參考文獻 |
1. A.D. Gosman, and E. Ioannides, (1983). Aspects of computer-simulation of liquid-fueled combustors, J. Energy 7 (6) 482-490.
2. Amamou, A., Habli, S., Saïd, N. M., Bournot, P., and Le Palec, G. (2015). Numerical study of turbulent round jet in a uniform counterflow using a second order Reynolds stress model. Journal of Hydro-environment Research, 9(4), 482-495.
3. Ball, C.G., Fellouah, H. and Pollard, A., (2012). The flow field in turbulent round free jets. Progress in Aerospace Sciences, 50, pp.1-26.
4. Boersma, B. J., Brethouwer, G., and Nieuwstadt, F. T. (1998). A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Physics of Fluids, 10(4), 899-909.
5. Bourouiba, L., Dehandschoewercker, E., and Bush, J. W. M., (2014).“Violent expiratory events: On coughing and sneezing,” J. Fluid Mech. 745, 537–563.
6. Busco, G., Yang, S. R., Seo, J., and Hassan, Y. A. (2020). Sneezing and asymptomatic virus transmission. Physics of Fluids, 32(7) 073309. Doi:10.1063/5.0019090.
7. C.Y.H. Chao, and M.P. Wan, (2006). A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach, Indoor Air 16(4) 296-312.
8. Chao, C.Y.H., Wan, M.P., Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., Xie, X., Katoshevski, D., (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science, 40(2), pp.122-133.
9. Dbouk, T. and Drikakis, D., (2020). On coughing and airborne droplet transmission to humans. Physics of Fluids, 32(5). 053310.
10. Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41(2), 453-480.
11. Feng, Y., Marchal, T., Sperry, T. and Yi, H., 2020. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. Journal of Aerosol Science, 147, 105585.
12. Gupta, J. K., Lin, C. H., and Chen, Q. (2010). Characterizing exhaled airflow from breathing and talking. Indoor Air, 20(1), 31-39.
13. Gupta, J. K., Lin, C.-H., Chen, Q., (2009). Flow dynamics and characterization of a cough. Indoor Air, 19(6), 517–525.
14. Han, M., Ooka, R., Kikumoto, H., Oh, W., Bu, Y. and Hu, S., (2021). Measurements of exhaled airflow velocity through human coughs using particle image velocimetry. Building and Environment, 202, 108020.
15. Han, Z. Y., Weng, W. G., and Huang, Q. Y. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. J. Royal Soc. Interface, 10(88), 20130560.
16. Höppe, P. (1981). Temperatures of expired air under varying climatic conditions. Intern. Journal of Biometeorology, 25, 127-132.
17. Huq, P., & Dhanak, M. R. (1996). The bifurcation of circular jets in crossflow. Physics of Fluids, 8(3), 754-763.
18. Hussein, H. J. Capp, S. P. and George, W. K. ‘‘Velocity measurements in a high Reynolds number, momentum-conserving axisymmetric turbulent jet,’’ J. Fluid Mech. 258, 31 ~1994.
19. Johnson, G. R. and Morawska, L., (2009). “The mechanism of breath aerosol formation,” J. Aerosol Med. Pulmonary Drug Delivery 22(3), 229–237.
20. Kelso, R.M., Lim, T.T. and Perry, A.E., 1996. An experimental study of round jets in cross-flow. J. Fluid Mech., 306, pp.111-144.
21. Lee, J.H.W. and P. Neville-Jones, (1987). “Initial dilution of horizontal jet in crossflow”, J. of Hydraulic Eng., 113 (5), 615-629.
22. Lee, J.H.W. and V. Cheung, (1990). “Generalized Lagrangian model for buoyant jets in current”, J. of Environmental Eng. 116, (6), 1085-1106
23. Lee, Y. C., Chang, T. J., and Hsieh, C. I. (2018). A numerical study of the temperature reduction by water spray systems within urban street Canyons. Sustainability, 10(4), 1190.
24. Li, A. and Ahmadi, G. (1992). Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow. Aerosol Science and Technology, 16:209-226.
25. List, E.J. (1982). Turbulent jets and plumes, Ann. Rev. Fluid Mech., 14, 189-212.
26. Mendez-Diaz, M.M. and G.H. Jirka (1996). “Buoyant plumes from multiport diffuser discharge in deep co-flowing water”, J. of Hydraulic Eng. 122 (8), 428-435.
27. Morsi, S. A. and Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech., 55(2):193-208.
28. Nicas, M., Nazaroff, W. W. and Hubbard, A. (2005). Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens, Journal of Occupational and Environmental Hygiene, 2(3), 143-154.
29. Olmedo, I., Nielsen, P. V., Ruiz de Adana, M., Jensen, R. L., and Grzelecki, P. (2012). Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies. Indoor Air, 22(1), 64-76.
30. Pendar, M.-R. and Páscoa, J.C., (2020). Numerical modeling of the distribution of virus-carrying saliva droplets during sneeze and cough. Physics of Fluids, 32(8). 083305.
31. Rajaratnam, N. (1976). Turbulent Jets. Elsevier Publishing Co., Amsterdam, Netherlands.
32. Saffman, P. G. (1965). The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22:385-400.
33. Sagaut, P. (2005). Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, Berlin, Germany.
34. Tellier, R. (2006). Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 12(11), 1657–1662. doi:10.3201/eid1211.060426.
35. Villafruela, J. M., Olmedo, I., De Adana, M. R., Méndez, C., and Nielsen, P. V. (2013). CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies. Building and Environment, 62, 191-200.
36. Wei, J. and Li, Y., (2015). Enhanced spread of expiratory droplets by turbulence in a cough jet. Building and Environment, 93(2), pp.86-96.
37. Wright, S.J. (1977) “Mean behavior of buoyant jets in a crossflow”, J. Hydraulics Div., 103 (5), 499-513.
38. Xie, X., Y. Li, H. Sun, and L. Liu, (2009). “Exhaled droplets due to talking and coughing,” J. Royal Soc. Interface, 6, 703–714.
39. Yang, S., Lee, G.W., Chen, C.M., Wu, C.C. and Yu, K.P., 2007. The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medicine, 20(4), pp.484-494.
40. Yuan, L.L., Street, R.L. and Ferziger, J.H., 1999. Large-eddy simulations of a round jet in crossflow. J. Fluid Mech., 379, pp.71-104.
41. Zhang, H., Li, Y., Xiao, J., and Jordan, T. (2018). Large eddy simulations of the all-speed turbulent jet flow using 3-D CFD code GASFLOW-MPI. Nuclear Engineering and Design, 328, 134-144.
42. Zhiyin, Y. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11-24.
43. Zhu, S., Kato, S. and Yang, J.H. (2006). Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment, Building and Environment, (41)12, 1691-1702. |