參考文獻 |
[1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
[2] 林祐亦(2023),「火炎山礫石型土石流現地監測及跌水引致土石流實驗分析」,國立中央大學土木工程研究所,碩士論文。
[3] 張振唐 (2022),「降雨及逕流引致礫石型土石流之現地監測及實驗分析」,國立中央大學土木工程研究所,碩士論文。
[4] 羅傳鈞 (2021),「火炎山土石流監測及逕流引致土石流實驗」,國立中央大學土木工程研究所,碩士論文。
[5] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
[6] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
[7] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[8] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[9] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大學土木工程研究所,碩士論文。
[10] 周憲德、邱奕旭、許家銘、黃郅軒、林慶仁、郭本垣 (2013),「礫石型土石流之觸發降雨特性與監測訊號判釋」,中華水土保持學報, 54(1):16-26
[11] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
[12] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw。
[13] Anderson, S.A., Sitar, N., 1991. Influence of stress path on soil strength parameters and analysis of rainfall induced slope failures. Symp. Eng. Geol. Geotech. Eng. 27 (21-1), 21–26.
[14] Blijenberg, H.M., 1993. Results of debris flow investigations on the recent time scale. Temporal Occurrence and Forcasting of Landslides in the European Community, Contract no. 900025, Direction des Transports, de l′Energie et des Eaux du Canton de Berne (DTEE), pp. 609–650.
[15] Chow, V. T. (1959), “Open-channel hydraulics”, McGraw-Hill, New York.
[16] Cojean, R., 1994. Role of groundwater as a triggering factor for landslides and debris flow. Proc. Int. workshop on flood and inondations related to large earth movements. Trento, Italy. A13-1, A13-19.
[17] Cui, P., Guo, X., Yan, Y., Li, Y. and Ge, Y. (2018) , “Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area”, Geomorphology, Vol. 321, pp.153–166.
[18] Ellen, S.D., Fleming, R.W., 1987. Mobilization of debris flows from soil slips, San Francisco Bay Region, California, debris flows/avalanches: process, recognition and mitigation. Rev. Eng. Geol. Geol. Soc. Am. 7, 31–40.
[19] Haneberg, W.C., 1991. Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio. Eng. Geol. 31, 159–184.
[20] Hungr, O., Morgan, G.C. and Kellerhals, R. (1984), “Quantitative analysis of debris torrent hazards for design of remedial measures”, Canadian Geotechnical Journal, Vol.21, pp.663–677.
[21] Hutter, K., Svendsen, B. & Rickenmann, D. Debris flow modeling: A review. Continuum Mech. Thermodyn 8, 1–35 (1994).
[22] Iverson, R. M. (1997), “The physics of debris flows”, Reviews of Geophysics, Vol.35, pp.245–296.
[23] Iverson, R. M., LaHusen, R. G., Major, J. and Zimmerman, C. L. (1994), “Debris flow against obstacles and bends: dynamics and deposits”, American Geophysical Union, Vol.75, pp.274.
[24] Kaki, T. (1954), “The experimental research for mud-flow”,J. JSECE, Vol.19, pp.1- 6.
[25] Klubertanz, G. Laloui, L. Vulliet, L. “Identification of mechanisms for landslide type initiation of debris flows”, Engineering Geology,Volume 109, Issues 1–2, 29 October 2009, Pages 114-123
[26] Navratil, O., Liébault, F., Bellot, H., Travaglini, E., Theule, J., Chambon, G. and Laigle, D. (2013), “High-frequency monitoring of debris-flow propagation along the Real Torrent, Southern French Prealps”, Geomorphology, Vol.201, pp.157-171.
[27] Notti, D.; Giordan, D.; Cina, A.; Manzino, A.; Maschio, P.; Bendea, I.H. Debris Flow and Rockslide Analysis with Advanced Photogrammetry Techniques Based on High-Resolution RPAS Data. Ponte Formazza Case Study (NW Alps).
[28] Okimura, T., 1983. Rapid mass movement and ground water level movement. Z. Geomorphol.,Suppl.bd. 46, 35–54.
[29] Pan, H., Jiang, Y., Wang, J. and Ou, G. (2018) “Rainfall threshold calculation for debris flow early warning in areas with scarcity of data”, Nat. Hazards Earth Syst. Sci., Vol.18, pp.1395-1409.
[30] Pan, H., Jiang, Y., Wang, J. and Ou, G. (2018) “Rainfall threshold calculation for debris flow early warning in areas with scarcity of data”, Nat. Hazards Earth Syst. Sci., Vol.18, pp.1395-1409.
[31] Reid, M.E., Nielsen, H.P., Dreiss, S.J., 1988. Hydrologic factors triggering a shallow hillslope failure. Bull. Assoc. Eng. Geol. 25, 349–361.
[32] Rickenmann, D. and Koch, T. (1997), “Comparison of debris flow modelling approaches”, Proceedings of the first international conference. ASCE, New York, pp.576–585.
[33] Rösli, U., Schindler, C., 1990. Debris Flow 1987 in Switzerland: Geological and Hydrogeological Aspects. Hydrology in Mountainous Regions, Symposion IAHS, Lausanne, pp. 379–386.
[34] Sassa, K., Takei, A., Kobashi, S., 1980. Landslides triggered by vertical subsidences. Int. Symp Landslides, New Delhi 1980, 49–54.
[35] Schrefler, B.A., Simoni, L., Xikui, Li, Zienkiewicz, O.C., 1990. Mechanics of partially saturated porous media. In: Desai, C.S., Gioda, G. (Eds.), Numerical Methods and Constitutive Modelling in Geomaterials, pp. 169–209.
[36] Suwa, H., 1989. Field observation of debris flow. Proceedings of the Japan–China (Taipei), Joint Seminar on Natural Hazard Mitigation, Kyoto, Japan, pp. 343–352.
[37] Takahashi, T. (1978), “Mechanical characteristics of debris flow. J. Hydraulics Div”, ASCE, Vol.104, pp.1153–1169.
[38] Takahashi, T., 1981. Debris flow. Ann. Rev. Fluid Mech. 13, 57–77
[39] VanDine, D.F. (1985), “Debris flow and debris torrents in the Southern Canadian Cordillera”, Canadian Geotechnical Journal, Vol.22, pp.44– 68. |