參考文獻 |
1. Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60-73.
2. 內政部營建署 (2012)。下水道污泥含磷調查及最佳磷回收量之研究。未出版。
3. 張添晉 (1993)。污泥資源化回收再利用技術與成本效益分析。工業污染防治, 48, 139-162.
4. Lamastra, L., Suciu, N. A., & Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture, 5(1), 10.
5. Bonfiglioli, L., Cernuschi, S., & Piacenti, R. (2014). Sewage sludge: characteristics and recovery options. Waste Management, 34(12), 2619-2624.
6. 程淑芬 (2015, 12月)。下水污泥肥料化困境。內政部營建署-下水污泥再利用研討會,台北市。
7. 林獻山、張添晉、洪明宏 (2006, 11月)。下水污泥資源化再利用—作為土壤改良材施用於綠農地。下水道工程實務研討會,台北市。
8. 程介羲 (2015)。下水污泥再利用方案探討。學術論文。
9. Demirbas, A., Edris, G., & Alalayah, W. M. (2017). Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(10), 999-1006.
10. Demirbas, A., Taylan, O., & Kaya, D. (2016). Biogas production from municipal sewage sludge (MSS). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(20), 3027-3033.
11. Cleverson Vitorio Andreoli, M. v. S. a. F. F. (2007). Sludge Treatment and Disposal (Vol. 6). London, England: Springer.
12. 朱敬平 (2016)。我國都市污水處理廠下水污泥資源化再利用特性分析。中興工程, 132, 9-16.
13. 江康鈺、陳仁山 (2005)。污泥堆肥資材化過程重金屬物種型態變化與穩定性之評估。工業污染防治, 96, 23-41.
14. Bharathiraja, B. D., Venkatesh, K., & Rajasimman, M. (2014). Biofuels from sewage sludge- A review. International Journal of Chem Tech Research, 6, 4417-4427.
15. 陳渂愃、大下和徹 (2022)。日本污水污泥燃料化對脫碳社會之可行性評估。臺灣能源期刊, 9, 123-136.
16. Bhatty, J. I., & Reid, K. J. (1989). Moderate strength concrete from lightweight sludge ash aggregates. International Journal of Cement Composites and Lightweight Concrete, 11(3), 179-187.
17. Tay, J.-H., & Show, K.-Y. (1992). Utilization of municipal wastewater sludge as building and construction materials. Resources, Conservation and Recycling, 6(3), 191-204.
18. Tay, J.-H., & Show, K.-Y. (1997). Resource recovery of sludge as a building and construction material—A future trend in sludge management. Water Science and Technology, 36(11), 259-266.
19. Weng, C.-H., Lin, D.-F., & Chiang, P.-C. (2003). Utilization of sludge as brick materials. Advances in Environmental Research, 7(3), 679-685.
20. Monzó, J., Martínez, J., & Montes, M. (2003). Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Management, 23(4), 373-381.
21. Merino, I., Arévalo, L. F., & Romero, F. (2005). Characterization and possible uses of ashes from wastewater treatment plants. Waste Management, 25(10), 1046-1054.
22. Chen, M., Wang, C., Sun, W., & Liu, J. (2013). Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management, 33(5), 1268-1275.
23. Li, D. H., & Ganczarczyk, J. (1989). Fractal geometry of particle aggregates generated in water and wastewater treatment processes. Environmental Science & Technology, 23(11), 1385-1389.
24. Ganczarczyk, J. J., & Li, D. H. (1990). Structure of activated sludge flocs. Biotechnology and Bioengineering, 35(1), 57-65.
25. Li, D., & Ganczarczyk, J. (1992). Advective transport in activated sludge flocs. Water Environment Research, 64(3), 236-240.
26. Tsang, K. R., & Vesilind, P. A. (1990). Moisture distribution in sludges. Water Science and Technology, 22(12), 135-142.
27. Vesilind, P. A., & Martel, C. J. (1990). Freezing of water and wastewater sludges. Journal of Environmental Engineering, 116(5), 854-862.
28. 曾迪華、潘時正 (2007, 7月)。下水道污泥處理處置之現況與展望。2007年下水道工程實務研討會-專題演講,台灣下水道協會。
29. Prud’homme, M. (2010, March). World Phosphate Rock Flows, Losses and Uses. Phosphates 2010 International Conference. Paris: International Fertilizer Industry Association (IFA).
30. Chen, Y., Zhang, Q., Zhang, X., & Lin, T. (2020). Strength and microstructure properties of solidified sewage sludge with two types of cement-based binders. Scientific Reports, 10(1), 20769.
31. Piasta, W., & Lukawska, M. (2016). The effect of sewage sludge ash on properties of cement composites. Procedia Engineering, 161, 1018-1024.
32. Lieber, W. (1974). The influence of phosphates on the hydration of Portland cement. In Proceedings of the VI International Congress on the Chemistry of Cement, Moscow, September.
33. Ben-Dor, L., & Rubinsztain, Y. (1979). The influence of phosphate on the hydration of cement minerals studied by DTA and TG. Thermochimica Acta, 30(1), 9-14.
34. Ma, W., & Brown, P. W. (1994). Effect of phosphate additions on the hydration of Portland cement. Advances in Cement Research, 6(21), 1-12.
35. Taylor, H. F. W. (1997). Cement Chemistry. London: Thomas Telford Publishing.
36. Kong, X., Shi, J., Wang, D., Hou, S., & Liu, H. (2012). Impacts of Phosphoric Acid and Phosphates on Hydration Kinetics of Portland Cement. Journal of The Chinese Ceramic Society, 40(1), 96-102.
37. Tan, H., Wang, X., Lu, W., & Zhang, Y. (2017). Effect of the Adsorbing Behavior of Phosphate Retarders on Hydration of Cement Paste. Journal of Materials in Civil Engineering, 29(9), 04017088.
38. Bénard, P., Seghir, A., & Bonnal, M. (2005). Hydration process and rheological properties of cement pastes modified by orthophosphate addition. Journal of the European Ceramic Society, 25(11), 1877-1883.
39. 朱偉 (2007)。以膨潤土為輔助添加劑固化/穩定化污泥的試驗研究。環境科學, 5, 1020-1025.
40. 張華, 範建軍, & 趙由才 (2008)。基於填埋處置的污水廠脫水污泥土工性質研究。同濟大學學報(自然科學版), 36(3), 361-365.
41. 常方強, 塗帆, & 羅才松 (2010)。污水處理廠污泥固化及影響因素的試驗研究。福建工程學院學報, 8(3), 258-261.
42. Pramanik, S. K., Wu, Q., & Shariq, M. (2024). Bio-corrosion in concrete sewer systems: Mechanisms and mitigation strategies. Science of The Total Environment, 921, 171231.
43. 鄭修軍, 朱偉, 李磊, 徐志榮, & 屈陽 (2008)。污泥固化材料優選試驗研究。岩土力學, 29(S1), 571-574.
44. 陳宏仁, & 阮國棠 (1988)。有害廢棄物之固化及安定化。工業污染防治, 26, 24-29.
45. 李公哲 (1983)。工業廢水處理技術(八)污泥之固化法。工業污染防治, 8, 75-82.
46. 王宇峰, 李瑞紅, 王小強, 梁增強, & 李昌科 (2010)。城市污水污泥固化處理實驗研究。應用化工, 47(12), 33-38.
47. Little, D. N. (1995). Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime. Lexington, KY: National Lime Association.
48. National Lime Association. (2004). Lime-Treated Soil Construction Manual: Lime Stabilization & Lime Modification. Washington, D.C.: National Lime Association.
49. Eades, J. L., & Grim, R. E. (1960). REACTION OF HYDRATED LIME WITH PURE CLAY MINERALS IN SOIL STABILIZATION. Highway Research Board Bulletin, 261, 26-50.
50. Little, D. N., & Nair, S. (2009). Recommended Practice for Stabilization of Subgrade Soils and Base Materials. Washington, D.C.: American Association of State Highway and Transportation Officials.
51. Marinkovic, N., Mladenovic, A., & Stevanovic, S. (2022). Chemical Stabilization of Soil Using Lime as a Chemical Reagent. Scientific Journal of Civil Engineering, 10(1), 23-37.
52. Ingles, O. G., & Metcalf, J. B. (1972). Soil Stabilization: Principles and Practice (Vol. 11). Sydney: UNSW Press.
53. Board, T. R. (1987). Lime Stabilization: Reactions, Properties, Design, and Construction. Washington, D.C.: National Research Council.
54. Lim, S., Kim, S., & Kim, S. (2002). Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess. Water Research, 36(17), 4177-4184.
55. 趙樂軍, 曹閆 (2006)。固化污泥的工程性質及微觀結構特徵。岩土力學, 27(5), 740-744.
56. 楊力遠, 魏嘉, & 黃頌芬 (2017)。噴射混凝土液體速凝劑研究現狀。隧道建設, 37(5), 543-552.
57. Kan, C., Li, Z., & Zhang, X. (2013). Effect of Aluminium Sulfate on Cement Properties. Materials Science Forum, 743-744, 285-291.
58. 劉寧, 朱元, & 陳文波 (2012)。化學除磷工藝研究進展。化工進展, 31(07), 1597-1603.
59. 張志平, 馮金輝, 李雁鴻, 劉嵩, & 馬凱 (2021)。化學除磷在市政污水處理中的應用。環境保護前沿, 11(5), 1051-1056.
60. Nakasaki, K., Shoda, M., & Kubota, H. (1985). Comparison of Composting of Two Sewage Sludges. Journal of Fermentation Technology, 63(6), 537-543.
61. 陳子惟, 馬., 楊彬. (2019). 亞鐵鹽、鐵鹽、聚合鐵鹽和聚合鋁除磷工藝的對比實驗研究. 水污染及處理, 7(1), 34-38.
62. GHG Protocol Initiative. (n.d.). Corporate value chain (scope 3) accounting and reporting standard. Retrieved from https://www.ghgprotocol.org/standards/scope-3-standard
63. 歐陽嶠暉. (n.d.). 廢水處理廠操作管理(十一)污泥消化. 工業污染防治刊物.
64. 王建隆, 鄭宏德. (2001). 新式污泥乾燥技術. 產業環保工程實務技術研討會論文集, 419-428.
65. Robertson, L. (2006). Undesirable odors in finished paper and paper board products. In 2006 TAPPI Papermakers Conference and 2006 TAPPI Coating and Graphic Arts Conference Proceedings (pp. 1-11). TAPPI Press.Jung, H., & Kappen, J. (2010). Odor control in papermaking. Paper Age, 7-8.
66. Jung, H., & Kappen, J. (2010). Odor control in papermaking. Paper Age, 7-8.
67. Robertson, L. (2013). Deposit and odor problems in tissue and towel. METissue, Winter 2013 Edition, 5(1), 23-26.
68. Sposito, G. (1984). The Surface Chemistry of Soils. New York: Oxford University Press.
69. Erdincler, A., & Vesilind, P. A. (2000). Effect of sludge cell disruption on compactibility of biological sludges. Water Science and Technology, 42(9), 119-126.
70. IPCC. (2014). IPCC Fifth Assessment Report.
71. 郝曉地, 施筱琳, 李小霜, 吳宏信, 劉建業, 黃小杰, 張建國. (2019). 污泥幹化焚燒乃污泥處理/處置終極方式. 中國給水排水, 第4期, 35-42.
72. 宋曉雅. (2019). 污泥熱水解厭氧消化與常規厭氧消化的運行比較. 給水排水, 45(3), 26-30.
73. IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5).
74. 行政院環境保護署. (2016). 2015年中華民國國家溫室氣體清冊報告.
75. 蔣自力, 金宜英, 張輝. (2018). 污泥處理處置與資源綜合利用技術. 中國: 化學工業出版社.
76. 林文聰, 劉子為, 張世宏, 蔡明亮, 王全振. (2017). 污水廠污泥典型處理處置工藝碳排放核算研究. 環境工程, 35(7), 168-175.
77. 王琳, 李賢浩, 劉子為, 李歡. (2022). 污泥處理處置路徑碳排放分析. 中國環境科學, 42, 2404-2412.
78. 劉洪濤, 鄭琳, 陳俊. (2013). 城鎮污水處理廠污泥處理處置工藝生命週期評價. 中國給水排水, 29(11), 11-13.
79. 張楠, 孟祥瑞. (2023). 城市污水處理廠污泥處理處置碳排放分析—以淮南市為例. 安徽理工大學學報(自然科學版), 43, 83-93.
80. 紀莎莎. (2019). 污泥幹化焚燒工藝碳排放研究及優化策略. 環境科技, 32.
81. 環境保護部. (2010). 城鎮污水處理廠污泥處理處置污染防治最佳可行技術指南(試行). 中國.
82. 張岳, 葛德昌, 孫永利, 劉靜, 高晨晨, 張維. (2021). 基於城鎮污水處理全流程環節的碳排放模型研究. 中國給水排水, 37(9), 65-74.
83. Dalpaz, R., Barros, E. G., Carvalho, A. T., & Machado, R. F. (2020). Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustainable Energy Technologies and Assessments, 40, 100774. |