參考文獻 |
[1] 李秉原,2023,應用價值基礎之元強化學習方法於交通號誌控制之研究,國立中央大學土木工程系碩士論文。
[2] 胡守任、葉志韋、林定憲、劉瀚聰,2020,都市適應性號誌控制原理與發展,土木水利,第四十七卷,第四期,第28-39頁。
[3] 陳惠國,2022,強化學習應用於交通號誌控制之展望,中華道路季刊,第六十一卷,第四期,第43-54頁。
[4] Abdoos, M., Mozayani, N. and Bazzan, A. L., 2013, Holonic multi-agent system for traffic signals control. Engineering Applications of Artificial Intelligence, Vol.26, No.5, pp.1575–1587.
[5] Abdulhai, B., Pringle, R. and Karakoulas G. J., 2003, Reinforcement learning for true adaptive traffic signal control, Journal of Transportation Engineering, Vol.129, No.3, pp.278–285.
[6] Arel, I., Liu, C., Urbanik, T. and Kohls AG., 2010, Reinforcement learning based multi-agent system for network traffic signal control, IET Intelligent Transport Systems, Vol.4, No.2, pp.128–135.
[7] Bakker, B., Whiteson, S., Kester L. and Groen F. C., 2010, Traffic light control by multiagent reinforcement learning systems, Interactive Collaborative Information Systems, pp.475–510.
[8] Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K. and Li, Z., 2020, Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control, Proceedings of the AAAI Conference on Artificial Intelligence, Vol.34, No.4, pp.3414–3421.
[9] Dabney, W., Rowland, M., Bellemare, M. and Munos, R., 2018, Distributional reinforcement learning with quantile regression, Proceedings of the AAAI conference on artificial intelligence, Vol.32, No.1.
[10] El-Tantawy, S., Abdulhai, B. and Abdelgawad, H., 2013, Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto, IEEE Transactions on Intelligent Transportation Systems, Vol.14, No.3, pp.1140–1150.
[11] Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves,A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C. and Legg, S., 2018, Noisy Networks for Exploration., The Twelfth International Conference on Learning Representations(ICLR).
[12] Gao, J., Shen, Y., Liu, J., Ito, M. and Shiratori, N., 2017, Adaptive traffic signal control: Deep reinforcement learning algorithm with experience replay and target network, arXiv:1705.02755.
[13] Genders, W. and Razavi, S., 2016, Using a deep reinforcement learning agent for traffic signal control, arXiv:1611.01142.
[14] Hasselt, V., Hado, Guez, A. and Silver, D., 2016, Deep reinforcement learning with double q-learning, Proceedings of the AAAI conference on artificial intelligence, Vol. 30, No.1.
[15] Hessel, M., Modayil, J., Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. and Silver, D., 2017, Rainbow: combining improvements in deep reinforcement learning, arXiv:1710.02298.
[16] Li, L., Lv, Y. and Wang, F.Y., 2016, Traffic signal timing via deep reinforcement learning, IEEE/CAA Journal of Automatica Sinica , Vol.3, No.3, pp.247–254.
[17] Liu, M., Deng, J., Xu, M., Zhang, X. and Wang, W., 2017, Cooperative deep reinforcement learning for traffic signal control. In 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), Halifax.
[18] Mannion, P., Duggan, J. and Howley, E., 2016, An experimental review of reinforcement learning algorithms for adaptive traffic signal control, Autonomic Road Transport Support Systems, pp.47–66.
[19] Schaul, T., Quan, J., Antonoglou, I. and Silver, D., 2015, Prioritized experience replay, arXiv:1511.05952.
[20] Sutton, R. S. and Barto, A. G., 2018, Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
[21] van der Pol E. and Oliehoek F. A., 2016, Coordinated deep reinforcement learners for traffic light control, Proceedings of learning, inference and control of multi-agent systems (at NIPS), Vol.8, pp.21-38.
[22] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M. and Freitas, N., 2016, Dueling network architectures for deep reinforcement learning. Proceedings of Machine Learning Research (PMLR), pp.1995-2003.
[23] Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K. and Li, Z., 2019, PressLight: Learning max pressure control to coordinate traffic signals in arterial network, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), New York, USA, pp.1290–1298.
[24] Wei, H., Zheng, G., Yao, H. and Li, Z., 2018, IntelliLight: A reinforcement learning approach for intelligent traffic light control, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), London, UK, pp.2496-2505.
[25] Wiering, M., 2000, Multi-agent reinforcement learning for traffic light control, In Machine Learning: Proceedings of the Seventeenth International Conference (ICML), pp.1151–1158.
[26] Zang, X., Yao, H., Zheng, G., Xu, N., Xu, K. and Li, Z., 2020, MetaLight: Value-based meta-reinforcement learning for traffic signal control, Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No.1, pp.1153-1160.
[27] Zhang, H., Liu, C., Zhang, W., Zheng, G. and Yu, Y., 2020, Generalight: Improving environment generalization of traffic signal control via meta reinforcement learning, Proceedings of the 29th ACM international conference on information & knowledge management, pp.1783-1792.
[28] Zhao, W., Ye, Y., Ding, J., Wang, T., Wei, T. and Chen, M., 2022, IPDALight: Intensity and phase duration-aware traffic signal control based on reinforcement learning, Journal of Systems Architecture, Vol. 123, pp.102374-102385.
[29] Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang, H., Li, Y., Xu, K. and Li, Z., 2019, Learning phase competition for traffic signal control, Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp.1963-1972.
[30] Zheng, G., Zang, X., Xu, N., Wei, H., Yu, Z., Gayah, V., Xu, K. and Li, Z., 2019, Diagnosing reinforcement learning for traffic signal control, arXiv:1905.04716. |