博碩士論文 111322052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.226.88.70
姓名 黃家芸(Chia-Yun Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 永續材料及纖維應用於3D列印混凝土之工程性質探討
(Exploration of the Engineering Properties of Sustainable Materials and Fibers Applied to 3D Printing Concrete)
相關論文
★ 台61線快速道路養護經費與平坦度分析-以2007-2019為例★ 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
★ 溫度對預拌型超早強混凝土性質之影響及相應策略★ 紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究
★ 燃煤飛灰與底灰應用於陶瓷建材之初步研究★ 細粒料含電弧爐碴之檢測方法及對混凝土性質影響研究
★ 以加速環境探討含電弧爐碴砂漿之膨脹行為 及工程性質影響★ 砂膠比與纖維種類對3D列印混凝土的工程性質影響研究
★ 硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究★ 營建剩餘土石方收容處理場所評鑑制度之研究-以桃園市為例
★ 溫度對複合添加凝結型及硬化型加速劑的預拌高早強水泥漿體及砂漿之工程性質影響研究★ 硫鋁酸鈣水泥複合膠結材料之工程性質及抗硫酸鹽能力研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 3D列印混凝土技術是一種自動化建築技術,相較於傳統灌漿工法在建築過程可達到更高的幾何自由度及更低的材料消耗。本研究使用多種類型的永續材料並以高比例取代傳統材料、添加纖維改善性能,製作具永續性的3D列印纖維增強混凝土,對其進行新拌性質、硬固性質與乾燥收縮三方面的測試,探討永續材料與纖維應用於3D列印混凝土之適配性以及對工程性質的影響。
本研究分為「永續膠結材料對水泥漿體工程性質之影響」、「永續材料對3D列印混凝土工程性質之影響」及「纖維對3D列印混凝土工程性質之影響」三階段進行探討。第一階段旨在探討不同永續膠結材料(壓密矽灰(SFD)、未壓密矽灰(SFU)、飛灰(FA)、爐石粉(BF)、石灰石粉(LS)、偏高嶺土(MK)、紙漿污泥飛灰(PSFA)、超微細飛灰(RUFA)、牡蠣殼粉(OSP)及硫酸鈣晶鬚(CSW))在新拌階段時靜置不同時長(0 min、10min及30 min)對水泥漿體的新拌性質及工程性質之影響;第二階段在研究較具潛力之永續膠結材料以不同比例(30 %、40 %、50 % 及60 %)取代水泥,以及使用永續粒料(機製砂(MS)及人工砂(AS))應用於3D列印混凝土,對新拌性質、3D列印之可列印性、硬固性質及乾燥收縮的影響,並提出符合工程性質與永續效益之配比;第三階段使用纖維(聚甲醛纖維(POMF)、聚丙烯纖維(PPF)、碳纖維(CF)、CSW)添加於3D列印混凝土中,探討單一纖維對工程性質之影響,並根據不同纖維的特性設計複合纖維配比,探討複合纖維改善3D列印混凝土之效果與適配性。
第一階段研究結果顯示,使用SFD、SFU、FA、BF、MK及RUFA取代水泥(PC) 30 % 製作3D列印混凝土,不影響可列印性並具有足夠的水化能力保持混凝土強度。第二階段研究結果顯示,使用較具潛力之永續膠結材料(SFD、FA及BF)與永續粒料製作3D列印混凝土,在添加適量藥劑後皆可符合可列印性標準,唯流度值會因材料而有所不同,保型率則在85 % 以上。永續膠結材料取代PC時,考慮配比的永續性與強度,最佳取代比例為50 %,過多會造成強度下降,過少則永續性不足;乾燥收縮方面,不同永續膠結材料在適當的PC取代比例下皆可減少試體的收縮量,其中FA的效果最佳,其次為BF,SFD若添加過量 (≤ 60 %)則會使收縮量增加。永續粒料中,AS有良好的保型率,但強度過低且有嚴重的體積穩定性問題,MS在保型率與強度皆表現良好,較適合應用於3D列印混凝土中。第三階段研究結果顯示,不同纖維在力學性能方面,POMF與PPF可提升混凝土的韌性,但會使強度降低,CF與CSW可提升強度,但對韌性較無幫助;在乾燥收縮方面,適量添加POMF(≤ 1.5 % )與CF(≤ 1.0 %)可減緩收縮速率,PPF與CSW則會使收縮量隨添加量的增加而增長。整體研究結果顯示,3D列印工藝會使混凝土強度較傳統灌漿低並造成各向異性,抗壓強度方面無添加纖維時各向異性為X向 > Z向 > Y向,添加纖維時為X向 > Z向 ≒ Y向,抗彎強度方面各向異性皆為Y向 > X向,但整體變異係數皆接近0,表示不同方向上的強度差距不大。根據試驗結果提出可用於3D列印工藝的纖維增強混凝土配比設計,SFD與FA以1:1比例取代PC體積比共50 %,並添加總體積0.5 % 的PPF與1.0 % 的CSW,此配比取代PC比例達50 %,3D列印工藝下的28天抗壓與抗彎強度高達88.9 MPa及13.6 MPa且具有韌性,相較於其他研究,永續材料取代PC比例提升3 % ~ 38 %、抗壓強度提升14 % ~ 154 %、抗彎強度提升65 % ~ 185 %,可進一步降低混凝土的二氧化碳排放並提升強度,以更少量的材料達到結構強度要求,具有優異的永續性及力學性能。
摘要(英) 3D printing concrete technology is an automated construction method that offers greater geometric freedom and lower material consumption compared to traditional casting methods. This study employs various types of sustainable materials to replace conventional materials at high ratios and incorporates fibers to enhance performance, creating sustainable 3D printed fiber-reinforced concrete. The fresh properties, hardened properties, and drying shrinkage of the concrete are tested to evaluate the compatibility and engineering properties of sustainable materials and fibers in 3D printing concrete.
This research is divided into three phases: "Effects of Sustainable Cementitious Materials on the Engineering Properties of Cement Paste," "Effects of Sustainable Materials on the Engineering Properties of 3D Printing Concrete," and "Effects of Fibers on the Engineering Properties of 3D Printing Concrete." The first phase investigates the impact of different sustainable cementitious materials (densified silica fume(SFD), undensified silica fume(SFU), fly ash(FA), ground granulated blast furnace slag(BF), limestone(LS), metakaolin(MK), paper sludge fly ash(PSFA), ultra-fine fly ash(RUFA), oyster shell powder(OSP), and calcium sulfate whisker(CSW)) on the fresh and engineering properties of cement paste at various resting times (0 min, 10 min, and 30 min). The second phase explores the effects of promising sustainable cementitious materials at different replacement ratios (30 %, 40 %, 50 %, and 60 %) for cement(PC), and the use of sustainable aggregates (manufactured sand(MS), and artificial sand(AS)) in 3D printing concrete, evaluating their impact on fresh properties, printability, hardened properties, and drying shrinkage, proposing mixtures that meet engineering properties and sustainability benefits. The third phase examines the impact of adding fibers (polyoxymethylene fiber (POMF), polypropylene fiber (PPF), carbon fiber (CF), and CSW) on the engineering properties of 3D printing concrete, designing composite fiber mixes based on different fibers characteristics, and evaluating the effectiveness and compatibility of composite fibers in improving 3D printing concrete.
The results of the first phase show that replacing 30 % of PC with SFD, SFU, FA, BF, MK, and RUFA does not affect printability and provides sufficient hydration capacity to maintain concrete strength. The second phase results indicate that using promising sustainable cementitious materials (SFD, FA, and BF) and sustainable aggregates in 3D printing concrete meets printability standards after adding appropriate admixtures, though flow values vary by material, with shape retention rates above 85 %. Considering the sustainability and strength of the mix, the optimal replacement ratio of sustainable cementitious materials for PC is 50 %; higher ratios decrease strength, while lower ratios lack sustainability. For drying shrinkage, suitable replacement ratios of different sustainable cementitious materials reduce specimen shrinkage, with FA performing best, followed by BF, while excessive SFD (> 60 %) increases shrinkage. Among the sustainable aggregates, AS has good shape retention but low strength and serious volume stability issues, MS performs well in both shape retention and strength, making it suitable for 3D printing concrete. The third phase results show that different fibers affect mechanical properties in various ways: POMF and PPF enhance concrete toughness but reduce strength, while CF and CSW increase strength but do not improve toughness. For drying shrinkage, adding up to 1.5 % POMF and 1.0 % CF reduces shrinkage rate, while PPF and CSW increase shrinkage with higher content. The 3D printing process results in lower concrete strength compared to traditional casting methods and introduces anisotropy. For compressive strength, the anisotropy without fiber addition is observed as X > Z > Y, and with fiber addition as X > Z ≒ Y. In terms of flexural strength, the anisotropy consistently shows Y > X. However, the overall coefficient of variation remains close to 0, indicating minimal strength differences across different directions. Based on the test results, the final proposed mix is a 1:1 volume ratio replacement of PC with SFD and FA, totaling 50 %, with the addition of 0.5 % PPF and 1.0 % CSW by volume. This mix achieves a 50 % replacement ratio of PC, with 28-day compressive and flexural strengths reaching 88.9 MPa and 13.6 MPa respectively, and improved toughness. Compared to other studies, the replacement ratio of sustainable materials increased by 3 % ~ 38 %, compressive strength improved by 14 % ~ 154 %, and flexural strength increased by 65 % ~ 185 %, further reducing CO2 emissions from concrete while enhancing mechanical properties. This mix achieves structural strength requirements with less material, offering excellent sustainability and mechanical properties.
關鍵字(中) ★ 3D列印混凝土
★ 各向異性
★ 永續膠結材料
★ 永續粒料
★ 纖維
關鍵字(英) ★ 3D printing concrete
★ Anisotropy
★ Sustainable cementitious materials
★ Sustainable aggregates
★ Fibers
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vii
圖目錄 xiii
表目錄 xxi
符號說明 xxv
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究內容 3
第2章 文獻回顧 7
2.1 3D列印混凝土技術 7
2.1.1 3D列印混凝土技術的優勢 9
2.1.2 3D列印混凝土技術的挑戰 11
2.1.3 3D列印混凝土技術的應用實例 11
2.2 3D列印混凝土的材料特性 13
2.2.1 3D列印混凝土的可列印性 13
2.2.1.1 泵送性 13
2.2.1.2 可擠出性 14
2.2.1.3 可建造性 15
2.2.2 3D列印混凝土的硬固性質 17
2.2.2.1 各向異性與層間黏結強度 17
2.2.2.2 層間間隔時間對層間黏結強度的影響 18
2.2.2.3 層間黏結強度的改善方法 19
2.2.3 3D列印混凝土的耐久性質 20
2.2.3.1 收縮 20
2.2.3.2 空隙 20
2.2.3.3 有害離子 21
2.2.4 3D列印混凝土的流變行為 23
2.2.4.1 降伏應力 24
2.2.4.2 塑性黏度 28
2.2.4.3 結構堆積與觸變性 29
2.3 工藝參數對3D列印混凝土的影響 33
2.3.1 列印路徑 33
2.3.2 列印速度與擠出速度 34
2.3.3 噴頭與列印層距離 35
2.3.4 噴頭尺寸與形狀 35
2.4 配比設計對3D列印混凝土的影響 37
2.4.1 粒料粒徑及使用比例 37
2.4.2 化學摻料 37
2.5 應用於混凝土中的永續材料 39
2.5.1 輔助膠結材料 39
2.5.2 惰性填料 44
2.5.3 永續材料應用於3D列印混凝土之案例 47
2.6 纖維混凝土 48
2.6.1 纖維混凝土的新拌性質與力學性質的影響因素 49
2.6.2 纖維混凝土測試方法 53
2.6.3 纖維應用於3D列印混凝土 57
第3章 研究規劃 59
3.1 研究流程 59
3.1.1 A階段─永續膠結材料對水泥漿體工程性質之影響 59
3.1.2 B階段─永續材料對3D列印混凝土工程性質之影響 61
3.1.3 C階段─纖維對3D列印混凝土工程性質之影響 63
3.2 試驗材料 65
3.2.1 永續膠結材料 65
3.2.2 粒料 78
3.2.3 水 79
3.2.4 化學摻料 79
3.2.5 纖維 80
3.3 試驗設備 83
3.4 試驗配比及項目 90
3.4.1 使用代號對照表 90
3.4.2 配比設計 90
3.4.3 試驗項目 97
3.5 試驗方法 98
3.5.1 拌和程序 98
3.5.2 新拌性質試驗 98
3.5.3 可列印性試驗 102
3.5.4 硬固性質試驗 105
3.5.5 耐久性質試驗 109
3.5.6 微觀分析 109
第4章 研究成果與分析 111
4.1 A階段─永續膠結材料對水泥漿體工程性質之影響 111
4.1.1 新拌性質 111
4.1.2 硬固性質 132
4.1.3 微觀分析 136
4.1.4 小結─永續膠結材料特性與3D列印混凝土應用潛力 142
4.2 B階段─永續材料對3D列印混凝土工程性質之影響 149
4.2.1 永續膠結材料搭配及水泥取代量對混凝土工程性質的影響 150
4.2.1.1 可列印性 150
4.2.1.2 新拌性質 153
4.2.1.3 硬固性質 159
4.2.1.4 乾燥收縮 168
4.2.1.5 永續膠結材料取代水泥效益分析 178
4.2.2 永續粒料對混凝土工程性質的影響 181
4.2.2.1 可列印性 181
4.2.2.2 新拌性質 182
4.2.2.3 硬固性質 183
4.2.2.4 乾燥收縮 184
4.2.3 永續3D列印混凝土之工程性質評估 187
4.2.3.1 硬固性質 187
4.2.3.2 微觀分析 206
4.2.3.3 3D列印永續混凝土成效評估 209
4.2.4 小結─永續材料的最佳比例與3D列印工藝之工程性質 210
4.3 C階段─纖維對永續3D列印混凝土工程性質之影響 218
4.3.1 纖維種類及添加量對混凝土工程性質之影響 219
4.3.1.1 硬固性質 219
4.3.1.2 乾燥收縮 232
4.3.1.3 纖維特性分析 237
4.3.2 複合纖維改善3D列印混凝土工程性質 238
4.3.2.1 硬固性質 238
4.3.2.2 微觀分析 243
4.3.3 複合纖維與單一纖維的比較 246
4.3.4 永續3D列印纖維增強混凝土之可行性評估 248
4.3.4.1 硬固性質 248
4.3.5 小結─纖維對混凝土的工程性質影響 254
4.4 綜合討論 265
4.4.1 3D列印工藝對混凝土壓彎比影響 265
4.4.2 添加複合纖維改善混凝土性能的前後差異 267
4.4.3 提出具永續性之3D列印纖維增強混凝土配比設計 268
4.4.4 配比設計優勢分析 268
4.4.5 永續3D列印纖維增強混凝土配比使用方法與建議 270
4.4.6 研究材料之使用建議 271
第5章 結論與建議 273
5.1 結論 273
5.2 建議 274
參考文獻 277
圖附錄 297
表附錄 315
參考文獻 1. SAP, (no date), “What is Industry 4.0?”. https://www.sap.com/taiwan/products/scm/industry-4-0/what-is-industry-4-0.html (Accessed 26 April 2024).
2. 王慶煌,(1993),「營建業自動化成效指標之訂定及調查」,產業自動化─營建自動化計畫成果報告。
3. 郭韋良,董自然,謝尚賢,(2019),「從2019 ISARC 看營建自動化發展方向」,營建知訊,437,62-70。
4. Liu, D., Zhang, Z., Zhang, X., & Chen, Z. (2023). “3D printing concrete structures: State of the art, challenges, and opportunities.” Construction and Building Materials, 405, 133364.
5. 史慶軒,萬勝木,(2022),「3D列印混凝土工作及力學性能研究進展」,工業建築。
6. Khan, S. A., & Koç, M. (2022). “Numerical modelling and simulation for extrusion-based 3D concrete printing: The underlying physics, potential, and challenges.” Results in Materials, 16, 100337.
7. Kaliyavaradhan, S. K., Ambily, P. S., Prem, P. R., & Ghodke, S. B. (2022). “Test methods for 3D printable concrete.” Automation in Construction, 142, 104529.
8. Baduge, S. K., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., ... & Aye, L. (2021). “Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods.” Structures, 29, 1597-1609.
9. 許晃雄,羅資婷,洪致文,洪志誠,李明營,陳雲蘭,黃威凱,盧孟明,隋中興,(2012),「氣候自然變異與年代際變化」,大氣科學,40(3),249-295。
10. 行政院國家永續發展委員會,(2024),「認識淨零轉型」,https://ncsd.ndc.gov.tw/Fore/nsdn/about0/introduction (Accessed 26 April 2024).
11. 國家發展委員會,(2024),「臺灣2050淨零排放」,https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811 (Accessed 26 April 2024).
12. United Nations Environment Programme (2024). “Global Status Report for Buildings and Construction: Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector.” Nairobi.
13. Nwankwo, C. O., Bamigboye, G. O., Davies, I. E., & Michaels, T. A. (2020). “High volume Portland cement replacement: A review.” Construction and Building Materials, 260, 120445.
14. Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). “Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review.” Construction and building materials, 68, 501-516.
15. Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2019). “Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion.” Cement and Concrete Research, 119, 132-140.
16. 馬勇,(2018),「3D 建築列印混凝土配合比設計及其性能研究」,學位論文,南昌大學建築工程學院。
17. Erdem, A., Yildiz, E., Senturk, H., & Maral, M. (2023). “Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis.” Journal of Pharmaceutical and Biomedical Analysis, 115385.
18. BG, P. K., Mehrotra, S., Marques, S. M., Kumar, L., & Verma, R. (2023). “3D printing in personalized medicines: A focus on applications of the technology.” Materials Today Communications, 105875.
19. Shen, D., Zhang, M., Mujumdar, A. S., & Li, J. (2023). “Advances and application of efficient physical fields in extrusion based 3D food printing technology.” Trends in Food Science & Technology, 131, 104-117.
20. Lim, C. W. J., Le, K. Q., Lu, Q., & Wong, C. H. (2016). “An overview of 3-D printing in manufacturing, aerospace, and automotive industries.” IEEE potentials,35(4), 18-22.
21. Paul, S. C., Tay, Y. W. D., Panda, B., & Tan, M. J. (2018). “Fresh and hardened properties of 3D printable cementitious materials for building and construction.” Archives of civil and mechanical engineering, 18, 311-319.
22. Zhang, N., & Sanjayan, J. (2023). “Extrusion nozzle design and print parameter selections for 3D concrete printing.” Cement and Concrete Composites, 104939.
23. du Plessis, A., Babafemi, A. J., Paul, S. C., Panda, B., Tran, J. P., & Broeckhoven, C. (2021). “Biomimicry for 3D concrete printing: A review and perspective.” Additive Manufacturing, 38, 101823.
24. Yu, S., Du, H., & Sanjayan, J. (2020). “Aggregate-bed 3D concrete printing with cement paste binder.” Cement and Concrete Research, 136, 106169.
25. Pan, Z., Si, D., Tao, J., & Xiao, J. (2023). “Compressive behavior of 3D printed concrete with different printing paths and concrete ages.” Case Studies in Construction Materials,18, e01949.
26. Lloret, E., Shahab, A. R., Linus, M., Flatt, R. J., Gramazio, F., Kohler, M., & Langenberg, S. (2015). “Complex concrete structures: Merging existing casting techniques with digital fabrication.” Computer-Aided Design, 60, 40-49.
27. Kloft, H., Krauss, H. W., Hack, N., Herrmann, E., Neudecker, S., Varady, P. A., & Lowke, D. (2020). “Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP).” Cement and Concrete Research, 134, 106078.
28. Batikha, M., Jotangia, R., Baaj, M. Y., & Mousleh, I. (2022). “3D concrete printing for sustainable and economical construction: A comparative study.” Automation in Construction, 134, 104087.
29. Weng, Y., Li, M., Ruan, S., Wong, T. N., Tan, M. J., Yeong, K. L. O., & Qian, S. (2020). “Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach.” Journal of Cleaner Production, 261, 121245.
30. Liu, S., Lu, B., Li, H., Pan, Z., Jiang, J., & Qian, S. (2022). “A comparative study on environmental performance of 3D printing and conventional casting of concrete products with industrial wastes.” Chemosphere, 298, 134310.
31. Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., ... & Du, S. (2021). “Large-scale 3D printing concrete technology: Current status and future opportunities.” Cement and Concrete Composites, 122, 104115.
32. Singh, A., Liu, Q., Xiao, J., & Lyu, Q. (2022). “Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction.” Construction and Building Materials, 323, 126616.
33. Wang, X., Li, W., Guo, Y., Kashani, A., Wang, K., Ferrara, L., & Agudelo, I. (2024). “Concrete 3D printing technology in sustainable construction: A review on raw materials, concrete types and performances.” Developments in the Built Environment, 100378.
34. Zhu, B., Nematollahi, B., Pan, J., Zhang, Y., Zhou, Z., & Zhang, Y. (2021). “3D concrete printing of permanent formwork for concrete column construction.” Cement and Concrete Composites, 121, 104039.
35. Asprone, D., Auricchio, F., Menna, C. & Mercuri, V. (2018). “3D printing of reinforced concrete elements: technology and design approach,” Construction and Building Materials, 165, 218–231.
36. Bai, G., Wang, L., Ma, G., Sanjayan, J., & Bai, M. (2021). “3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates.” Cement and Concrete Composites, 120, 104037.
37. Huang, S., Xu, W., & Li, Y. (2022). “The impacts of fabrication systems on 3D concrete printing building forms.” Frontiers of Architectural Research, 11(4), 653-669.
38. Chen, Y., Zhang, Y., Pang, B., Liu, Z., & Liu, G. (2021). “Extrusion-based 3D printing concrete with coarse aggregate: Printability and direction-dependent mechanical performance.” Construction and Building Materials, 296, 123624.
39. Pott, U., & Stephan, D. (2021). “Penetration test as a fast method to determine yield stress and structural build-up for 3D printing of cementitious materials.” Cement and Concrete Composites, 121, 104066.
40. Buswell, R. A., De Silva, W. L., Jones, S. Z., & Dirrenberger, J. (2018). “3D printing using concrete extrusion: A roadmap for research.” Cement and Concrete Research, 112, 37-49.
41. Mechtcherine, V., Bos, F. P., Perrot, A., da Silva, W. L., Nerella, V. N., Fataei, S., ... & Roussel, N. (2020). “Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review.” Cement and Concrete Research, 132, 106037.
42. Qian, Y., & Kawashima, S. (2018). “Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy.” Cement and Concrete Composites, 86, 288-296.
43. Yang, R., Zeng, Q., Peng, Y., Wang, H., & Wang, Z. (2022). “Anomalous matrix and interlayer pore structure of 3D-printed fiber-reinforced cementitious composites.” Cement and Concrete Research, 157, 106829.
44. Tay, Y. W. D., Qian, Y., & Tan, M. J. (2019). “Printability region for 3D concrete printing using slump and slump flow test.” Composites Part B: Engineering, 174, 106968.
45. Liu, C., Chen, Y., Xiong, Y., Jia, L., Ma, L., Wang, X., ... & Zhang, Y. (2022). “Influence of HPMC and SF on buildability of 3D printing foam concrete: From water state and flocculation point of view.” Composites Part B: Engineering, 242, 110075.
46. Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., ... & Banthia, N. (2021). “Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete.” Cement and Concrete Composites, 122, 104158.
47. Bauer, E., de Sousa, J. G., Guimarães, E. A., & Silva, F. G. S. (2007). Study of the laboratory Vane test on mortars. Building and environment, 42(1), 86-92.
48. Rubin, A. P., Hasse, J. A., & Repette, W. L. (2021). “The evaluation of rheological parameters of 3D printable concretes and the effect of accelerating admixture.” Construction and Building Materials, 276, 122221.
49. Bos, F. P., Kruger, P. J., Lucas, S. S., & Van Zijl, G. P. A. G. (2021). “Juxtaposing fresh material characterisation methods for buildability assessment of 3D printable cementitious mortars.” Cement and Concrete Composites, 120, 104024.
50. Yang, L., Sepasgozar, S. M., Shirowzhan, S., Kashani, A., & Edwards, D. (2023). “Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete.” Automation in Construction, 146, 104671.
51. Shakor, P., Nejadi, S., & Paul, G. (2019). “A study into the effect of different nozzles shapes and fibre-reinforcement in 3D printed mortar.” Materials, 12(10), 1708.
52. Xu, J., Ding, L., Cai, L., Zhang, L., Luo, H. & Qin, W. (2019). “Volume-forming 3D concrete printing using a variable-size square nozzle”. Automation in Construction, 104, 95-106.
53. Rahul, A. V., & Santhanam, M. (2020). “Evaluating the printability of concretes containing lightweight coarse aggregates.” Cement and Concrete Composites, 109, 103570.
54. Panda, B., & Tan, M. J. (2018). “Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing.” Ceramics International, 44(9), 10258-10265.
55. 梁喬茵,(2023),「砂膠比與纖維種類對3D列印混凝土的工程性質影響研究」,碩士論文,國立中央大學土木工程研究所。
56. Barneoud-Chapelier, A., Le Saout, G., Azéma, N., & El Bitouri, Y. (2022). “Effect of polycarboxylate superplasticizer on hydration and properties of belite ye’elimite ferrite cement paste.” Construction and Building Materials, 322, 126483.
57. Ambily, P. S., Kaliyavaradhan, S. K., Sebastian, S., & Shekar, D. (2023). “Mixing approach for 3D printable concrete: method of addition and optimization of superplasticizer dosage.” Magazine of Concrete Research, 1-41.
58. Souza, M. T., Ferreira, I. M., de Moraes, E. G., Senff, L., & de Oliveira, A. P. N. (2020). “3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects.” Journal of Building Engineering, 32, 101833.
59. Dressler, I., Freund, N., & Lowke, D. (2020). “Control of strand properties produced with shotcrete 3D printing by accelerator dosage and process parameters.” In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 2. Springer International Publishing, 42-52.
60. Cappellari, M., Daubresse, A., & Chaouche, M. (2013). “Influence of organic thickening admixtures on the rheological properties of mortars: Relationship with water-retention.” Construction and Building Materials, 38, 950-961.
61. 永續材質圖書館,「永續材質圖書館介紹」,https://ncsd.ndc.gov.tw/Fore/nsdn/about0/introduction (Accessed 28 May 2024).
62. Althoey, F., Ansari, W. S., Sufian, M., & Deifalla, A. F. (2023). “Advancements in low-carbon concrete as a construction material for the sustainable built environment.” Developments in the Built Environment, 100284.
63. Hamada, H. M., Al-Attar, A., Abed, F., Beddu, S., Humada, A. M., Majdi, A., ... & Thomas, B. S. (2024). “Enhancing sustainability in concrete construction: A comprehensive review of plastic waste as an aggregate material.” Sustainable Materials and Technologies, 40, e00877.
64. Xing, W., Tam, V. W., Le, K. N., Hao, J. L., & Wang, J. (2023). “Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials.” Resources, Conservation and Recycling, 193, 106947.
65. Chang, Q., Liu, L., Farooqi, M. U., Thomas, B., & Özkılıç, Y. O. (2023). “Data-driven based estimation of waste-derived ceramic concrete from experimental results with its environmental assessment.” Journal of Materials Research and Technology, 24, 6348-6368.
66. Ahmad, M. R., Khan, M., Wang, A., Zhang, Z., & Dai, J. G. (2023). “Alkali-activated materials partially activated using flue gas residues: An insight into reaction products.” Construction and Building Materials, 371, 130760.
67. Sahoo, S., Parhi, P. K., & Panda, B. C. (2021). “Durability properties of concrete with silica fume and rice husk ash.” Cleaner Engineering and Technology, 2, 100067.
68. Alderete, N. M., Joseph, A. M., Van den Heede, P., Matthys, S., & De Belie, N. (2021). “Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability.” Resources, Conservation and Recycling, 167, 105356.
69. Dey, D., Srinivas, D., Panda, B., Suraneni, P., & Sitharam, T. G. (2022). “Use of industrial waste materials for 3D printing of sustainable concrete: A review.” Journal of cleaner production, 130749.
70. Teara, A., & Ing, D. S. (2020). “Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder.” Physics and Chemistry of the Earth, Parts a/b/c, 120, 102942.
71. Chi, M. C., Chi, J. H., & Wu, C. H. (2018). “Effect of GGBFS on compressive strength and durability of concrete.” Advanced Materials Research, 1145, 22-26.
72. Siddique, R. (2011). “Utilization of silica fume in concrete: Review of hardened properties.” Resources, conservation and recycling, 55(11), 923-932.
73. Mastali, M., & Dalvand, A. (2016). “Use of silica fume and recycled steel fibers in self-compacting concrete (SCC).” Construction and Building Materials, 125, 196-209.
74. Mehta, A., & Ashish, D. K. (2020). “Silica fume and waste glass in cement concrete production: A review.” Journal of Building Engineering, 29, 100888.
75. Muthusamy, K., Rasid, M. H., Jokhio, G. A., Budiea, A. M. A., Hussin, M. W., & Mirza, J. (2020). “Coal bottom ash as sand replacement in concrete: A review.” Construction and Building Materials, 236, 117507.
76. Akhtar, A., & Sarmah, A. K. (2018). “Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties.” Science of the total environment, 616, 408-416.
77. Nasier, S. (2021). “Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials.” Materials Today: Proceedings, 45, 3231-3234.
78. Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). “Use of fine recycled concrete aggregates in concrete: A critical review.” Journal of Building Engineering, 38, 102196.
79. Chand, G., Ram, S., Kumar, S., & Gupta, U. (2021). “Microstructural and engineering properties investigation of sustainable hybrid concrete produced from industrial wastes.” Cleaner Engineering and Technology, 2, 100052.
80. Danish, A., Mosaberpanah, M. A., Salim, M. U., Fediuk, R., Rashid, M. F., & Waqas, R. M. (2021). “Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges.” Journal of Building Engineering, 44, 102600.
81. Gupta, A., Gupta, N., Saxena, K. K., & Goyal, S. K. (2021). “Investigation of the mechanical strength of stone dust and ceramic waste based composite.” Materials Today: Proceedings, 44, 29-33.
82. Verma, S. K., Singla, C. S., Nadda, G., & Kumar, R. (2020). “Development of sustainable concrete using silica fume and stone dust. “Materials Today: Proceedings, 32, 882-887.
83. Alqahtani, F. K., & Zafar, I. (2021). “Plastic-based sustainable synthetic aggregate in Green Lightweight concrete–A review.” Construction and Building Materials, 292, 123321.
84. Fares, A. I., Sohel, K. M. A., Al-Jabri, K., & Al-Mamun, A. (2021). “Characteristics of ferrochrome slag aggregate and its uses as a green material in concrete–A review.” Construction and Building Materials, 294, 123552.
85. Chen, Y., He, S., Gan, Y., Çopuroğlu, O., Veer, F., & Schlangen, E. (2022). “A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing.” Journal of Building Engineering, 45, 103599.
86. Sambucci, M., Marini, D., & Valente, M. (2020). “Tire recycled rubber for more eco-sustainable advanced cementitious aggregate.” Recycling, 5(2), 11.
87. Cuevas, K., Chougan, M., Martin, F., Ghaffar, S. H., Stephan, D., & Sikora, P. (2021). “3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres–Rheological, thermal and mechanical properties.” Journal of Building Engineering, 44, 102718.
88. Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2023). “3D concrete printing of eco-friendly geopolymer containing brick waste.” Cement and Concrete Composites, 138, 104943.
89. Skibicki, S., Pułtorak, M., Kaszyńska, M., Hoffmann, M., Ekiert, E., & Sibera, D. (2022). “The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar.” Construction and Building Materials, 335, 127443.
90. Daher, J., Kleib, J., Benzerzour, M., Abriak, N. E., & Aouad, G. (2022). “Recycling of flash-calcined dredged sediment for concrete 3D printing.” Buildings, 12(9), 1400.
91. Álvarez-Fernández, M. I., Prendes-Gero, M. B., González-Nicieza, C., Guerrero-Miguel, D. J., & Martínez-Martínez, J. E. (2021). “Optimum mix design for 3d concrete printing using mining tailings: A case study in Spain.” Sustainability, 13(3), 1568.
92. Rehman, A. U., Lee, S. M., & Kim, J. H. (2020). “Use of municipal solid waste incineration ash in 3D printable concrete.” Process Safety and Environmental Protection, 142, 219-228.
93. Yang, C., Xu, X., Lei, Z., Sun, J., Wang, Y., Luo, G., ... & Mei, Y. (2024). “Enhancing mechanical properties of three-dimensional concrete at elevated temperatures through recycled ceramic powder treatment methods.” Journal of Materials Research and Technology, 31, 434-446.
94. Farinha, C. B., de Brito, J., & Veiga, R. (2021). “Incorporation of high contents of textile, acrylic and glass waste fibres in cement-based mortars. Influence on mortars’ fresh, mechanical and deformability behaviour.” Construction and Building Materials, 303, 124424.
95. Orouji, M., Zahrai, S. M., & Najaf, E. (2021). “Effect of glass powder & polypropylene fibers on compressive and flexural strengths, toughness and ductility of concrete: an environmental approach.” Structures, 33, 4616-4628.
96. Li, J., Chen, J., Wan, C., & Niu, J. (2021). “Flexural toughness and evaluation method of steel fiber reinforced self-compacting lightweight aggregate concrete.” Construction and Building Materials, 277, 122297.
97. Dong, Z., Deng, M., Zhang, C., Zhang, Y., & Sun, H. (2020). “Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers.” Construction and Building Materials, 260, 119897.
98. ASTM. (1981). "Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)." C1609-12, United States, Pa.
99. Lavoie, S. R., Hassan, S., Kim, J., Yin, T., & Suo, Z. (2021). “Toughness of a composite in which sliding between fibers and matrix is rate-sensitive”. Extreme Mechanics Letters, 46, 101317.
100. Kim, D. J. (2021). “A review paper on direct tensile behavior and test methods of textile reinforced cementitious composites.” Composite Structures, 263, 113661.
101. Wang, X., Lam, C. C., Sun, B. C., Noguchi, T., & Iu, V. P. (2020). “Effect of curing environment on the tensile behaviour of FRCM composites.” Construction and Building Materials, 238, 117729.
102. Deng, M., Dong, Z., & Zhang, C. (2020). “Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers.” Construction and Building Materials, 235, 117801.
103. Farooq, M., Bhutta, A., & Banthia, N. (2019). “Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers.” Cement and Concrete Composites, 103, 183-192.
104. He, S., Wang, X., Bai, H., Xu, Z., & Ma, D. (2021). “Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil.” Journal of Materials Research and Technology, 15, 1613-1621.
105. Yoo, D. Y., Jang, Y. S., Chun, B., & Kim, S. (2021). “Chelate effect on fiber surface morphology and its benefits on pullout and tensile behaviors of ultra-high-performance concrete.” Cement and Concrete Composites, 115, 103864.
106. Akturk, B., Akca, A. H., & Kizilkanat, A. B. (2020). “Fracture response of fiber-reinforced sodium carbonate activated slag mortars.” Construction and Building Materials, 241, 118128.
107. Yao, X., Shamsaei, E., Wang, W., Zhang, S., Sagoe-Crentsil, K., & Duan, W. (2020). “Graphene-based modification on the interface in fibre reinforced cementitious composites for improving both strength and toughness.” Carbon, 170, 493-502.
108. Pham, L., Tran, P., & Sanjayan, J. (2020). “Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance.” Construction and Building Materials, 250, 118785.
109. 陶羿彣,(2021),「晶相與非晶相微細飛灰對水泥基質材料之特性評估」,碩士論文,國立宜蘭大學土木工程研究所。
110. Zhang, C., Hou, Z., Chen, C., Zhang, Y., Mechtcherine, V., & Sun, Z. (2019). “Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content.” Cement and Concrete Composites, 104, 103406.
111. Mitschka, P. (1982). “Simple conversion of Brookfield RVT readings into viscosity functions.” Rheologica Acta, 21, 207-209.
112. Kazemian, A., Yuan, X., Cochran, E. & Khoshnevis, B. (2017). “Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture.” Construction and Building Materials, 145, 639-647.
113. Thomas, M. D. A. (2007). “Optimizing the use of fly ash in concrete.” 5420, 1-24. Skokie, IL, USA: Portland Cement Association.
114. Wan, H., Shui, Z., & Lin, Z. (2004). “Analysis of geometric characteristics of GGBS particles and their influences on cement properties.” Cement and concrete research, 34(1), 133-137.
115. Demirhan, S., Turk, K., & Ulugerger, K. (2019). “Fresh and hardened properties of self consolidating Portland limestone cement mortars: Effect of high volume limestone powder replaced by cement.” Construction and Building Materials, 196, 115-125.
116. Elgalhud, A. A., Dhir, R. K., & Ghataora, G. (2016). "Limestone addition effects on concrete porosity." Cement and Concrete Composites, 72, 222-234.
117. Zhan, P. M., He, Z. H., Ma, Z. M., Liang, C. F., Zhang, X. X., Abreham, A. A., & Shi, J. Y. (2020). “Utilization of nano-metakaolin in concrete: A review.” Journal of building engineering, 30, 101259.
118. Cherian, C., & Siddiqua, S. (2019). “Pulp and paper mill fly ash: A review.” Sustainability, 11(16), 4394.
119. Bai, J., Chaipanich, A., Kinuthia, J. M., O′farrell, M., Sabir, B. B., Wild, S., & Lewis, M. H. (2003). “Compressive strength and hydration of wastepaper sludge ash–ground granulated blastfurnace slag blended pastes.” Cement and Concrete Research, 33(8), 1189-1202.
120. Lin, W. T. (2020). “Reactive ultra-fine fly ash as an additive for cement-based materials.” Materials Today Communications, 25, 101466.
121. Soltanzadeh, F., Emam-Jomeh, M., Edalat-Behbahani, A., & Soltan-Zadeh, Z. (2018). “Development and characterization of blended cements containing seashell powder.” Construction and Building Materials, 161, 292-304.
122. Liu, G., Liao, Y., Sha, X., Liu, G., Zhang, Y., Guo, R., & Yue, Y. (2024). “Application of Calcium Sulfate Whiskers to Cement-Based Materials: A Review.” Materials, 17(5), 1138.
123. CNS 1010,(2019),「水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體)」。
124. 公共工程委員會施工綱要規範第03050章,(2017),「混凝土基本材料及施工一般要求」。
125. 湛淵源、陳駟侑,(2020),「本土化矽灰混凝土工程上之應用」,技師報,1231。
126. Shaikuthali, S. A., Mannan, M. A., Dawood, E. T., Teo, D. C. L., Ahmadi, R., & Ismail, I. (2019). “Workability and compressive strength properties of normal weight concrete using high dosage of fly ash as cement replacement.” Journal of Building Pathology and Rehabilitation, 4, 1-7.
127. Chen, W., Shen, P., Shui, Z., & Fan, J. (2012). “Adsorption of superplasticizers in fly ash blended cement pastes and its rheological effects.” Journal of Wuhan University of Technology-Mater. Sci. Ed., 27(4), 773-778.
128. Yu, R., Spiesz, P. H. J. H., & Brouwers, H. J. H. (2015). “Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses.” Cement and Concrete Composites, 55, 383-394.
129. Hussain, F., Kaur, I., & Hussain, A. (2020). “Reviewing the influence of GGBF on concrete properties.” Materials Today: Proceedings, 32, 997-1004.
130. Chow, R. K., Yip, S. W., & Kwan, A. K. (2013). “Processing crushed rock fine to produce manufactured sand for improving overall performance of concrete.” HKIE Transactions, 20(4), 240-249.
131. Uygunoğlu, T., & Topçu, I. B. (2011). “Influence of aggregate type on workability of self-consolidating lightweight concrete.” Magazine of Concrete Research, 63(1), 1-12.
132. Güneyisi, E., Gesoğlu, M., Altan, I., & Öz, H. Ö. (2015). “Utilization of cold bonded fly ash lightweight fine aggregates as a partial substitution of natural fine aggregate in self-compacting mortars.” Construction and Building Materials, 74, 9-16.
133. Güneyisi, E., Gesoglu, M., Ghanim, H., İpek, S., & Taha, I. (2016). “Influence of the artificial lightweight aggregate on fresh properties and compressive strength of the self-compacting mortars.” Construction and Building Materials, 116, 151-158.
134. Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). “Effect of silica fume on mechanical properties of high-strength concrete.” Cement and concrete composites, 26(4), 347-357.
135. Sun, J., Shen, X., Tan, G., & Tanner, J. E. (2019). “Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash.” Journal of Thermal Analysis and Calorimetry, 136, 565-580.
136. Wang, X. Y., & Park, K. B. (2015). “Analysis of compressive strength development of concrete containing high volume fly ash.” Construction and Building Materials, 98, 810-819.
137. Nath, P., & Sarker, P. (2011). “Effect of fly ash on the durability properties of high strength concrete.” Procedia Engineering, 14, 1149-1156.
138. Saha, A. K. (2018). “Effect of class F fly ash on the durability properties of concrete.” Sustainable environment research, 28(1), 25-31.
139. Li, Q., & Zhang, Q. (2019). “Experimental study on the compressive strength and shrinkage of concrete containing fly ash and ground granulated blast‐furnace slag.” Structural Concrete, 20(5), 1551-1560.
140. Shi, Y., Long, G., Zen, X., Xie, Y., & Shang, T. (2021). “Design of binder system of eco-efficient UHPC based on physical packing and chemical effect optimization.” Construction and Building Materials, 274, 121382.
141. Kılıç, A., Atiş, C. D., Teymen, A., Karahan, O. K. A. N., Özcan, F., Bilim, C., & Özdemir, M. E. T. I. N. (2008). “The influence of aggregate type on the strength and abrasion resistance of high strength concrete.” Cement and Concrete Composites, 30(4), 290-296.
142. Lam, N. N. (2020). “A study on using crushed sand to replace natural sand in high-strength self-compacting concrete towards sustainable development in construction.” IOP Conference Series: Earth and Environmental Science, 505(1), 012003.
143. Kruger, J., du Plessis, A., & van Zijl, G. (2021). “An investigation into the porosity of extrusion-based 3D printed concrete.” Additive Manufacturing, 37, 101740.
144. Wi, K., Wang, K., Taylor, P. C., Laflamme, S., Sritharan, S., & Qin, H. (2021). “Properties and microstructure of extrusion-based 3D printing mortar containing a highly flowable, rapid set grout.” Cement and Concrete Composites, 124, 104243.
145. Ding, T., Xiao, J., Zou, S., & Wang, Y. (2020). “Hardened properties of layered 3D printed concrete with recycled sand.” Cement and Concrete Composites, 113, 103724.
146. Xiao, J., Liu, H., & Ding, T. (2021). “Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure.” Additive Manufacturing, 39, 101712.
147. Rehman, A. U., & Kim, J. H. (2021). “3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics.” Materials, 14(14), 3800.
148. Shi, F., Pham, T. M., Tuladhar, R., Deng, Z., Yin, S., & Hao, H. (2023). “Comparative performance analysis of ground slabs and beams reinforced with macro polypropylene fibre, steel fibre, and steel mesh.” In Structures, 56, 104920.
149. Vrijdaghs, R., di Prisco, M., & Vandewalle, L. (2017). “Short-term and creep pull-out behavior of polypropylene macrofibers at varying embedded lengths and angles from a concrete matrix.” Construction and Building Materials, 147, 858-864.
150. Zhang, J. C., Li, B. J., Chen, W. Y., & Guo, R. X. (2024). “Experimental investigations on tensile strength and fracture toughness of a polyoxymethylene fiber reinforced concrete.” Theoretical and Applied Fracture Mechanics, 130, 104250.
151. Lin, J. X., Luo, R. H., Su, J. Y., Guo, Y. C., & Chen, W. S. (2024). “Coarse synthetic fibers (PP and POM) as a replacement to steel fibers in UHPC: Tensile behavior, environmental and economic assessment.” Construction and Building Materials, 412, 134654.
152. He, J., Wang, Q., Yao, B., & Ho, J. (2021). “Mechanical properties of high strength POM-FRCC and its performance under elevated temperatures.” Construction and Building Materials, 290, 123177.
153. Wu, B., & Qiu, J. (2022). “Enhancing the hydrophobic PP fiber/cement matrix interface by coating nano-AlOOH to the fiber surface in a facile method.” Cement and Concrete Composites, 125, 104297.
154. Bentegri, I., Boukendakdji, O., Kadri, E. H., Ngo, T. T., & Soualhi, H. (2020). “Rheological and tribological behaviors of polypropylene fiber reinforced concrete.” Construction and Building Materials, 261, 119962.
155. Wang, J., Dai, Q., Si, R., & Guo, S. (2019). “Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete.” Journal of Cleaner Production, 234, 1351-1364.
156. Kizilkanat, A. B. (2016). “Experimental evaluation of mechanical properties and fracture behavior of carbon fiber reinforced high strength concrete.” Periodica Polytechnica Civil Engineering, 60(2), 289-296.
157. Cao, K., Liu, G., Li, H., & Huang, Z. (2022). “Mechanical properties and microstructure of calcium sulfate whisker-reinforced cement-based composites.” Materials, 15(3), 947.
158. Zhang, J., Jin, J., Guo, B., Wang, J., Fu, C., & Zhang, Y. (2023). “Effect of mixed basalt fiber and calcium sulfate whisker on chloride permeability of concrete.” Journal of Building Engineering, 64, 105633.
159. Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). “Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber.” Construction and Building Materials, 197, 464-473.
160. Yoo, D. Y., Kim, S., Park, G. J., Park, J. J., & Kim, S. W. (2017). “Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites.” Composite Structures, 174, 375-388.
161. Zhang, J., Liu, T., Dong, B., Zhou, S., & Guo, R. (2022). “Experimental investigation of mechanical characterizations of a POM fiber-reinforced mortar material.” Frontiers in Physics, 10, 837355
162. Liu, J., Sun, W., Miao, C., Liu, J., & Li, C. (2012). “Assessment of fiber distribution in steel fiber mortar using image analysis.” Journal of Wuhan University of Technology-Mater. Sci. Ed., 27(1), 166-171.
163. Kazemi, S., & Lubell, A. S. (2012). “Influence of Specimen Size and Fiber Content on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete.” ACI materials Journal, 109(6).
164. Ma, G., Li, Z., Wang, L., Wang, F., & Sanjayan, J. (2019). “Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing.” Construction and Building Materials, 202, 770-783.
165. Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., Sanjayan, J. G., & Khayat, K. H. (2021). “Fiber orientation effects on ultra-high performance concrete formed by 3D printing.” Cement and Concrete Research, 143, 106384.
166. Liu, J., & Lv, C. (2022). “Properties of 3D-printed polymer fiber-reinforced mortars: a review.” Polymers, 14(7), 1315.
167. Yousefieh, N., Joshaghani, A., Hajibandeh, E., & Shekarchi, M. (2017). “Influence of fibers on drying shrinkage in restrained concrete.” Construction and Building Materials, 148, 833-845.
168. Myers, D., Kang, T. H., & Ramseyer, C. (2008). “Early-age properties of polymer fiber-reinforced concrete.” International Journal of Concrete Structures and Materials, 2(1), 9-14.
169. Afroughsabet, V., Biolzi, L., & Monteiro, P. J. (2018). “The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete.” Composites Part B: Engineering, 139, 84-96.
170. Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., Liu, Z., & Su, J. (2021). “The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete.” Construction and building materials, 282, 122706.
171. Garces, P., Zornoza, E., Alcocel, E. G., Galao, Ó., & Andión, L. G. (2012). “Mechanical properties and corrosion of CAC mortars with carbon fibers.” Construction and Building Materials, 34, 91-96.
172. Jafarifar, N., Pilakoutas, K., & Bennett, T. (2014). “Moisture transport and drying shrinkage properties of steel–fibre-reinforced-concrete.” Construction and building materials, 73, 41-50.
173. Chhorn, C., Hong, S. J., & Lee, S. W. (2018). “Relationship between compressive and tensile strengths of roller-compacted concrete.” Journal of Traffic and Transportation Engineering (English Edition), 5(3), 215-223.
174. Zhao, S., & Sun, W. (2015). “Effect of silica fume and fly ash on pore structures of blended pastes at low water to binder ratios.” Advances in Cement Research, 27(9), 506-514.
175. Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., ... & Wang, H. (2021). “New development of ultra-high-performance concrete (UHPC).” Composites Part B: Engineering, 224, 109220.
176. Vantyghem, G., De Corte, W., Shakour, E., & Amir, O. (2020). “3D printing of a post-tensioned concrete girder designed by topology optimization.” Automation in Construction, 112, 103084.
177. Van Der Putten, J., De Volder, M., Van den Heede, P., De Schutter, G., & Van Tittelboom, K. (2020). “3D printing of concrete: the influence on chloride penetration.” RILEM International Conference on Concrete and Digital Fabrication, 500-507.
178. Xiao, J., Zou, S., Yu, Y., Wang, Y., Ding, T., Zhu, Y., ... & Li, L. (2020). “3D recycled mortar printing: System development, process design, material properties and on-site printing.” Journal of Building Engineering, 32, 101779.
179. Mohan, M. K., Rahul, A. V., De Schutter, G., & Van Tittelboom, K. (2021). “Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete.” Construction and Building Materials, 275, 122136.
180. Shakor, P., Nejadi, S., Sutjipto, S., Paul, G., & Gowripalan, N. (2020). “Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based 3D printed mortar.” Additive Manufacturing, 32, 101069.
181. Liu, C., Zhang, R., Liu, H., He, C., Wang, Y., Wu, Y., ... & Zuo, F. (2022). “Analysis of the mechanical performance and damage mechanism for 3D printed concrete based on pore structure.” Construction and Building Materials, 314, 125572.
182. Kruger, J., Cho, S., Zeranka, S., Viljoen, C., & van Zijl, G. (2020). “3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse.” Composites Part B: Engineering, 183, 107660.
183. Yang, Y., Wu, C., Liu, Z., & Zhang, H. (2022). “3D-printing ultra-high performance fiber-reinforced concrete under triaxial confining loads.” Additive Manufacturing, 50, 102568.
184. Zhang, C., Jia, Z., Wang, X., Jia, L., Deng, Z., Wang, Z., ... & Mechtcherine, V. (2022). “A two-phase design strategy based on the composite of mortar and coarse aggregate for 3D printable concrete with coarse aggregate.” Journal of Building Engineering, 54, 104672.
185. Liu, J., Setunge, S., & Tran, P. (2022). 3D concrete printing with cement-coated recycled crumb rubber: Compressive and microstructural properties. Construction and Building Materials, 347, 128507.
186. Van Den Heever, M., du Plessis, A., Kruger, J., & van Zijl, G. (2022). “Evaluating the effects of porosity on the mechanical properties of extrusion-based 3D printed concrete.” Cement and Concrete Research, 153, 106695.
187. Van Der Putten, J., Rahul, A. V., De Schutter, G., & Van Tittelboom, K. (2021). “Development of 3D printable cementitious composites with the incorporation of polypropylene fibers.” Materials, 14(16), 4474.
188. Liu, B., Liu, X., Li, G., Geng, S., Li, Z., Weng, Y., & Qian, K. (2022). “Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods.” Case Studies in Construction Materials, 17, e01519.
指導教授 王韡蒨(Wei-Chien Wang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明