以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:107 、訪客IP:3.142.124.83
姓名 謝湘淇(Hsiang-Chi,Hsieh) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 液滴撞擊傾斜平板之研究 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2027-7-31以後開放) 摘要(中) 本研究進行不同撞擊角度、韋伯數之液滴撞擊試驗,並結合高速攝影機擷取俯視與側視影像,以探討液滴撞擊的幾何特性與運動條件的關係。實驗所得影像使用PCC3.7高速攝影機專用軟體擷取液滴撞擊影像、利用Rapid Resizer圖片範本生成器進行圖像處理,採用邊緣檢測將圖像轉換為線條圖和閾值分割強調圖像細節及MATLAB內建計算與繪製程式,分析液滴撞擊擴展的歷程、形狀、短長徑比等關係。研究結果顯示,正癸烷液滴在不同平板撞擊時,韋伯數對短長徑比影響不大,慣性對形狀變化不顯著。然而水液滴在不同平板上,低韋伯數和不同撞擊角度下,短長徑比與sinϕ值不一致,表明表面張力和接觸角對形狀有顯著影響。不同韋伯數和平衡接觸角下,液滴擴展面積受表面張力和表面能限制,特別是在低撞擊角度和高/低韋伯數情況下,擴展面積小於90°撞擊角度。並利用前人的模型進行最大擴展因數實驗驗證。此外,研究發現水液滴在鐵氟龍平板上的動態行為受We和 ϕ的顯著影響,並會出現非單調的縮回分裂轉變現象。隨著We和 ϕ的變化,液滴在擴展和回縮過程中會表現出不同的模式,包括擴展形成液指、滑動、液膜邊緣的不穩定性、液指分裂成小液滴以及縮回。 摘要(英) This study conducted impact experiments with different impact angles and Weber numbers on droplets, combining high-speed cameras to capture both top-down and side-view images to explore the relationship between the geometric characteristics and motion conditions of droplet impacts. The images obtained from the experiments were analyzed using image processing, website reading, and MATLAB′s built-in computation and plotting programs to investigate the expansion process and the relationships between the shape, aspect ratio, and other factors of the droplet impact. The results indicate that for decane droplets impacting various flat surfaces, the Weber number has little effect on the aspect ratio, and inertia has no significant impact on shape change. However, for water droplets on different plates, at low Weber numbers and different impact angles, the aspect ratio and sinϕ values are inconsistent, indicating that surface tension and contact angle have a significant impact on the shape. Under different Weber numbers and equilibrium contact angles, the droplet expansion area is constrained by surface tension and surface energy, especially at low impact angles and high/low Weber numbers, where the expansion area is less than 90° impact angles. The study also validated the maximum spreading factor using previous models. Additionally, the study finds that the dynamic behavior of water droplets on Teflon plates is significantly influenced by We and ϕ, exhibiting receding breakup non-monotonic transition. As We and ϕvary, droplets display different patterns during expansion and receding, including the formation of liquid fingers, sliding, edge instabilities of the liquid film, breakup liquid fingers into smaller droplets, and receding. 關鍵字(中) ★ 韋伯數
★ 撞擊角度
★ 接觸角
★ 最大擴展因數
★ 縮回分裂關鍵字(英) ★ Weber number
★ impact angle
★ contact angle
★ maximum spreading factor
★ receding breakuop論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 vii
表目錄 xixiv
符號說明 xv
第一章 前言 1
1.1簡介 1
1.2文獻回顧 1
1.2.1 液滴在水準平板上的撞擊行為 1
1.2.2 液滴在傾斜平板上的撞擊行為 1
1.2.3 液滴在移動平板上的撞擊行為 4
1.2.4 液滴撞擊理論 4
1.2.5 液滴最大擴展參數模型 5
1.3 研究動機與目的 5
第二章 實驗設備與配置 6
2.1 液滴產生系統 6
2.1.1不鏽鋼針頭及針筒 6
2.1.3 PU軟管 7
2.1.4針筒幫浦 8
2.1.5空氣壓縮機和空氣壓縮機儲水機 8
2.2影像擷取系統 9
2.2.1高速攝影機系統 9
2.2.1.1高速攝影機 9
2.2.1.2 LED 光源 10
2.2.1.3雙霧面結構擴散板 10
2.2.1.4變焦鏡頭Navitar 6X 11
2.2.1.5相機鏡頭 NIKON AF NIKKOR 24-120 mm 11
2.2.1.6 PCC3.7高速攝影機專用控制軟體 11
2.2.2 Matlab 軟體 12
2.2.3 Rapid Resier圖片範本生成器 13
第三章 實驗方法 15
3.1液滴撞擊理論 15
3.2實驗流程 15
3.2.1實驗流體與撞擊平板 15
3.2.2液滴產生與控制 16
3.2.3實驗校正 16
第四章 結果與討論 19
4.1液滴撞擊過程型態 19
4.1.1正癸烷液滴在玻璃平板 19
4.1.2正癸烷液滴在鐵氟龍平板 23
4.1.3水液滴在玻璃平板 26
4.1.4水液滴在壓克力平板 29
4.1.5水液滴在鐵氟龍平板 32
4.2 液滴撞擊擴展面積 39
4.2.1 Matlab程式繪製最大擴展面積輪廓線 39
4.2.1.1正癸烷液滴在玻璃平板 40
4.2.1.2正癸烷液滴在鐵氟龍平板 41
4.2.1.3水液滴在玻璃平板 42
4.2.1.4水液滴在壓克力平板 43
4.2.1.5水液滴在鐵氟龍平板 44
4.2.2正癸烷液滴在玻璃平板 45
4.2.3正癸烷在鐵氟龍平板 48
4.2.4水液滴在玻璃平板 51
4.2.5水液滴在壓克力平板 54
4.2.6水液滴在鐵氟龍平板 57
4.3撞擊角度對薄膜短長徑的影響 64
4.3.5正癸烷液滴在玻璃平板 64
4.3.2正癸烷液滴在鐵氟龍平板 66
4.3.3水液滴在玻璃平板 67
4.3.4水液滴在壓克力平板 69
4.3.5水液滴在鐵氟龍平板 70
4.4不同撞擊角度對擴展面積比的影響 72
4.4.1正癸烷液滴在玻璃和鐵氟龍平板 72
4.4.2水液滴在玻璃、壓克力和鐵氟龍平板 73
4.5韋伯數對最大擴展因數的影響 74
第五章 結論 79
5.1結論 79
5.2未來展望 80
參考文獻 81參考文獻 [1] 翁景惠,程曉桂 : 《血跡噴濺痕》,書祐文化事業有限公司,1997,pp.23-38
[2] Aboud , D. G. K., Kietzing , A. M., “ On the oblique impact dynamics of drops on superhydrophobic, ” LANGMUIR, Vol 34, 2018, pp. 9879-9888.
[3] Aksoy , Y. T., Eneren , P., Koos , E., Ventrano , M. R., “ Spreading of a droplet impacting on a smooth flat surface: How liquid viscosity influences the maximum spreading time and spreading ratio, ” Phys. Fluids, Vol 34, 042106, 2022.
[4] Almohammadi, H., Amirfazli, A., “ Asymmetric spreading of a drop upon impact onto a surface, ” LANGMUIR, Vol 33, 2017, pp. 5957-5964.
[5] Almohammadi, H., Amirfazli, A., “ Understanding the drop impact on moving,. ” Soft Matter, Vol 13, 2040, 2017.
[6] Antonini, C., Villa, F., Marengo, M., “ Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces : outcomes, timing, and rebound maps, ” Exp Fluids, Vol 55, 1713, 2014.
[7] Bowen, E. G.,“ The formation of rain by coalesoenoe, ” Aust. J. Chem, 1950, pp. 193-213.
[8] Buksh, S., Almohammadi, H., Marengo, M., Amirfazli, A.,“ Spreading of low-viscous liquids on a stationary and a moving surface,” Experiments in Fluids, Vol 60, 76, 2019.
[9] Damak, M., Mahmoudi, S. R., Hyder, M. N., & Varanasi, K. K., “ Enhancing droplet deposition through in-situ precipitation, ” Nat. comm, 2016, pp. 1-9.
[10] Dorr, G. J., Wang, S., Mayo, L. C., McCue, S. W., Forster, W. A., Hanan, J., & He, X., “ Impact of spray droplets on leaves : influence of formulation and leaf characyer on shatter,bounce and adhesion,” Exp. Fluids, 2015, pp. 1-17.
[11] Du, J., Wang, X., Li, Y., Min, Q, Wu, X., “ Analytical consideration for the maximum spreading factor of liquid droplet impact on a Smooth Solid Surface, ” LANGMUIR, Vol 37, 2021, pp. 7582-7590.
[12] García-Geijo, P., Riboux, G., & Gordillo, J. M., “ Inclined impact of drops,” J. Fluid Mech, Vol 897, 2020.
[13] Guan, Y., Fu, J., Wu, S., Chen, X., Zhou, C., “ The post-impact dynamics of drop rebound on inclined hydrophobic surfaces of various wettabilities,” Phys. Fluids, Vol 33, 072108, 2021.
[14] Guan, Y., Wang, M., Wu, S., Fu, J., Chen, X., “ The spreading and sliding characteristics of droplet impingement on an inclined hydrophobic surface at low Weber numbes, ” International Journal of Heat and Fluid Flow, Vol 100, 109113, 2023.
[15] MacDonell, H. L., “ Interpretation of bloodstains : Physical considerations, ” Legal Medicine Annual, C. Wecht, Ed., Appleton-century Crofts, New York, 1971, pp. 91-136
[16] Pasandideh-Fard, M., Qiao, Y. M., Chandra,S., Mostaghimi,J., “Capillary effects during droplet impact on a solid surface,, ”Physics of Fluids, Vol 8, 3, 1996, pp. 650-659.
[17] Raman, K., “ Normal and oblique droplet impingement dynamics on moving dry walls, ”PHYSICAL REVIEW E, Vol 99, 053108, 2019.
[18] Saffman, P. G. F., & Turner, J. S.,“ On the collision of drops in turbulent clouds,” J. Fluid Mech., 1956.
[19] Srivastava, T., Jena, S. K., Kondaraju, S., “Droplet impact and spreading on inclined surfaces,” LANGMUIR, Vol 37, 2021, pp. 13737-13745.
[20] Šikalo, Š., Tropea, C., Gani´c, E . N., “Impact of droplets onto inclined surfaces, ” Journal of Colloid and Interface Science, Vol 286, 2005, pp. 661-669.指導教授 黃冠嶺(Kuan-Ling,Huang) 審核日期 2024-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare