博碩士論文 111322090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.135.193.105
姓名 吳峻毅(Chun-Yi Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 倒擺懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之分析與實驗驗證
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計★ 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證
★ 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器
★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證★ 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究
★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證★ 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別
★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析
★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證★ 雙向天鉤主動隔震系統之數值模擬分析及實驗驗證
★ 天鉤主動隔震系統應用強化學習DDPG與直接輸出回饋之最佳化設計與分析★ 相位控制多元主動調諧質量阻尼器於結構減震性能評估之數值模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究針對雙層壓電懸臂梁結合剛性桿件之多元壓電調諧質量阻尼器(Piezoelectric - Multiple Tuned Mass Dampers, Piezo-MTMDs),推導運動方程式,經最佳化設計參數後,進行實驗驗證。首先將壓電本構方程式(Piezoelectric Constitutive Equation)以尤拉梁之形式,推導雙層壓電層串聯情況之力學與電路運動方程式,再利用有限元素之概念,將壓電懸臂梁與一般桿件各視為一元素塊,推導不同斷面組合而成之矩陣形式的多自由度運動方程式,並加入外接質量塊與電阻形成完整力學與電路運動方程式,在此稱多自由度矩陣形式之數學模型為完整模型。而後另以剛性桿件末端位移自由度之多項式形狀函數,代入壓電運動方程式中得到二自由度之簡化模型。透過兩種數學模型之運動方程式改寫為狀態空間,可分別對其系統進行分析,繪製頻率反應函數,確認簡化模型可取代完整模型作為後續模擬之數學模型。其中,以壓電阻尼比作為判斷發電效率之指標。因此對外接質量塊、剛性桿件之長度、壓電懸臂梁總厚度與厚度比例,以及厚度比值與電阻進行敏感度分析,由分析結果知,外接質量塊之大小、壓電懸臂梁與剛性桿件之尺寸以及厚度比例皆會對壓電阻尼比造成不同影響,需視實際需求以選擇材料尺寸。透過本團隊先前研究可知,壓電阻尼比會受到幾何勁度之軸向荷載影響,為提升其數值,將壓電TMD以倒擺懸臂梁之形式架設,可將軸向荷載對壓電阻尼比之影響轉變為正效果。而為了增加質量比以達更好之減振效果與能量擷取,在此配置多個壓電TMD組合成壓電MTMDs,即可提升質量比,並降低最佳阻尼比需求,以利壓電材料使用。而後推導氣彈模型加裝壓電MTMDs之運動方程式,固定單一壓電TMD之模型基礎,利用直接搜尋法(Direct Search)進行最佳化設計,找出結構速度頻率反應函數H2-norm值最小與平均功率數值最大化時,各顆壓電TMD相對應之外接質量塊與電阻,經分析後,以平均功率最大化設計之最佳化參數在相近的減振效果下,能夠擷取更多的功率,因此後續之分析使用此參數。在繪製頻率反應函數,與以設計風力進行動力分析後,可知壓電MTMDs在減振同時兼具良好的發電效果。最後製作出6顆壓電TMD試體並對其各別進行系統識別,找出符合實際情形之壓電材料參數,再重新最佳化設計各顆之外接質量塊與電阻後,進行氣彈模型加裝壓電MTMDs風洞實驗。由實驗結果可知,壓電MTMDs對於氣彈模型有實質的減振作用,並可同時產生電能,以達到能源永續利用之目標。
摘要(英) In this study, the motion equations of Piezoelectric - Multiple Tuned Mass Dampers (Piezo-MTMDs) combined with double-layered piezoelectric cantilever beams and rigid rods were derived, and experimental verification was carried out after optimizing the design parameters. First, the piezoelectric constitutive equation was used in the form of an Euler–Bernoulli beam to derive the mechanics and circuit motion equations of the double-layer piezoelectric layer in series. Then, the finite elements concept was used to combine the piezoelectric cantilever beam with the regular rod. Each was regarded as an element, and a multi-degree-of-freedom motion equation in the form of a matrix composed of different sections was deduced. An external mass block and a resistor were added to obtain a complete mechanical and circuit motion equation. Here, the mathematical model in the form of a multi-degree-of-freedom matrix was called the Full model. Then, the polynomial shape function of the rigid rod end displacement degree of freedom was substituted into the piezoelectric motion equation to obtain the Simplify model with a single degree of freedom. By rewriting the motion equations of the two mathematical models into state spaces, their systems could be analyzed separately, frequency response functions could be drawn, and it was confirmed that the Simplify model could replace the Full model as the mathematical model for subsequent simulations. Among them, the piezo-damping ratio was used as an indicator to judge the power generation efficiency. Therefore, a sensitivity analysis was performed on the size of the external mass, the length of the rigid rod, the total thickness of the piezoelectric cantilever beam and the thickness ratio, and the thickness ratio and resistance. From the analysis results, it was seen that the size of the external mass block, the size and thickness ratio of the piezoelectric cantilever beam, and the rigid rod had different effects on the piezo-damping ratio. The material size needed to be selected based on actual requirements. Through previous research conducted by our team, we knew that the piezo-damping ratio was affected by the axial load of geometric stiffness. In order to improve its value, the Piezo-TMD was erected in the form of an inverted cantilever beam, which could transform the influence of the axial load on the piezo-damping ratio into a positive effect. In order to increase the mass ratio to achieve a better vibration reduction effect and energy harvest, multiple Piezo-TMDs were configured to form Piezo-MTMDs, which could increase the mass ratio and reduce the demand for the optimal damping ratio to facilitate piezoelectric materials used. Then the motion equations of adding Piezo-MTMDs to the aeroelastic model were deduced, the model basis of a single Piezo-TMD was fixed, the Direct Search method was used for optimal design, and the Piezo-TMD external mass block and resistor corresponding to the two optimal design methods were found when the structure velocity frequency response function H2-norm value was minimum and the mean power value was maximum. After analysis, the optimal parameters designed to maximize the mean power could capture more energy under similar vibration reduction effects, so subsequent analysis used this parameter. After plotting the frequency response function and conducting dynamic analysis based on the design wind force, it was seen that Piezo-MTMDs had good power generation effects while reducing vibration. Finally, 6 Piezo-TMD specimens were produced, and each of them was systematically identified to find out the piezoelectric material parameters that fit the actual situation. After re-optimizing the design of the external mass block and resistor of each Piezo-TMD specimen, the wind tunnel experiments were conducted on an aeroelastic model equipped with Piezo-MTMDs. It was evident from the experiment results that Piezo-MTMDs had a significant impact on reducing vibrations in the aeroelastic model, while simultaneously producing electrical energy to promote sustainable energy utilization.
關鍵字(中) ★ 多元壓電調諧質量阻尼器
★ 壓電材料系統識別
★ H2-norm最佳化設計
★ RC電路
★ 能量擷取
★ 風洞實驗
關鍵字(英) ★ multiple piezoelectric tuned mass dampers
★ piezoelectric material system identification
★ H2-norm optimization design
★ RC circuit
★ energy harvesting
★ wind tunnel experiment
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 xii
符號說明 xiv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 4
第二章 壓電懸臂梁方程式推導 6
2-1 壓電材料組成律 6
2-2 壓電懸臂梁本構方程式推導 9
2-3 壓電懸臂梁運動方程式推導 14
2-4 壓電懸臂梁之有限元素矩陣及壓電運動方程式 17
2-5 不同斷面之壓電懸臂梁運動方程式 23
2-6 狀態空間表示法 26
2-7 特徵分析 27
2-8 頻率反應函數 28
第三章 壓電調諧質量阻尼器之簡化模型運動方程式與數值模擬 30
3-1 簡化模型壓電懸臂梁運動方程式 30
3-2 狀態空間表示法與頻率反應函數 35
3-3 完整模型與簡化模型比較 37
3-4 壓電懸臂梁參數敏感度分析 41
第四章 氣彈模型加裝壓電調諧質量阻尼器模擬 49
4-1 氣彈模型 49
4-1-1 氣彈模型運動方程式 50
4-1-2 氣彈模型頻率反應函數 51
4-1-3 氣彈模型空構架動力分析 52
4-2 氣彈模型加裝單一壓電TMD與壓電MTMDs 54
4-2-1 氣彈模型加裝單一壓電TMD運動方程式 56
4-2-2 氣彈模型加裝壓電MTMDs運動方程式 59
4-2-3 最佳化設計壓電MTMDs 65
4-3 數值模擬 68
4-3-1 壓電MTMD參數 68
4-3-2 氣彈模型加裝單一壓電TMD與壓電MTMDs頻率反應函數 71
4-3-3 氣彈模型加裝單一壓電TMD與壓電MTMDs設計風力歷時 76
第五章 實驗驗證 87
5-1 氣彈模型 87
5-1-1 實驗器材與量測儀器 87
5-1-2 氣彈模型系統識別流程 92
5-1-3 空構架氣彈模型自由振動歷時 99
5-1-4 空構架氣彈模型受風力歷時 100
5-2 壓電調諧質量阻尼器系統識別 112
5-2-1 實驗器材與量測儀器 112
5-2-2 動態擬合 119
5-2-2-1 壓電調諧質量阻尼器系統識別流程 119
5-2-2-2 純黃銅片自由振動響應 125
5-2-2-3 壓電TMD短路情況自由振動響應 126
5-2-2-4 壓電TMD含不同電阻電路自由振動響應 135
5-3 氣彈模型加裝壓電MTMDs 146
5-3-1 氣彈模型加裝壓電MTMDs自由振動歷時 147
5-3-2 氣彈模型加裝壓電MTMDs受風力歷時 149
第六章 結論與建議 167
6-1 結論 167
6-2 建議 170
參考文獻 171
參考文獻 [1] 「建築物耐風設計規範與解說」,內政部營建署,台內營字第 1030813291 號。
[2] 趙嘉仁,「懸臂梁形式壓電調諧質量阻尼器之研發與最佳化設計」,碩士論文,國立中央大學土木工程學系,民國110年。
[3] 曹運,「懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究」,碩士論文,國立中央大學土木工程學系,民國111年。
[4] 鐘岑瀚,「變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別」,碩士論文,國立中央大學土木工程學系,民國112年。
[5] 張淇閎,「以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器」,碩士論文,國立中央大學土木工程學系,民國111年。
[6] IEEE Std 176-1987. Standard on Piezoelectricity, ANSI/IEEE, New York, 1988.
[7] Gautschi G., Piezoelectric Sensors, Springer, Berlin, Heidelberg, pp. 73-91, 2002.
[8] Manbachi A. and Cobbold R.S.C. “Development and application of piezoelectric materials for ultrasound generation and detection”, Ultrasound, 19, pp, 187-196, 2011.
[9] Ju M., Dou Z., Li J.W., Qiu X., Shen B., Zhang D., Yao F.Z., Gong W. and Wang K., “Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives”, Sensors Basel, 23, 543, 2023.
[10] Park G., Cudney H.H., and Inman D.J. “Impedance-based health monitoring of civil structural components”, ASCE Journal of Infrastructure Systems, 6, pp, 153-160, 2000.
[11] Sun F.P., Chaudry Z., Rogers C.A., Majmundar M., and Liang C. “Automated real-time structure health monitoring via signature pattern recognition. Proceedings of the Smart Structures Materials Conference”, Smart Structures and Materials 1995: Smart Structures and Integrated Systems, 2443, pp, 236-247, 1995.
[12] Song G., Gu H., and Mo Y.L. “Concrete structural health monitoring using embedded piezoceramic transducers”, Smart Materials and Structures, 16, pp, 959-968, 2007.
[13] Yan S., Sun W., and Song G. “Health monitoring of reinforced concrete shear walls using smart aggregates”, Smart Materials and Structures, 18, 047001, 2009.
[14] Kamada T., Fujita T., Hatayama T., Arikabe T., Murai N., Aizawa S. and Tohyama K. “Active vibration control of flexural-shear type frame structures with smart structures using piezoelectric actuators”, Smart Materials and Structures, 7, pp, 479-488, 1998.
[15] Sethi V. and Song G. “Multimode vibration control of a smart model frame structure”, Smart Materials and Structures, 15, pp, 473-479, 2006.
[16] Shimazaki M. and Fujita T. “Experimental study of piezoelectric actuators and magnetostrictive actuators for large-scale smart structures”, The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[17] Erturk A. and Inman D.J., “A distributed parameter Electromechanical model for cantilevered piezoelectric energy harvesters”, Journal of Vibration and Acoustics, 130, 041002, 2008.
[18] Erturk A. and Inman D.J., “An experimental validated bimorph cantilever model for piezoelectric energy harvesting from base excitations’’, Smart Materials and Structures, 18, 025009, 2009.
[19] Rafique S., Bonello P. and Shuttleworth R. “Experimental validation of a novel smart electromechanical tuned mass damper beam device”, Journal of Sound and Vibration, 332, pp, 4912-4926, 2013.
[20] Harne R. L. “Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators”, Journal of the Acoustical Society of America, 132, pp, 162-172, 2012.
[21] Ouled C. M., Choura S., Nayfeh A. H., et al. “Vibration confinement and energy harvesting in flexible structures using collocated absorbers and piezoelectric devices”, Journal of Sound and Vibration, 329, pp, 261-276, 2010.
[22] Tang X. and Zuo L.” Enhanced vibration energy harvesting using dualmass systems”, Journal of Sound and Vibration, 330, pp, 5199-5209, 2011.
[23] Den Hartog J.P., Mechanical Vibrations, 4th Edition, New York, McGraw-Hill, 1956.
[24] Ioi T. and Ikeda K. “On the dynamic vibration damped absorber of the vibration system”, Bulletin of the Japanese Society of Mechanical Engineering, 21, pp, 64-71, 1978.
[25] Warburton G.B. and Ayorinde E.O. “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8, pp, 197-217, 1980.
[26] Ayorinde E.O. and Warburton G.B. “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8, pp, 219-236, 1980.
[27] Warburton G.B. “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10, pp,381-401, 1982.
[28] Bakre S.V. and Jangid R.S. “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14, pp, 448-470, 2007.
[29] Lin C.C., Hu C.M., Wang J.F. and Hu R.Y. “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, 17, pp, 367-376, 1994.
[30] 鍾立來,吳賴雲,賴勇安,連冠華,黃旭輝:〈以結構位移均方最小化作調諧質塊阻尼器之最佳設計〉,結構工程,第二十六卷,第四期,31-58 頁,民國 100 年 12 月。
[31] Lee C.L., Chen Y.T., Chung L.L. and Wang Y.P. “Optimal design theories and applications of tuned mass dampers”, Engineering Structures, 28, pp, 43-53, 2006.
[32] Iwanami K. and Seto K. “An optimum design method for the dual dynamic damper and its effectiveness”, Bulletin of JSME, 27, pp, 1965-1973, 1984.
[33] Xu K. and Igusa T. “Dynamic characteristics of multiple substructures with closely spaced frequencies”, Earthquake Engineering and Structural Dynamics, 21, pp, 1059-1070, 1992.
[34] Xu K. and Igusa T. “Vibration control using multiple tuned mass dampers”, Journal of Sound and Vibration, 175, pp, 491-503, 1994.
[35] Joshi A.S. and Jangid R.S. “Optimum parameters of multiple tuned mass dampers for base-excited damped systems”, Journal of Sound and Vibration, 202, pp, 657-667, 1997.
[36] Jangid R.S. “Optimum multiple tuned mass dampers for base-excited undamped system”, Earthquake Engineering and Structural Dynamics, 28, pp, 1041-1049, 1999.
[37] Bakre S.V. and Jangid R.S. “Optimum multiple tuned mass dampers for base-excited damped main system”, International Journal of Structural Stability and Dynamics, 4, pp, 527-542, 2004.
[38] Bandivadekar T.P. and Jangid R.S. “Optimization of multiple tuned mass dampers for vibration control of system under external excitation”, Journal of Vibration and Control, 19, pp, 1854-1874, 2012.
[39] Chopra A.K., Dynamics of Structures, Theory and applications to earthquake engineering, Fourth edition, U.S.A, Pearson Education, 2013.
[40] Hibbeler R.C., Mechanics of Material, Pearson Education, 2020.
指導教授 賴勇安(Yong-An Lai) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明