博碩士論文 111322607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.145.84.16
姓名 杜志談(Do Chi Tam)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(The Centrifuge Modeling on the Tunnel Uplift in Liquefiable Soil under Different Base Input Motions)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 由於目前的上浮預測方程式有其限制,物理模型耗時,數值模型的適用性受限
,因此在液化土壤中覆蓋隧道上浮的研究已成為一個重要課題。本研究通過五個在 50
倍人工重力下進行的離心模型試驗來模擬嵌入飽和砂土中的矩形隧道的地震反應。結
果顯示,隧道上浮主要受Arias強度的影響,並表明兩者之間存在強相關性,而其他指
標如峰值地面加速度、峰值地面速度、峰值地面位移和累積絕對速度則與隧道上浮無
相關性。此外,本研究還考察了矩形隧道在不同輸入運動下在液化土壤中的反應,包
括最大地表位移、矩形隧道內傾斜破壞面的角度、隧道旋轉角度、隧道上浮、安全係
數的變化、傳感器位移及液體流動的形成。研究結果強調了將Arias強度與上浮之間的
關係納入預測方程式中的重要性。這一創新的方程式可以作為工程師的基準,為預測
上浮提供參考。此外,本研究還增強了對在不同輸入運動下矩形隧道動態行為的理解
摘要(英) The investigation of the cut-and-cover tunnel uplift in liquefiable soil has become a
significant concern due to the limitations of current uplift prediction equations, time-consuming
physical models, and restricted applicability of numerical models. The study of 5 centrifuge
tests at 50 g artificial gravity is conducted to simulate the seismic response of a rectangular
tunnel embedded in saturated sandy soils. The results revealed that the tunnel uplift is primarily
influenced by Arias Intensity and indicated a strong correlation, unlike other indices such as
peak ground acceleration, peak ground velocity, peak ground displacement, and cumulative
absolute velocity which showed no correlations with tunnel uplift. Moreover, the responses of
a rectangular tunnel in liquefiable soil under different input motions such as maximum ground
surface displacement, the angle of inclined failure surface in a rectangular tunnel, tunnel
rotation angles, tunnel uplifting, variation of safety factor, sensor displacement, and formation
of fluid flows were also examined. The findings highlight the significance of incorporating the
relationship between Arias Intensity and uplift into a prediction equation. This innovative
equation can serve as a benchmark for engineers, offering a reference for predicting uplift.
Additionally, this study enhances the understanding of the dynamic behavior of the rectangular
tunnel subjected to various input motions.
關鍵字(中) ★ 離心機模擬
★ 隧道隆起
★ 液化土
★ 阿里亞斯強度
關鍵字(英) ★ Centrifuge modeling
★ Tunnel uplift
★ Liquefied soil
★ Arias Intensity
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xvi
CHAPTER 1. INTRODUCTION 1
1.1. Research motivation 1
1.2. Research goal 2
1.3. Thesis organization 2
CHAPTER 2. LITERATURE REVIEW 3
2.1. Soil liquefaction definition 3
2.2. Uplift definition 3
2.3. Historical case studies 3
2.4. Previous study 6
CHAPTER 3. CENTRIFUGE MODELING PRINCIPLE & APPARATUS 30
3.1. An overview of geotechnical centrifuge modeling 30
3.2. Scaling law 31
3.3. NCU geotechnical centrifuge 34
3.4. Data acquisition system 36
3.5. Design of tunnel model 38
3.6. Container 40
3.7. Pluviation apparatus 40
3.8. Instruments 43
3.9. Soil properties 46
3.10. Viscosity 50
3.11. Saturation 52
3.12. Test conditions 54
3.13. Experimental procedure 56
3.13.1. Preparing the model 56
3.13.2. Calibration sensors 56
3.13.3. Pluviation 57
3.13.4. Sensors layout 59
3.13.5. Saturation 62
3.13.6. Insert spaghetti noodles 62
3.13.7. Tie the cable 63
3.13.8. Unbalance 65
3.13.9. Input shaking events 65
3.13.10. Cut the model 65
3.14. Limitations in methodology 67
3.14.1. Limitation of measuring tunnel uplifting 67
3.14.2. Boundary effect 68
CHAPTER 4. TESTING RESULTS AND DISCUSSION 70
4.1. Signal time histories 70
4.1.1. Acceleration time histories 70
4.1.2. EPWP time histories 83
4.1.3. LVDT time histories 100
4.2. Correlation between Arias intensity and uplift 104
4.3. Uplift force 109
4.4. Ground surface displacement 110
4.5. Inclined failure surface 112
4.6. Tunnel rotation angles 113
4.7. Tunnel uplifting 116
4.8. Effect of relative density 118
4.9. Factor of safety 118
4.10. Sensor displacement 120
4.11. Energy ratio 121
4.12. Influence of viscosity 122
4.13. The formation of fluid flows 123
CHAPTER 5. CONCLUSION AND FUTURE WORK 126
5.1. Conclusions 126
5.2. Future work 127
REFERENCES 129
參考文獻 [1] Ahmadi, M. and Ghalandarzadeh, A., (2023). "Liquefaction-Induced Settlement and Lateral Spreading Effects on Buried Pipelines by Using Shaking Table Tests,", 10.48303/jsee.2023.2000150.1056.
[2] Bakour, S., (2023). "Numerical assessment of tunnel shape for liquefaction-induced uplift,".
[3] Castiglia, M.De Magistris, F. S.and Napolitano, A., (2018). "Stability of onshore pipelines in liquefied soils: Overview of computational methods," Geomechanics and Engineering, Vol 14, pp. 355–366, 10.12989/gae.2018.14.4.355.
[4] Castiglia, M.Fierro, T.and Santucci De Magistris, F., (2020). "Pipeline Performances under Earthquake-Induced Soil Liquefaction: State of the Art on Real Observations, Model Tests, and Numerical Simulations," Shock and Vibration, Vol 2020, 10.1155/2020/8874200.
[5] Castiglia, M.Santucci de Magistris, F.Onori, F.and Koseki, J., (2021). "Response of buried pipelines to repeated shaking in liquefiable soils through model tests," Soil Dynamics and Earthquake Engineering, Vol 143, pp. 106629, 10.1016/j.soildyn.2021.106629.
[6] Chian, S. C. and Tokimatsu, K., (2012). a "Floatation of Underground Structures during the Mw 9.0 Tōhoku Earthquake of 11th March 2011," Proceedings of the 15th World Conference on Earthquake Engineering, Vol 26, pp. 21044.
[7] Chian, S. C. and Madabhushi, S. P. G., (2012). b "Effect of soil conditions on uplift of underground structures in liquefied soil," Journal of Earthquake and Tsunami, Vol 6, 10.1142/S1793431112500200.
[8] Chian, S. C. and Madabhushi, S. P. G., (2012). c "Effect of buried depth and diameter on uplift of underground structures in liquefied soils," Soil Dynamics and Earthquake Engineering, Vol 41, pp. 181–190, 10.1016/j.soildyn.2012.05.020.
[9] Chian, S. C.Tokimatsu, and Madabhushi, S. P. G., (2014). "Soil Liquefaction–Induced Uplift of Underground Structures: Physical and Numerical Modeling," Journal of Geotechnical and Geoenvironmental Engineering, Vol 140, pp. 1–18, 10.1061/(ASCE)gt.1943-5606.0001159.
[10] Chou, J. C.Kutter, B. L.Travasarou, T.and Chacko, J. M., (2011). "Centrifuge Modeling of Seismically Induced Uplift for the BART Transbay Tube," Journal of Geotechnical and Geoenvironmental Engineering, Vol 137, pp. 754–765, 10.1061/(ASCE)gt.1943-5606.0000489.
[11] Chou, J. C. and Lin, D. G., (2020). "Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures," Geomechanics and Engineering, Vol 22, pp. 25–33, 10.12989/gae.2020.22.1.025.
[12] Ellis, L.K.SogaBransdy, M. F.and M.Sato, (2000). "Resonant column testing of sands with different viscosity pore fluids,", Vol 126, pp. 10–17.
[13] Guo, P.Phillips, R.and Popescu, R., (2022). Physical Modelling in Geotechnics Physical Modelling in Geotechnics, Vol. 1.
[14] Huang, B.Liu, J.Lin, P.and Ling, D., (2014). "Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test," Scientific World Journal, Vol 2014, 10.1155/2014/838546.
[15] Ichii, K.Seto, N.and Kidera, H., (2008). "Characteristics of Uplifting Velocity of a Buried Pipe in Liquefied Ground,", pp. 1–10, 10.1061/40975(318)195.
[16] Jung, J. K. O’Rourke, T. D. Olson, N. A., (2013). "Uplift soil-pipe interaction in granular soil," Canadian Geotechnical Journal, Vol 50, pp. 744–753, 10.1139/cgj-2012-0357.
[17] Koseki, J.Matsuo, O.and Koga, Y., (1997). "Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake,", Vol 37, pp. 97–108.
[18] L.Kramer, S., (1996). "Geotechnical earthquake engineering.pdf,".
[19] Lee, C. J.Wei, Y. C. Kuo, Y. C., (2012). "Boundary effects of a laminar container in centrifuge shaking table tests," Soil Dynamics and Earthquake Engineering, Vol 34, pp. 37–51, 10.1016/j.soildyn.2011.10.011.
[20] Lee, C. jungWei, Y. chenChuang, W. yaand Hung, W. yi, (2017). "Uplift mechanism of the rectangular tunnel in liquefied soils," Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, 10.1007/978-4-431-56205-4.
[21] Ling, H. I.Mohri, Y.Kawabata, T.Liu, H.Burke, C.and Sun, L., (2004). "Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil," Journal of Geotechnical and Geoenvironmental Engineering, Vol 130, pp. 342–342, 10.1061/(ASCE)1090-0241(2004)130:3(342).
[22] Madabhushi, G., (2017). Centrifuge modeling for civil engineers Centrifuge Modelling for Civil Engineers.
[23] Mahmoud, A. and Kenawi, M., (2021). "The Seismic Behaviour of Tunnels in Liquefaction Soil: a Numerical Study," Sohag Engineering Journal, Vol 1, pp. 49–61, 10.21608/sej.2021.155856.
[24] Mahmoud, A. O.Hussien, M. N.Karray, M.Chekired, M.Bessette, C.and Jinga, L., (2020). "Mitigation of liquefaction-induced uplift of underground structures," Computers and Geotechnics, Vol 125, pp. 103663, 10.1016/j.compgeo.2020.103663.
[25] Nakao, K.Yamaguchi, H.Hoshino, S.and Inazumi, S., (2022). "Applicability of Weighting Method as Measure for Existing Manholes against Uplifting during Liquefaction," Applied Sciences (Switzerland), Vol 12, 10.3390/app12083818.
[26] Saeedzadeh, R. and Hataf, N., (2011). "Uplift response of buried pipelines in saturated sand deposit under earthquake loading," Soil Dynamics and Earthquake Engineering, Vol 31, pp. 1378–1384, 10.1016/j.soildyn.2011.05.013.
[27] Sasaki, T. and Tamura, K., (2004). "Prediction of Liquefaction-Induced Uplift Displacement of Underground Structures," Public Works, pp. 1–8.
[28] Tobita, T.Iai, S.Kang, G. C. Konishi, Y., (2009). "Observed damage of wastewater pipelines and estimated manhole uplifts during the 2004 Niigata-ken Chuetsu, Japan, earthquake," TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment, Vol 357, pp. 75, 10.1061/41050(357)75.
[29] Tokimatsu, K.Suzuki, H.Katsumata, K.and Tamura, S., (2013). "Geotechnical Problems in the 2011 Tohoku Pacific Earthquakes," International Conference on Case Histories in Geotechnical Engineering, Vol 52, pp. 956–974.
[30] Towhata, I.Vargas-Monge, W.Orense, R. P.and Yao, M., (1999). "Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil," Soil Dynamics and Earthquake Engineering, Vol 18, pp. 347–361, 10.1016/S0267-7261(99)00008-1.
[31] Travasarou, T.Chacko, J.Chen, W.and Fernandez, A., (2012). "Assessment of Liquefaction-Induced Hazards for Immersed Structures,", 10.4043/23409-ms.
[32] Valizadeh, H. and Ecemis, N., (2022). "Soil liquefaction-induced uplift of buried pipes in sand-granulated-rubber mixture: Numerical modeling," Transportation Geotechnics, Vol 33, pp. 100719, 10.1016/j.trgeo.2022.100719.
[33] Wang, K.Brennan, A. J.Knappett, J. A.and Robinson, S., (2018). "Physical Modelling in Geotechnics," Physical Modelling in Geotechnics, 10.1201/9780429438646.
[34] Watanabe, K.Sawada, R.and Koseki, J., (2016). "Uplift mechanism of the open-cut tunnel in liquefied ground and simplified method to evaluate the stability against uplifting," Soils and Foundations, Vol 56, pp. 412–426, 10.1016/j.sandf.2016.04.008.
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明