參考文獻 |
Agarwal, T. (2018, 2018-09-26). Linear Variable Differential Transformer : Construction & Its Working. https://www.elprocus.com/linear-variable-differential-transformer-and-its-working/
Al-Jaf, P., Smith, M., & Gunzel, F. (2022). Measurement of the hydraulic properties of chalk using centrifuge permeameter; the study of chalk hydraulic properties under accelerated gravitational force. Quarterly Journal of Engineering …. https://doi.org/10.1144/qjegh2021-159
Alsubal, S., bin Sapari, N., Harahap, I. S., & Al-Bared, M. A. M. (2019). A review on mechanism of rainwater in triggering landslide. IOP Conference Series: Materials Science and Engineering,
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME. https://onepetro.org/TRANS/article-abstract/146/01/54/161691
Arduino. (2023). Arduino Mega 2560 Rev3. @arduino. https://store-usa.arduino.cc/products/arduino-mega-2560-rev3
ASTM. (2017). Standard Test Method for Determining Unsaturated and Saturated Hydraulic Conductivity in Porous Media by Steady-State Centrifugation (Withdrawn 2017). ASTM. https://www.astm.org/d6527-00r08.html
Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 40(6), 1104-1122.
Avirut, C., Taworn, T., Chanathip, S., Somjai, Y., Suksun, H., Rattana, S., & Panich, V. (2019, 2019/09/01). Stability characteristics of shallow landslide triggered by rainfall. Journal of Mountain Science, 16(9), 2171-2183. https://doi.org/10.1007/s11629-019-5523-7
Azhar, M. (2020). Dielectric spectrum analysis ofsoils due to drying-wetting rate and environment influences using TDR pressure plate National Central University]. Taiwan.
Backus, B. E. (2020). Soil Classification: Foundation and Pavement Design Starts Here. https://www.globalgilson.com/blog/soil-classification-foundation-and-pavement-design-starts-here
Baker, J., & Allmaras, R. (1990). System for automating and multiplexing soil moisture measurement by time‐domain reflectometry. Soil Science Society of America Journal, 54(1), 1-6.
Beutner, E. C., & Gerbi, G. P. (2005). Catastrophic emplacement of the Heart Mountain block slide, Wyoming and Montana, USA. GSA Bulletin, 117(5-6), 724-735. https://doi.org/10.1130/b25451.1
BGS. (2020). How to classify a landslide - British Geological Survey. https://www.bgs.ac.uk/discovering-geology/earth-hazards/landslides/how-to-classify-a-landslide/
Bishop, A. W. (1961). The experimental study of partly saturated soil in the triaxial apparatus. Proc. 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1961,
Bogaard, T. A., & Greco, R. (2016). Landslide hydrology: from hydrology to pore pressure. Wiley Interdisciplinary Reviews: Water, 3(3), 439-459.
Borgatti, L., Corsini, A., Barbieri, M., Sartini, G., Truffelli, G., Caputo, G., & Puglisi, C. (2006). Large reactivated landslides in weak rock masses: a case study from the Northern Apennines (Italy). Landslides, 3, 115-124.
Boulanger, R. W., Wilson, D. W., Kutter, B. L., De, J. T., Colleen, J., & Bronner, E. (2020). NHERI Centrifuge Facility: Large-Scale Centrifuge Modeling in Geotechnical Research. Sec. Earthquake Engineering. https://doi.org/doi:10.3389/fbuil.2020.00121
Bouzalakos, S., & Timms, W. (2013). Geotechnical centrifuge permeameter for characterizing the hydraulic integrity of partially saturated confining strata for CSG operations. … School of Mines …. https://www.connectedwaters.unsw.edu.au/sites/all/files/publication_related_files/Bouzalakos%20et%20al_IMWA_2013_POSTER%20FINAL.pdf
Brooks, R. H. (1964). Hydraulic properties of porous media. Colorado State University.
By Karl Terzaghi, R. B. P., Gholamreza Mesri. (1940). Soil Mechanics in Engineering Practice. https://books.google.com/books/about/Soil_Mechanics_in_Engineering_Practice.html?id=XjH6DwAAQBAJ
C.-C. Chung, & Lin, C.-P. (2008). Apparent Dielectric Constant and Effective Frequency of TDR Measurements: Influencing Factors and Comparison - Chung - 2009 - Vadose Zone Journal - Wiley Online Library. https://doi.org/10.2136/vzj2008.0089
Campbell, G. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Science. https://journals.lww.com/soilsci/abstract/1974/06000/A_Simple_Method_for_Determining_Unsaturated.1.aspx
CDC. (2020, 2020-01-15T03:39:05Z). Landslides and Mudslides|CDC. https://www.cdc.gov/disasters/landslides.html
Çellek, S. (2020). Effect of the Slope Angle and Its Classification on Landslide. Nat. Hazards Earth Syst. Sci. Discuss., 2020, 1-23. https://doi.org/10.5194/nhess-2020-87
Charles, B. M. (2007). Advanced unsaturated soil mechanics and Engineering. digilib.unkhair.ac.id. http://digilib.unkhair.ac.id/id/eprint/318
Cheng, D. K. (1989). Field and wave electromagnetics. Pearson Education India.
Chung, C.-C. (2008). Improved Time Domain Reflectometry Measurements and Its Application to Characterization of Soil-Water Mixtures National Chiao Tung University].
Chung, C.-C., Huang, C.-Y., Guan, C.-R., & Jian, J.-H. (2019). Applying OGC Sensor Web Enablement Standards to Develop a TDR Multi-Functional Measurement Model. Sensors, 19(19), 4070. https://www.mdpi.com/1424-8220/19/19/4070
Chung, C.-C., & Lin, C.-P. (2019). A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples. Engineering Geology, 262, 105330.
Chung, C.-C., Lin, C.-P., Wu, I.-L., Chen, P.-H., & Tsay, T.-K. (2013). New TDR waveguides and data reduction method for monitoring of stream and drainage stage. Journal of Hydrology, 505, 346-351.
Chung, C.-C., Lin, C.-P., Yang, S.-H., Lin, J.-Y., & Lin, C.-H. (2019). Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR. Engineering Geology, 252, 54-64.
Clarke, C., & Carswell, B. (2007). Bernoulli′s equation. In C. Clarke & B. Carswell (Eds.), Principles of Astrophysical Fluid Dynamics (pp. 107-127). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511813450.010
Conca, J. L., & Wright, J. (1992, 1992/01/01). Diffusion And Flow In Gravel, Soil, And Whole Rock. Applied Hydrogeology, 1(1), 5-24. https://doi.org/10.1007/PL00010963
Coppola, L., Reder, A., Tarantino, A., Mannara, G., & Pagano, L. (2022). Pre-failure suction-induced deformation to inform early warning of shallow landslides: Proof of concept at slope model scale. Engineering Geology, 309, 106834. https://doi.org/https://doi.org/10.1016/j.enggeo.2022.106834
Cosby, B., Hornberger, G., & Clapp, R. (1984). A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water resources …. https://doi.org/10.1029/WR020i006p00682
Cruden, D. (1996). The first classification of landslides? Special Report - National Research Council, Transportation Research Board, 247, 76.
Cruden, D. (2003). The first classification of landslides? Environmental &Engineering Geoscience. https://pubs.geoscienceworld.org/aeg/eeg/article-abstract/9/3/197/60680
D’Ippolito, A., Lupiano, V., Rago, V., Terranova, O. G., & Iovine, G. (2023). Triggering of Rain-Induced Landslides, with Applications in Southern Italy. Water, 15(2), 277. https://www.mdpi.com/2073-4441/15/2/277
Das, B. M. (2019). Advanced Soil Mechanics, Fifth Edition. CRC Press. https://doi.org/https://doi.org/10.1201/9781351215183
David, I. (2017). Why Salt in Water Can Conduct Electricity. https://sciencing.com/salt-water-can-conduct-electricity-5245694.html
De’an, S., Daichao, S., & Scott, W. S. (2007). Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils. Mechanics of Materials, 39(3), 212-221. https://doi.org/https://doi.org/10.1016/j.mechmat.2006.05.002
Di Napoli, M., Marsiglia, P., Di Martire, D., Ramondini, M., Ullo, S. L., & Calcaterra, D. (2020). Landslide Susceptibility Assessment of Wildfire Burnt Areas through Earth-Observation Techniques and a Machine Learning-Based Approach. Remote Sensing, 12(15), 2505. https://www.mdpi.com/2072-4292/12/15/2505
Dowding, C. H., Pierce, C. E., Nicholson, G. A., Taylor, P. A., & Agoston, A. (1996). Recent advancements in TDR monitoring of ground water levels and piezometric pressures. 2nd North American Rock Mechanics Symposium,
Dowding, C. H., Su, M. B., & Connors, K. O. (1988). Principles of time domain reflectometometry applied to measurement of rock mass deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(5), 287-297. https://doi.org/https://doi.org/10.1016/0148-9062(88)90005-8
Emadi-Tafti, M., & Ataie-Ashtiani, B. (2019, //). A modeling platform for landslide stability: A hydrological approach. Water. https://www.mdpi.com/2073-4441/11/10/2146
https://www.mdpi.com/2073-4441/11/10/2146/pdf
Ender. (2018). How Landslides Work! (Animation). https://www.youtube.com/watch?v=uv1lv1U4hVU
Escario, V., & Sáez, J. (1986). The shear strength of partly saturated soils. Geotechnique, 36(3), 453-456. https://doi.org/10.1680/geot.1986.36.3.453
Etech. (2019). LVDT- Construction, Working, Application, Advantages, and Disadvantages. https://www.electrical-technology.com/2019/05/LVDT-Construction-Working-Application-Advantages-and-Disadvantages.html
Etymology, D. o. (2023). landslide | Etymology, origin and meaning of landslide by etymonline. In https://www.etymonline.com/word/landslide
Eyo, E., Ng′ambi, S., & Abbey, S. (2020, 07/30). An overview of soil-water characteristic curves of stabilised soils and their in‐ fluential factors. Journal of King Saud University - Science, 34. https://doi.org/10.1016/j.jksues.2020.07.013
Farouk, A., Lamboj, L., & Kos, J. (2004). Influence of matric suction on the shear strength behaviour of unsaturated sand. Acta Polytechnica, 44(4).
Francesca, B., Ivan, C., Paolo, M., & Alberto, P. (2011, 2011/12/01). Displacement patterns of a landslide affected by human activities: insights from ground-based InSAR monitoring. Natural Hazards, 59(3), 1377-1396. https://doi.org/10.1007/s11069-011-9840-6
Fredlund, D., Rahardjo, H., & Fredlund, M. (2013). Unsaturated soil mechanics in engineering practice. 대한토목학회지, 61(5), 101-101.
Fredlund, D. G. (2006). Unsaturated soil mechanics in engineering practice. Journal of Geotechnical and Geoenvironmental Engineering, 132(3), 286-321.
Fredlund, D. G. (2024). The International Society for Soil Mechanics and Geotechnical Engineering. @ISSMGE. https://www.issmge.org/education/recorded-webinars/introduction-to-unsaturated-soil-mechanics
Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521-532.
Fredlund, D. G., Xing, A., Fredlund, M. D., & Barbour, S. (1996). The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Canadian Geotechnical Journal, 33(3), 440-448.
Gambill, D. R., Wall, W. A., Fulton, A. J., & Howard, H. R. (2016). Predicting USCS soil classification from soil property variables using Random Forest. Journal of Terramechanics, 65, 85-92.
Gan, K. J., & Fredlund, D. G. (1988). Multistage direct shear testing of unsaturated soils. Geotechnical Testing Journal, 11(2), 132-138.
Garcia-Chevesich, P., Wei, X., Ticona, J., Martínez, G., Zea, J., García, V., Alejo, F., Zhang, Y., Flamme, H., & Graber, A. (2020). The impact of agricultural irrigation on landslide triggering: a review from Chinese, English, and Spanish literature. Water, 13(1), 10.
Gardner, R. (1937). A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Science, 43(4), 277-284.
Gatter, R., Clare, M., Kuhlmann, J., & Huhn, K. (2021). Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation. Earth-Science Reviews, 223, 103845.
Giles, S., Knight, M., & Jung, J. K. (2015, //). Determination of Clay Barriers Hydraulic Conductivity Using a Centrifuge Permeameter. Journal of Solid Waste Technology & …. https://www.researchgate.net/profile/Jai-Kyoung-Jung/publication/350588423_Determination_of_Clay_Barriers_Hydraulic_Conductivity_Using_a_Centrifuge_Permeameter/links/60671f9a92851c91b199012f/Determination-of-Clay-Barriers-Hydraulic-Conductivity-Using-a-Centrifuge-Permeameter.pdf
Govi, M., Pasuto, A., Silvano, S., & Siorpaes, C. (1993). An example of a low-temperature-triggered landslide. Engineering Geology, 36(1-2), 53-65.
Grayling, K. M., Young, S. D., Roberts, C. J., M.I, Shirley, I. M., Sturrock, C. J., & Mooney, S. J. (2018). The application of X-ray micro Computed Tomography imaging for tracing particle movement in soil. Geoderma, 321, 8-14. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.01.038
Gu, D., & Huang, D. (2016). A complex rock topple-rock slide failure of an anaclinal rock slope in the Wu Gorge, Yangtze River, China. Engineering Geology, 208, 165-180.
Guo, H., Yi, B., Yao, Q., Gao, P., Li, H., Sun, J., & Zhong, C. (2022, Aug 19). Identification of Landslides in Mountainous Area with the Combination of SBAS-InSAR and Yolo Model. Sensors (Basel), 22(16). https://doi.org/10.3390/s22166235
Guo, Z.-q., Lai, Y.-m., Jin, J.-f., Zhou, J.-r., Sun, Z., & Zhao, K. (2020, 2020/05/26). Effect of Particle Size and Solution Leaching on Water Retention Behavior of Ion-Absorbed Rare Earth. Geofluids, 2020, 4921807. https://doi.org/10.1155/2020/4921807
Guzzetti, F., Cardinali, M., & Reichenbach, P. (1996). The Influence of Structural Setting and Lithology on Landslide Type and Pattern. Environmental & Engineering Geoscience, II(4), 531-555. https://doi.org/10.2113/gseegeosci.II.4.531
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973.
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., & Melillo, M. (2022). Rainfall and landslide initiation. In Rainfall (pp. 427-450). Elsevier.
Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., & Lee, J. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684.
Heimovaara, T. (1993). Design of triple‐wire time domain reflectometry probes in practice and theory. Soil Science Society of America Journal, 57(6), 1410-1417.
Hendry, M. T. (2018). Pore Pressure. In P. T. Bobrowsky & B. Marker (Eds.), Encyclopedia of Engineering Geology (pp. 732-732). Springer International Publishing. https://doi.org/10.1007/978-3-319-73568-9_226
HFSS, A. (2023). Ansys HFSS | 3D High Frequency Simulation Software. https://www.ansys.com/products/electronics/ansys-hfss
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci. Model Dev., 15(14), 5481-5487. https://doi.org/10.5194/gmd-15-5481-2022
Hong, C.-Y., Zhang, Y.-F., Zhang, M.-X., Leung, L. M. G., & Liu, L.-Q. (2016, 2016/06/15/). Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques. Sensors and Actuators A: Physical, 244, 184-197. https://doi.org/https://doi.org/10.1016/j.sna.2016.04.033
Howard, A. K. (1986). Soil classification handbook : unified soil classification system. Second edition. Denver, Colo. : Geotechnical Branch, Division of Research and Laboratory Services, Engineering and Research Center, Bureau of Reclamation, 1986. https://search.library.wisc.edu/catalog/999656841702121
Huang, A.-B., Wu, K.-W., Elshafie, M. Z. E. B., & Wen-Yi Hung, Y.-T. H. (2018). Development of an FBG-Sensed Miniature Pressure Transducer and Its Applications to Geotechnical Centrifuge Modelling | SpringerLink. https://doi.org/10.1007/978-3-319-97112-4_155
Huang, W.-C., Li, K.-C., Hsieh, J.-Y., Weng, M.-C., & Hung, W.-Y. (2019, 2019-11-13). Deformation behaviors of dip slopes considering the scale effect and their geological properties [OriginalPaper]. Bulletin of Engineering Geology and the Environment, 79(3), 1605-1617. https://doi.org/doi:10.1007/s10064-019-01652-6
Huat, B. B., Gue, S. S., & Ali, F. H. (2004). Tropical residual soils engineering. Crc Press.
Hung, W.-Y. (2020). Principles and Application of Geotechnical Centrifuge Modeling.
Hung, W.-Y., & Liao, T.-W. (2020). LEAP-UCD-2017 Centrifuge Tests at NCU. In B. L. Kutter, M. T. Manzari, & M. Zeghal, Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading Cham.
Hung, W.-Y., Soegianto, D. P., Wang, Y.-H., & Huang, J.-X. (2022, 2022-01-16). Reverse fault slip through soft rock and sand strata by centrifuge modeling tests [OriginalPaper]. Acta Geotechnica, 17(8), 3337-3356. https://doi.org/doi:10.1007/s11440-021-01447-8
Hung, W.-Y., Tran, M.-C., & Bui, V.-K. (2022, 2022-05-04). Seismic Response of Anchored Sheet Pile Walls by Centrifuge Modelling Tests [OriginalPaper]. International Journal of Civil Engineering, 20(9), 1041-1065. https://doi.org/doi:10.1007/s40999-022-00710-7
Hungr, O., Leroueil, S., & Picarelli, L. (2014, 2014/04/01). The Varnes classification of landslide types, an update. Landslides, 11(2), 167-194. https://doi.org/10.1007/s10346-013-0436-y
Hyunwook, C., Junghee, P., Thi, D. T., & Changho, L. (2022). Estimating the electrical conductivity of clayey soils with varying mineralogy using the index properties of soils. Applied Clay Science, 217, 106388.
IC. (2015, 2015-01-15). What is Carbon Fiber? | Innovative Composite Engineering. @ICEcomposite. https://www.innovativecomposite.com/what-is-carbon-fiber/
Idris, A. A., Mohammed, Y. F., & Haidar, M. (2020). Relationship between the matric suction and the shear strength in unsaturated soil. Case Studies in Construction Materials, 13, e00441. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00441
Jakob, M., Hungr, O., Savage, W., & Baum, R. (2005). Instability of steep slopes. Debris-flow hazards and related phenomena, 53-79.
Jeong, S., Kim, J., & Lee, K. (2008). Effect of clay content on well-graded sands due to infiltration. Engineering Geology, 102(1-2), 74-81.
Jeong, S., Lee, K., Kim, J., & Kim, Y. (2017). Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes. Sustainability, 9(7), 1280. https://www.mdpi.com/2071-1050/9/7/1280
JG.Zornberg, & McCartney, J. (2010). Centrifuge Permeameter for Unsaturated Soils. l: Theoretical Basis and Experimental Developments. Journal of Geotechnical and Geoenvironmental Engineering, 136(8), 1051-1063.
Johnson, C., Affolter, M. D., Inkenbrandt, P., & Mosher, C. (2019). Slope Strength. https://geo.libretexts.org/Bookshelves/Geology/Book:_An_Introduction_to_Geology_(Johnson_Affolter_Inkenbrandt_and_Mosher)/10:_Mass_Wasting/10.01:_Slope_Strength
Kabwe, L. K., Wilson, G. W., Beier, N. A., & Barsi, D. (2023). Application of Tempe Cell to Measure Soil Water Characteristic Curve along with Geotechnical Properties of Oil Sands Tailings. Geosciences, 13(2), 36. https://www.mdpi.com/2076-3263/13/2/36
Kalsoom, T., Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0. Sensors, 20(23).
Khedun, C. P., Flores, R., Rughoonundun, H., & Kaiser, R. A. (2014). World Water Supply and Use: Challenges for the Future. In (pp. 450-465). https://doi.org/10.1016/B978-0-444-52512-3.00083-8
Khubab, S. (2021). 11 - Mechanical characterization. Woodhead Publishing Series in Composites Science and Engineering, 269-298. https://doi.org/https://doi.org/10.1016/B978-0-12-821984-3.00009-7
Kim, D.-S., Kim, N.-R., Choo, Y. W., & Cho, G.-C. (2013, 2013/01/01). A newly developed state-of-the-art geotechnical centrifuge in Korea. KSCE Journal of Civil Engineering, 17(1), 77-84. https://doi.org/10.1007/s12205-013-1350-5
Kim, J., Jeong, S., Park, S., & Sharma, J. (2004). Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Engineering Geology, 75(3-4), 251-262.
Kim, J., Lee, K., Jeong, S., & Kim, G. (2014). GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model. Engineering Geology, 182, 63-78.
Klemunes, J. A., Witczak, M. W., & López, A. (1996). Analysis of Methods Used in Time Domain Reflectometry Response. Transportation Research Record, 1548(1), 89-96. https://doi.org/10.1177/0361198196154800113
Klute, A. (1986). Water Retention: Laboratory Methods. In Methods of Soil Analysis (pp. 635-662). https://doi.org/https://doi.org/10.2136/sssabookser5.1.2ed.c26
Knight, M. A., & Mitchell, R. J. (1996, //). A similitude and dimensional design guide for centrifuge modelling of multiphase contaminant transport. Environmental Geotechnics. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6277350
Ko, H., Choo, H., & Ji, K. (2023, 2023/08/01/). Effect of temperature on electrical conductivity of soils – Role of surface conduction. Engineering Geology, 321, 107147. https://doi.org/https://doi.org/10.1016/j.enggeo.2023.107147
Kokutse, N. K., Temgoua, A. G. T., & Kavazović, Z. (2016). Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecological Engineering, 86, 146-153.
Kosugi, K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties. Water resources research. https://doi.org/10.1029/96wr01776
Krisdani, H., Rahardjo, H., & Leong, E.-C. (2008). Measurement of geotextile-water characteristic curve using capillary rise principle. Geosynthetics International, 15(2), 86-94. https://doi.org/10.1680/gein.2008.15.2.86
Krzeminska, D. M., Steele‐Dunne, S. C., Bogaard, T. A., Rutten, M. M., Sailhac, P., & Geraud, Y. (2012). High‐resolution temperature observations to monitor soil thermal properties as a proxy for soil moisture condition in clay‐shale landslide. Hydrological Processes, 26(14), 2143-2156.
Kuriakose, S. L., Sankar, G., & Muraleedharan, C. (2009, June 01, 2009). History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environmental Geology, 57, 1553-1568. https://doi.org/10.1007/s00254-008-1431-9
[Record #1003 is using a reference type undefined in this output style.]
Laimer, H. J. (2017). Anthropogenically induced landslides–A challenge for railway infrastructure in mountainous regions. Engineering Geology, 222, 92-101.
Larsen, M. C., & Simon, A. (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler: Series A, Physical Geography, 75(1-2), 13-23.
Lee, C.-J., Hung, W.-Y., Tsai, C.-H., Chen, T., Tu, Y., & Huang, C.-C. (2013, 2013-11-15). Shear wave velocity measurements and soil–pile system identifications in dynamic centrifuge tests [OriginalPaper]. Bulletin of Earthquake Engineering, 12(2), 717-734. https://doi.org/doi:10.1007/s10518-013-9545-1
Lee, C.-J., Wang, C.-R., Wei, Y.-C., & Hung, W.-Y. (2011, 2011-09-09). Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests [OriginalPaper]. Bulletin of Earthquake Engineering, 10(2), 401-420. https://doi.org/doi:10.1007/s10518-011-9314-y
Lee, S.-W., Kim, G.-H., Yune, C.-Y., Ryu, H.-J., & Hong, S.-J. (2012). Development of landslide-risk prediction model thorough database construction. Journal of the Korean Geotechnical Society, 28(4), 23-33.
Li, B., Liu, K., Wang, M., He, Q., Jiang, Z., Zhu, W., & Qiao, N. (2022). Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. Remote Sensing. https://doi.org/https://doi.org/10.3390/rs14225795
Li, B. V., Jenkins, C. N., & Xu, W. (2022). Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proceedings of the National Academy of Sciences, 119(2), e2113416118. https://doi.org/doi:10.1073/pnas.2113416118
Li, Y., Wang, X., & Mao, H. (2020, 2020/12/01). Influence of human activity on landslide susceptibility development in the Three Gorges area. Natural Hazards, 104(3), 2115-2151. https://doi.org/10.1007/s11069-020-04264-6
Li, Z., Yang, G., & Liu, H. (2020). The influence of regional freeze–thaw cycles on loess landslides: Analysis of strength deterioration of loess with changes in pore structure. Water, 12(11), 3047.
Lin, C.-P. (2003). Analysis of nonuniform and dispersive time domain reflectometry measurement systems with application to the dielectric spectroscopy of soils - Lin - 2003 - Water Resources Research - Wiley Online Library. https://doi.org/10.1029/2002WR001418
Lu, N., & Likos, W. (2004). Rate of Capillary Rise in Soil. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 130. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(646)
Madabhushi, G. (2014). Centrifuge Modelling for Civil Engineers. Taylor & Francis. https://books.google.co.uk/books?id=x2QLBAAAQBAJ
Malaya, & Sreedeep. (2013). A study on unsaturated hydraulic conductivity of hill soil of north-east India. ISH Journal of Hydraulic Engineering, 19(3), 276-281 , year = 2013. https://doi.org/10.1080/09715010.2013.806399
Malmberg, C. G., & Maryott, A. A. (2011). Dielectric Constant of Water from 0 0 to 100 0 C.
Mambretti, S. (2012). Landslides (Vol. 2). Wit Press.
Manual, G. (2012). Geo-slope international Ltd.
Marc, O., Turowski, J. M., & Meunier, P. (2021). Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength. Earth Surface Dynamics, 9(4), 995-1011.
Mathieu, N., & Lyesse, L. (2008). Advances in modelling hysteretic water retention curve in deformable soils. Computers and geotechnics, 35(6), 835-844. https://doi.org/https://doi.org/10.1016/j.compgeo.2008.08.001
McBeth, J. (2023). Factors That Control Slope Stability.
McCartney, J. (2007). Determination of the hydraulic characteristics of unsaturated soils using a centrifuge permeameter. search.proquest.com. https://search.proquest.com/openview/d7a61fe45147518897b82db83b2cba23/1?pq-origsite=gscholar&cbl=18750
McCartney, J., & Zornberg, J. (2010). Centrifuge Permeameter for Unsaturated Soils II: Measurement of the Hydraulic Characteristics of an Unsaturated Clay. Journal of Geotechnical & Geoenvironmental Engineering, 136.
Mendes, A. (2020). Made for Spinning: The Centrifuge. Conduct Science. https://conductscience.com/made-for-spinning-the-centrifuge/
Meng, X. (2023). Landslide | Definition, Types, Causes, & Facts. @britannica. https://www.britannica.com/science/landslide
Multiphysics, C., & Comsol, A. (2022). Stockholm.
N. Moriasi, D., G. Arnold, J., W. Van Liew, M., L. Bingner, R., D. Harmel, R., & L. Veith, T. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/https://doi.org/10.13031/2013.23153
NCU. (2020). Geotechnical Centrifuge and Hydraulic Shaker.
Nejad, M. M., Momeni, M. S., & Manahiloh, K. N. (2018). Shear wave velocity and soil type microzonation using neural networks and geographic information system. Soil Dynamics and Earthquake Engineering, 104, 54-63.
Ng, C. W. W. (2014, 2014/01/01). The state-of-the-art centrifuge modelling of geotechnical problems at HKUST. Journal of Zhejiang University SCIENCE A, 15(1), 1-21. https://doi.org/10.1631/jzus.A1300217
Nimmo, J. R., Rubin, J., & Hammermeister, D. P. (1987). Unsaturated flow in a centrifugal field: Measurement of hydraulic conductivity and testing of Darcy′s Law. Water resources research, 23, 124-134.
Nomleni, I. A., Hung, W.-Y., & Soegianto, D. P. (2023, 2023-02-24). Dynamic performance of root-reinforced slopes by centrifuge modeling tests [OriginalPaper]. Landslides, 1-24. https://doi.org/doi:10.1007/s10346-023-02035-5
NPCIL. (2023). Linear Variable Differential Transformer (LVDT). https://testbook.com/question-answer/lvdt-has--5fbe98139d4286e3b461ff93
NXP. (2018). MPX5100, 0 to 100 kPa, Differential, Gauge, and Absolute, Integrated, Pressure Sensors NXP.
NXP. (2023). MPXV6115VC6U Product Information|NXP. https://www.nxp.com/part/MPXV6115VC6U#/
O′Connor, K. M., & Dowding, C. H. (1999). Geomeasurements by pulsing TDR cables and probes. CRC Press.
Omuto, C. T. (2009). Biexponential model for water retention characteristics. Geoderma, 149(3), 235-242. https://doi.org/https://doi.org/10.1016/j.geoderma.2008.12.001
Ornelas, G., McCartney, J., & ... (2013). Water Drainage from Unsaturated Soils in a Centrifuge Permeameter. AGU Fall Meeting …. https://ui.adsabs.harvard.edu/abs/2013AGUFM.H33D1383O/abstract
Oswaldo, A. F., & Alher, F. M. (2019, 2019/09/01). Landslide analysis of unsaturated soil slopes based on rainfall and matric suction data. Bulletin of Engineering Geology and the Environment, 78(6), 4167-4185. https://doi.org/10.1007/s10064-018-1392-5
P., C.-M., N., M.-B., F., M.-C., A., Q.-R., & B., A.-M. (2021, Sep 7). Worldwide Research Trends in Landslide Science. Int J Environ Res Public Health, 18(18). https://doi.org/10.3390/ijerph18189445
Parks, J. (2010). Investigation of infiltration and drainage flow processes in unsaturated soil using a centrifuge permeameter. search.proquest.com. https://search.proquest.com/openview/88558e2c9fbf70a95ab659b46b4f8aac/1?pq-origsite=gscholar&cbl=18750
Parks, J., Stewart, M., & McCartney, J. (2011). Validation of a centrifuge permeameter for investigation of transient infiltration and drainage flow processes in unsaturated soils. Geotechnical Testing Journal. https://www.astm.org/gtj103625.html
Petley, D. N., Dunning, S. A., & Rosser, N. J. (2005). The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. CRC Press. https://doi.org/10.1201/9781439833711-18
Plaisted, M., & Zornberg, J. (2010). Testing of an expansive clay in a centrifuge permeameter. sites.utexas.edu. https://sites.utexas.edu/zornberg/files/2022/03/Plaisted_Zornberg_2010.pdf
Polemio, M., & Petrucci, O. (2000). Rainfall as a landslide triggering factor an overview of recent international research. Landslides in research, theory and practice.
Preti, F., Dani, A., Alliu, E., & Togni, M. (2010). Deforestation and Danger from Surface Landslide. XXXII National Hydraulic Conference and Hydraulic Constructions. Palermo,
Rahardjo, H., Kim, Y., & Satyanaga, A. (2019, 2019/06/13). Role of unsaturated soil mechanics in geotechnical engineering. International Journal of Geo-Engineering, 10(1), 8. https://doi.org/10.1186/s40703-019-0104-8
Rahardjo, H., Lee, T. T., Leong, E. C., & Rezaur, R. B. (2005). Response of a residual soil slope to rainfall. Canadian Geotechnical Journal, 42(2), 340-351. https://doi.org/10.1139/t04-101
Rahardjo, H., & Leong, E. C. (1997). Soil Water Characteristic Curves and Flux Boundary Problems. Unsaturated Soil Engineering Practice, 88-112. (Utah)
Ramo, S., Whinnery, J. R., & Van Duzer, T. (1994). Fields and waves in communication electronics. John Wiley & Sons.
Regmi, A. D., Yoshida, K., Dhital, M. R., & Pradhan, B. (2014). Weathering and mineralogical variation in gneissic rocks and their effect in Sangrumba Landslide, East Nepal. Environmental Earth Sciences, 71, 2711-2727.
Renforth, P. (2011). Soil Suction. https://www.youtube.com/watch?v=Ow4Lbs4ixbg&t=28s
Richards, L. (1941). A pressure-membrane extraction apparatus for soil solution. Soil Science, 51(5), 377-386.
Roda‐Boluda, D. C., D′Arcy, M., McDonald, J., & Whittaker, A. C. (2018). Lithological controls on hillslope sediment supply: insights from landslide activity and grain size distributions. Earth surface processes and landforms, 43(5), 956-977.
Rotaru, A., Oajdea, D., & Răileanu, P. (2007). Analysis of the landslide movements. International journal of geology, 1(3), 70-79.
Rummel, R. (2005). Gravity And Topography Of Moon And Planets. In J. Flury & R. Rummel (Eds.), Future Satellite Gravimetry and Earth Dynamics (pp. 103-111). Springer New York. https://doi.org/10.1007/0-387-33185-9_9
Sabo, F. (2016). Mechanism of the Landslide. https://www.cbr.mlit.go.jp/fujisabo/en/yui/yuikatudo/yuikatudo-mechanism.html
Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005, 2005/09/01/). Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83(2), 173-193. https://doi.org/https://doi.org/10.1016/j.still.2004.10.004
Samuel, T. M. (2022). Chapter 2 - Landslide causes and triggers. Hazards and Disasters Series, 13-41. https://doi.org/https://doi.org/10.1016/B978-0-12-818464-6.00011-1
Santangelo, M., Marchesini, I., Cardinali, M., Fiorucci, F., Rossi, M., Bucci, F., & Guzzetti, F. (2015, 2015/04/01). A method for the assessment of the influence of bedding on landslide abundance and types. Landslides, 12(2), 295-309. https://doi.org/10.1007/s10346-014-0485-x
SaylorAcademy. (2012). F-tests for Equality of Two Variances. https://saylordotorg.github.io/text_introductory-statistics/s15-03-f-tests-for-equality-of-two-va.html
Schilter, J. (2019). Identifying Key Factors Affecting Translational Landslides in Part of the Yakima Fold and Thrust Belt, Washington State.
Schuster, R. L., & Wieczorek, G. F. (2018). Landslide triggers and types. Landslides, 59-78.
Shamsan, A., Nasiman bin, S., Indra, S. H. H., & Mohammed Ali Mohammed, A.-B. (2019). A review on mechanism of rainwater in triggering landslide. IOP Conference Series: Materials Science and Engineering, 513(1), 012009. https://doi.org/10.1088/1757-899X/513/1/012009
Sheldon, R. (2022). What Are Sensors and How Do They Work? @WhatIsDotCom. https://www.techtarget.com/whatis/definition/sensor
Shiferaw, H. M. (2021, 2021/05/07). Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 31. https://doi.org/10.1186/s43088-021-00115-w
Sim, K. B., Lee, M. L., & Wong, S. Y. (2022, 2022/01/25). A review of landslide acceptable risk and tolerable risk. Geoenvironmental Disasters, 9(1), 3. https://doi.org/10.1186/s40677-022-00205-6
Smith, G. M. (2022). Data Acquisition (DAQ) - The Ultimate Guide. https://dewesoft.com/blog/what-is-data-acquisition
Soga, K., Ewais, A., Fern, E., & Park, J. (2019). Advances in Geotechnical Sensors and Monitoring. In (pp. 29-65). https://doi.org/10.1007/978-3-030-06249-1_2
SPC. (2018, 2018-02-19). What Materials Are Used in the 3D Printing Process? | SPC. https://www.sharrettsplating.com/blog/materials-used-3d-printing/
Stanley, M. (2022). Landslide. National Geographic. https://education.nationalgeographic.org/resource/landslide
Stefano Luigi, G., & Fausto, G. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227-252. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.08.011
Stephen R. Grattan, J. O. (2003). Field Use of Tensiometers :: Department of Land, Air and Water Resources - UC Davis. USDA. https://lawr.ucdavis.edu/cooperative-extension/irrigation/drought-tips/field-use-tensiometers
Sun, W., & Sun, D. a. (2011). Coupled modelling of hydro‐mechanical behaviour of unsaturated compacted expansive soils - Sun - 2012 - International Journal for Numerical and Analytical Methods in Geomechanics - Wiley Online Library. https://doi.org/10.1002/nag.1036
SWP. (2024). History Notebook: The Aberfan Disaster October 1966.
Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/https://doi.org/10.1029/2004GL019920
Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear. cir.nii.ac.jp. https://cir.nii.ac.jp/crid/1571698601182271232
Thalheimer, M. (2013). A low-cost electronic tensiometer system for continuous monitoring of soil water potential. Journal of Agricultural Engineering, 44(3). https://doi.org/10.4081/jae.2013.e16
Thanh Son Nguyen, K.-H. Y., Wen-Yi Hung, Truong Nhat Phuong Pham. (2023). Centrifuge modelling of geosynthetic-reinforced soil walls at failure | SpringerLink. https://doi.org/10.1007/978-981-15-2184-3_62
Thomas, M. M., Steven, A. F. S., Mark, H. A., Giulio, Stefan, N., Andrea, C., & Andrew, D. B. (2015). Catastrophic emplacement of giant landslides aided by thermal decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411, 199-207. https://doi.org/https://doi.org/10.1016/j.epsl.2014.10.051
Thomsen, A., Hansen, B., & Schelde, K. (2000). Application of TDR to water level measurement. Journal of Hydrology, 236(3-4), 252-258.
Timms, W., Whelan, M., Acworth, I., & ... (2019). A novel centrifuge permeameter to characterize flow through low permeability strata. … : Proceedings of the …. https://books.google.com/books?hl=en&lr=&id=KGDLBQAAQBAJ&oi=fnd&pg=PA193&dq=centrifuge+permeameter&ots=LyIYUX58P0&sig=1V3sWgjDaWBRqEuXSBjI7ygq5lw
Timms, W. A., Crane, R., Anderson, D. J., Bouzalakos, S., Whelan, M., McGeeney, D., Rahman, P. F., Guinea, A., & Acworth, R. I. (2014). Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions. Hydrol. Earth Syst. Sci. Discuss., 2014, 3155-3212. https://doi.org/10.5194/hessd-11-3155-2014
Tiranti, D., Rabuffetti, D., Salandin, A., & Tararbra, M. (2013, 2013/04/01). Development of a new translational and rotational slides prediction model in Langhe hills (north-western Italy) and its application to the 2011 March landslide event. Landslides, 10(2), 121-138. https://doi.org/10.1007/s10346-012-0319-7
Tomiša, A. (2018, 2018-08-31). Geotech Landslide - types, parts and causes of landslide I Geotech d.o.o. I. https://www.geotech.hr/en/landslides/
Topp, Clarke, G., Davis, J. l., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16, 574-582.
Turner, P. (2000). Geotechnical Centrifuges.
USGS. (2004). Landslide Types and Processes.
USGS. (2018). What is a landslide and what causes one? | U.S. Geological Survey. https://www.usgs.gov/faqs/what-landslide-and-what-causes-one
USGS. (2020). What was the largest landslide in the United States? In the world? | U.S. Geological Survey. https://www.usgs.gov/faqs/what-was-largest-landslide-united-states-world
USGS. (2021). The largest landslide in the world | U.S. Geological Survey. https://www.usgs.gov/observatories/yvo/news/largest-landslide-world
Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., & Gambao, E. (2013). Extending automation of building construction—Survey on potential sensor technologies and robotic applications. Automation in construction, 36, 168-178.
Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Varnes, D. (1996). LANDSLIDE TYP ES AND PROCESSES. onlinepubs.trb.org. https://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdf
Wang, K., Xia, Z., & Li, X. (2021). Matrix Suction Evaluation of Soil-Rock Mixture Based on Electrical Resistivity. Water, 13(20), 2937. https://www.mdpi.com/2073-4441/13/20/2937
Wang, Q., Wang, D., Huang, Y., Wang, Z., Zhang, L., Guo, Q., Chen, W., Chen, W., & Sang, M. (2015). Landslide susceptibility mapping based on selected optimal combination of landslide predisposing factors in a large catchment. Sustainability, 7(12), 16653-16669.
Warren, S. N., Kallu, R. R., & Barnard, C. K. (2016). Correlation of the rock mass rating (RMR) system with the unified soil classification system (USCS): introduction of the weak rock mass rating system (W-RMR). Rock mechanics and rock engineering, 49, 4507-4518.
Wen-Yi Hung, C.-J. L. (2023). Seismic Response of Geosynthetic Reinforced Earth Embankment on Different Soil Foundation | SpringerLink. https://doi.org/10.1007/978-4-431-56205-4_7
WGS. (2017). What are landslide and how do they occur? https://www.dnr.wa.gov/publication/gerfslandslideprocesses#
Wheeler, S. J. (1996). Inclusion of specific water volume within an elasto-plastic model for unsaturated soil. Canadian Geotechnical Journal, 33(1), 42-57. https://doi.org/10.1139/t96-023
Xie, X., Li, P., Hou, X., Li, T., & Zhang, G. (2020). Microstructure of Compacted Loess and Its Influence on the Soil-Water Characteristic Curve. Advances in Materials Science and Engineering, 2020, 1-12. https://doi.org/10.1155/2020/3402607
Yang, C., Wu, J., Li, P., Wang, Y., & Yang, N. (2023). Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water, 15(4), 772. https://www.mdpi.com/2073-4441/15/4/772
Yang, H., Rahardjo, H., Leong, E.-C., & Fredlund, D. G. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Canadian Geotechnical Journal, 41(5), 908-920. https://doi.org/10.1139/t04-042
Yi-Hsiu Wang, J.-X. H., Yen-Hung Lin & Wen-Yi Hung. (2022). Centrifuge Modeling on the Behavior of Sheet Pile Wall Subjected Different Frequency Content Shaking | SpringerLink. https://doi.org/10.1007/978-3-031-11898-2_166
Yoder, N. C., & Adams, D. E. (2014). 3 - Commonly used sensors for civil infrastructures and their associated algorithms. Woodhead Publishing Series in Electronic and Optical Materials, 55, 57-85. https://doi.org/https://doi.org/10.1533/9780857099136.57
Zeitoun, R., Vandergeest, M., Vasava, H. B., & Machado, P. V. F. (2021, //). In-situ estimation of soil water retention curve in silt loam and loamy sand soils at different soil depths. Sensors. https://www.mdpi.com/1424-8220/21/2/447
https://www.mdpi.com/1424-8220/21/2/447/pdf
Zhang, L. L., Fredlund, D. G., Fredlund, M. D., & Wilson, G. W. (2014). Modeling the unsaturated soil zone in slope stability analysis. Canadian Geotechnical Journal, 51(12), 1384-1398. https://doi.org/10.1139/cgj-2013-0394 |