壤液化羅吉斯迴歸模型與台北及高雄的液化機率圖
(Logistic regression model for soil liquefaction and liquefaction probability maps for Taipei and Kaohsiung)
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 利用極值理論探討最大可能地震規模:以台灣為例★ 以台灣地震開發的新地動數據庫
★ 以離心模型試驗探討凹形邊坡之穩定性★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例
★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析★ 評估土壤液化最佳地動強度量值
★ 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法★ 考慮不同時間跨度下的台北土層液化機率
★ 台灣本地土壤液化數據庫之應用★ 以SPT-N結合Vs-N之經驗模型進行土壤液化評估
★ 機率式地震危害度分析的解析解計算方法★ 建立台灣CAVSTD-GMPE模型並應用於地震預警
★ 土壤液化評估法中之各參數的敏感度分析★ 五種土壤液化分析方法的假設統計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 台灣處於環太平洋地震帶上,由於是歐亞大陸板塊與菲律賓海板塊相互碰撞下所產生的大陸邊緣島嶼,而在板塊的互相擠壓作用下,使得台灣發生地震次數頻繁,而在這些地震中,曾發生過不少大地震導致土壤液化現象,因此人們對於土壤液化的重視逐漸提高。

本研究模擬Liao et al. [1]於1988年將羅吉斯迴歸模型應用於土壤液化機率模型的方法,使用Hwang et al. [2]於2021年所收集的509筆土壤液化數據,建立一個新的土壤液化機率模型,並透過四起地震驗證該模型是否符合實際情形;再根據工程地質探勘資料庫和強震測站場址工程地質資料庫收集台北盆地330孔鑽孔資料及高雄292孔鑽孔資料,代入本研究之土壤液化機率模型與Liao et al. [1]提出之土壤液化機率模型中,並進一步考慮台北盆地和高雄地區的活動斷層可能誘發Mw7.0的地震,利用新開發的土壤液化機率模型預測未來50年內這兩個地區的液化機率,將其繪製成液化機率圖。
摘要(英) Taiwan, situated along the Pacific Ring of Fire, experiences frequent seismic activity due to the convergence of the Eurasian Plate and the Philippine Sea Plate. This collision has transformed Taiwan into a continental island prone to earthquakes. Among these seismic events, many significant ones have triggered soil liquefaction phenomena, raising concerns about its impact.

In this study, we adopted the methodology proposed by Liao et al. [1] in 1988, which utilized the logistic regression model to develop a soil liquefaction probability model. Using the dataset of 509 soil liquefaction occurrences compiled by Hwang et al. [2] in 2021, we established a new model and validated its accuracy based on four seismic events. Additionally, we collected soil data from 330 boreholes in the Taipei Basin and 292 boreholes in Kaohsiung from geological exploration databases. The data, along with information from strong-motion station site databases, were used to evaluate both our model and the one proposed by Liao et al. (1988) [1]. Furthermore, considering the potential that an Mw 7.0 earthquake could be induced by active faults in the Taipei Basin and Kaohsiung, we produced liquefaction probability maps for both regions within the next 50 years using the newly developed liquefaction logistic regression model.
關鍵字(中) ★ 羅吉斯迴歸模型
★ 土壤液化
★ 台北盆地
★ 高雄
關鍵字(英) ★ Logistic regression model
★ Soil liquefaction
★ Taipei Basin
★ Kaohsiung
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究目的 2
1-4 論文架構 2
第二章 文獻回顧 3
2-1 土壤液化 3
2-1-1 土壤液化之說明 3
2-1-2 土壤液化造成之破壞 3
2-2 土壤液化潛能評估 4
2-2-1 簡易經驗法評估土壤液化潛能 5
2-2-2 正規化反覆剪應力比(CSRN) 6
2-2-3 評估土壤抗液化強度之新標準化參數(N1)60 7
2-3 羅吉斯迴歸(Logistic Regression) 8
2-4 研究區域 8
2-4-1 台北盆地 8
2-4-2 高雄地區 9
2-5 斷層地質構造資料 9
2-5-1 山腳斷層 9
2-5-2 小崗山斷層 10
2-5-3 旗山斷層 10
2-6 強地動預估式(Ground Motion Prediction Equation, GMPE) 11
2-7 地震發生模式 12
第三章 研究方法 21
3-1 數據收集 21
3-1-1 工程地質探勘資料庫 22
3-1-2 台灣強震測站場址工程地質資料庫 22
3-2 羅吉斯迴歸模型建立 23
3-3 以四起地震驗證土壤液化模型 25
3-4 場址土壤之液化機率 26
3-5 地震發生機率 27
3-6 地震發生時液化機率 28
3-6-1 至少發生一次液化 29
3-6-2 一條斷層誘發之地震液化機率 30
3-6-3 二條斷層誘發之地震液化機率 31
3-7 繪製台北和高雄液化機率圖 32
第四章 研究結果與討論 53
4-1 羅吉斯迴歸模型分析結果 53
4-2 以四起地震比較土壤液化模型 54
4-3 50年內發生n次地震產生至少一次液化機率 55
4-3-1 因50年內山腳斷層發生Mw = 7.0的n次地震產生至少一次液化機率 55
4-3-2 因50年內小崗山斷層與旗山斷層發生Mw = 7.0的n次地震產生至少一次液化機率 56
第五章 結論與建議 101
5-1 結論 101
5-2 建議 102
參考文獻 103
參考文獻 [1] Liao SSC, Veneziano D, Whitman RV. Regression models for evaluating liquefaction probability. Journal of Geotechnical Engineering, ASCE 1988;114(4):389-411.
[2] Hwang JH, Khoshnevisan S, Juang CH, Lu CC. Soil liquefaction potential evaluation – An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology 2021;280:105926.
[3] Lee DH, Ku CS, Yuan H. A study of the liquefaction risk potential at Yuanlin, Taiwan. Engineering Geology 2004;71(1-2):97-117.
[4] Gilbert PA. Case histories of liquefaction failures. Final report. Washington, DC: Army Engineer Waterways Experiment Station (US), Soils and Pavements Laboratory; 1976 Apr. Report No.: Miscellaneous Paper S-76-4.
[5] 陳正興與陳家漢,地震引致的土壤液化與側潰現象,科學發展,第四百九十八期,第12-17頁,(2014)。
[6] Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE 1971;97(9):1249-1273.
[7] Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder Jr LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson III WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe II KH. Liquefaction resistance of soils: summary report from the 1996 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2001;127(10):817-833.
[8] Das BM, Sobhan K. Principles of Geotechnical Engineering: SI Edition, Cengage Learning, Boston, 2016.
[9] Japan Road Association (JRA). Road Bridge Specifications: Part V Series of Earthquake Proof Design. 1996. (in Japanese).
[10] 黃俊鴻與陳正興,土壤液化評估規範之回顧與前瞻,地工技術,第七十期,第43-54頁,(1998)。
[11] 黃俊鴻與楊志文,以集集地震案例探討現有SPT-N液化評估方法之適用性,地工技術,第九十八期,第79-90頁,(2003)。
[12] 黃富國,SPT液化機率及損害評估模式之建立與應用,中國土木水利工程學刊,第二十卷,第二期,第155-174頁,(2008)。
[13] Loertscher TW, Youd TL. Magnitude scaling factors for analysis of liquefaction. In Proceedings from the fifth US-Japan workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction, Utah, 1994; 703-711.
[14] Kovacs WD, Salomone LA, Yokel FY. Comparison ofenergy measurements in the standard penetration test using the catheadand rope method, Phases I and II, Final Report. Washington, DC: The Division; 1983 Nov. Report No.: NUREGI 37CR-3545.
[15] Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, ASCE 1985;111(12):1425–1445.
[16] 王春煌、郭漢興與王如龍,標準貫入試驗打擊能量差異性探討,地工技術,第十六期,第14-22頁,(1986)。
[17] Lai SY, Chang WJ, Lin PS. Logistic regression model for evaluating soil liquefaction probability using CPT data. Journal of Geotechnical and Geoenvironmental Engineering, 2006;132(6):694-704.
[18] Papathanassiou G. LPI-based approach for calibrating the severity of liquefaction-induced failures and for assessing the probability of liquefaction surface evidence. Engineering Geology, 2008;96(1-2):94-104.
[19] Zhang J, Zhang LM, Huang HW. Evaluation of generalized linear models for soil liquefaction probability prediction. Environmental Earth Sciences, 2013;68:1925-1933.
[20] 台北市政府土壤液化潛勢查詢系統,台北市政府土壤液化潛勢查詢,(2018)。
[21] Wang JP, Yun X, Kuo-Chen H, Wu YM. CAV site-effect assessment: A case study of Taipei Basin. Soil Dynamics and Earthquake Engineering 2018;108:142-149.
[22] 陳景文與陳柏仁,高雄都會區土壤液化潛能評估報告,國家地震工程研究中心,NCREE-01-005,(2001)。
[23] Lacombe O, Angelier J, Chen HW, Deffontaines B, Chu HT, Rocher M. Syndepositional tectonics and extension-compression relationships at the front of the Taiwan collision belt: a case study in the Pleistocene reefal limestones near Kaohsiung, SW Taiwan. Tectonophysics 1997;274:83-96.
[24] 林啓文,山腳斷層條帶圖說明書,經濟部地質調查與礦業管理中心,(2023)。
[25] 林啓文、劉桓吉、周稟珊與蘇泰維,臺北盆地西緣的斷層探討,經濟部中央地質調查所特刊,第三十四號,第73-112頁,(2021)。
[26] Cheng CT, Chiou SJ, Lee CT, Tsai YB. Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering 2007;2(1):19-28.
[27] Cheng CT, Lee CT, Lin PS, Lin BS, Tsai YB, Chiou SJ. Probabilistic earthquake hazard in metropolitan Taipei and its surrounding regions. Terrestrial, Atmospheric and Oceanic Sciences 2010;21(3):429-446.
[28] 陳文山,小岡山斷層,經濟部中央地質調查所特刊,第二十三號,第99-110頁,(2009)。
[29] 許書琴、景國恩、李元希、楊佳勳、饒瑞鈞與陳國華,利用2002-2010年大地測量資料探討臺灣西南部泥岩區現今之地殼變形特性,經濟部中央地質調查所特刊,第二十六號,第241-265頁,(2012)。
[30] Douglas J, Edwards B. Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews 2016;160:203-219.
[31] Atkinson G M, Boore DM. Modifications to existing ground-motion prediction equations in light of new data. Bulletin of the Seismological Society of America 2011;101(3):1121-1135.
[32] Emolo A, Sharma N, Festa G, Zollo A, Convertito V, Park JH, Lim IS. Ground‐motion prediction equations for South Korea Peninsula. Bulletin of the Seismological Society of America 2015;105(5):2625-2640.
[33] Akkar S, Çağnan Z. A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion models. Bulletin of the Seismological Society of America 2010;100(6):2978-2995.
[34] Poisson SD. Recherches sur la probabilité des jugements. Bachelier, Paris, 1837.
[35] Ishihara K. Stability of natural deposits during earthquakes. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, CA, USA, 1985;1:321-376.
[36] 地層下陷防治資訊網,高雄水文地質環境,(2018)。
[37] 經濟部地質調查及礦業管理中心,台灣活動斷層查詢系統,(2024)。
[38] 經濟部地質調查及礦業管理中心,工程地質探勘資料庫,(2024)。
[39] 國家地震工程研究中心,強震測站場址工程地質資料庫,(2009)。
[40] Kutner MH, Nachtsheim CJ, Neter J. Applied Linear Regression Models- 4th Edition, McGraw Hill, New York, 1983.
[41] Horowitz JL. Evaluation of usefulness of two standard goodness-of-fit indicators for comparing non-nested random utility models. Advances in Trip Generation, Transportation Research Record 874, Transportation Research Board, National Research Council, Washington, D.C., 1982;19-25.
[42] 交通部中央氣象署,地震測報中心,(2024)。
[43] Hensher DA, Johnson LW. Applied discrete-choice modelling. John Wiley and Sons/ Halsted Press, New York, 1981.
[44] Iwasaki T, Arakawa T, Tokida K. Simplified procedures for assessing soil liquefaction during earthquakes. Soil Dynamics and Earthquake Engineering 1982; 925-939.
[45] 李咸亨,台北市區工程地質分區,地工技術,第五十四期,第25-34頁,(1996)。
[46] 費立沅、紀宗吉、蘇品如、吳文隆、謝文誠與楊智堯,高雄都會區三維地質防災資料庫建置與分析,中華技術,第一百零五期,第118-127頁,(2015)。
[47] 陳景文與林宏瀚,高雄都會區土壤液化潛能微分區,地工技術,第八十二期,第35-42頁,(2000)。
指導教授 王瑞斌(Jui-Pin Wang) 審核日期 2024-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明