博碩士論文 111323009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.138.60.117
姓名 蕭佑衡(Yu-Heng Hsiao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法及計算流體力學雙向耦合模擬顆粒體在液體儲槽內的卸載流動行為
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-10-31以後開放)
摘要(中) 本研究採用未解析法的計算流體力學與離散元素法雙向流耦(Unresolved CFD-DEM)模擬顆粒體在液體儲槽中卸載的流動行為,探討在不同流體阻力模型、液體黏滯係數與儲槽置入物對顆粒體流動行為的影響,進一步分析顆粒體在液體儲槽中的速度分布、粒子溫度、擾動速度分布與容器中底部壓力分佈。研究結果顯示:(1) 三種阻力模型Di Felice、Gidaspow, Bezburuah & Ding與Wen & Yu model的結果差異性甚微;(2)顆粒體在液體中卸載速度隨液體黏滯性越高而越小,且顆粒流速越大造成的粒子溫度也越大;(3)容器底部壓力僅在高黏滯性液體與較大儲槽開口發生壓降現象;(4)顆粒體卸載速度隨置入物安裝位置越高而越快,擾度速度分布隨置入物安裝位置越低而越集中;(5)儲槽置入物高度,對顆粒體卸載的流動行為影響甚微;(6)顆粒體卸載速度隨置入物寬度越寬而越小;(7)顆粒體卸載過程末端質量流率上升主要由顆粒間碰撞接觸力增加所引起,末端質量流率上升越顯著顆粒粒子溫度越大。
摘要(英) This study employs an unresolved Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) approach to simulate the discharge behavior of granular materials in storage silos submerged in liquid. It investigates the effects of various drag models, liquid viscosity, and silo inserts on granular silo flows. Furthermore, the explored physical properties include the velocity distribution of the granular material, granular temperature, fluctuating velocity distribution, and pressure distribution at the bottom of the container. The major findings are summarized below: (1) The differences among the three drag models—Di Felice, Gidaspow, Bezburuah & Ding, and Wen & Yu—are minimal in the scenario studied here; (2) The discharge velocity of the granular materials in the liquid decreases as liquid viscosity increases, and higher granular flow velocity results in higher granular temperatures; (3) Pressure deep at the bottom of the container occurs only in high-viscosity liquids and with larger silo openings; (4) The discharge velocity of the granular materials increases with higher insert positions, while the fluctuating velocity distribution becomes more concentrated with lower insert positions; (5) The height of the silo insert has a minimal impact on the discharge flow behavior of the granular materials; (6) The discharge velocity of the granular materials decreases as the width of the insert increases; (7) The increase in mass flow rate near the end of the discharge process is primarily due to the increased contact force between colliding particles, and the greater the increase in mass flow rate, the higher the granular temperature.
關鍵字(中) ★ 雙向流耦合未解析法離散元素法與計算流體力學
★ 液體中儲槽顆粒體卸載行為
★ 阻力模型
★ 液體黏滯性
★ 置入物
★ 粒子溫度
關鍵字(英) ★ Unresolved CFD-DEM
★ granular silo flows in liquid
★ drag models
★ liquid viscosity
★ inserts
★ granular temperature
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 vii
附圖目錄 viii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 Unresolved CFD-DEM相關文獻 2
1-2-2 CFD-DEM drag force model相關文獻 3
1-2-3雙向流相關文獻 4
1-3 研究目的與動機 6
第二章 雙向流物理系統與研究方法 7
2-1 雙向流物理模型 7
2-1-1流體的控制方程式 7
2-1-1-1 Navier-stokes方程式 7
2-1-1-2 SST k-omega模型 8
2-1-2顆粒體的控制方程式 9
2-1-2-1三維剛體運動方程式 9
2-1-2-2接觸力模型 9
2-1-3流體與顆粒體相互作用力 11
2-1-3-1浮力模型 12
2-1-3-1阻力模型 12
2-2 顆粒流內部性質 14
2-2-1粒子質量流率 14
2-2-2粒子局部平均速度 15
2-2-3粒子溫度 15
2-2-4粒子擾動速度 16
2-3 CFD-DEM電腦模擬 17
2-3-1流程框架 17
2-3-2臨界時間步 17
2-4 CFD-DEM建模設置 18
2-4-1顆粒與流體性質 20
第三章 結果與討論 21
3-1 阻力模型對顆粒體在液體儲槽傳輸性質的影響 21
3-1-1質量流率 21
3-1-2儲槽顆粒流流速分佈 22
3-1-2-1水平速度分佈 22
3-1-2-2垂直速度分佈 24
3-1-2-3旋轉速度分佈 25
3-1-3儲槽顆粒流粒子溫度分佈 26
3-1-4儲槽顆粒流擾動速度分佈 28
3-1-5容器底部壓力分佈 29
3-2 液體黏滯性對顆粒體在液體儲槽傳輸性質的影響 29
3-2-1質量流率 30
3-2-2儲槽顆粒流流速分佈 31
3-2-2-1水平速度分佈 31
3-2-2-2垂直速度分佈 32
3-2-2-3旋轉速度分佈 34
3-2-3儲槽顆粒流粒子溫度分佈 35
3-2-4儲槽顆粒流擾動速度分佈 36
3-2-5容器底部壓力分佈 37
3-3 儲槽置入物對顆粒體在液體儲槽傳輸性質的影響 38
3-3-1質量流率 38
3-3-2儲槽顆粒流流速分佈 39
3-3-2-1不同置入物安裝位置(y) 39
3-3-2-1-1水平速度分佈 39
3-3-2-1-2垂直速度分佈 40
3-3-2-2不同置入物高度(h) 41
3-3-2-1-1水平速度分佈 41
3-3-2-1-2垂直速度分佈 42
3-3-2-3不同置入物寬度(w) 43
3-3-2-1-1水平速度分佈 43
3-3-2-1-2垂直速度分佈 44
3-3-3儲槽顆粒流粒子溫度分佈 45
3-3-3-1不同置入物安裝位置(y) 45
3-3-3-2不同置入物高度(h) 46
3-3-3-3不同置入物寬度(w) 47
3-3-4儲槽顆粒流擾動速度分佈 48
3-3-4-1不同置入物安裝位置(y) 48
3-3-4-2不同置入物高度(h) 49
3-3-4-3不同置入物寬度(w) 50
3-4 顆粒體卸載過程末端質量流率上升的原因 51
3-5 質量流率擬合公式 53
第四章 結論 55
參考文獻 58
附表 61
附圖 63
參考文獻 [1] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology, 71 (1992) 239-250.
[2] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47-65.
[3] J. Azmir, Q. Hou, A. Yu, CFD-DEM simulation of drying of food grains with particle shrinkage. Powder Technology, 343 (2019) 792-802.
[4] G.H. Spasov, R. Rossi, A. Vanossi, C. Cottini, A. Benassi, A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in extra-thoracic airways, International Journal of Pharmaceutics. 629 (2022) 122331.
[5] F. Bambauer, S. Wirtz, V. Scherer, H. Bartusch, Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model, Powder Technology, 334 (2018) 53-64.
[6] B. Blais, M. Lassaignea, C. Goniva, L. Fradette, F. Bertrand, Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing, Journal of Computational Physics, 318 (2016) 201-221.
[7] A. Einstein, Eine neue bestimmung der molekuldimensionen. Doctoral dissertation, ETH Zurich, (1905).
[8] L.E. Silbert, J.W. Landry, G.S. Grest, Granular flow down a rough inclined plane: Transition between thin and thick piles, Physics of Fluids, 15.1 (2003) 1-10.
[9] A. Berard, G.S. Patience, B. Blais, Experimental methods in chemical engineering: Unresolved CFD-DEM, Chemical Engineering, 98 (2020) 420-440.
[10] L, Zhou, Y, Zhao, Improvement of unresolved CFD-DEM by velocity field reconstruction on unstructured grids, Powder Technology, 399 (2022) 117104.
[11] Y. Di, L. Zhao, J. Mao, A resolved CFD-DEM method based on the IBM for sedimentation of dense fluid-particle flows. Computers & fluids, 226 (2021) 104968.
[12] V.O. Ferreira, T.El. Geitani, D.S. Junior, B. Blais, G.C. Lopes, In-depth validation of unresolved CFD-DEM simulations of liquid fluidized beds. Powder Technology, 426 (2023) 118652.
[13] F. Marchelli, Q. Hou, B. Bosio, E. Arato, A. Yu, Models, Comparison of different drag models in CFD-DEM simulations of spouted beds, Powder Technology, 360 (2020) 1253-1270.
[14] L. Zhou, L. Zhang, L. Bai, W. Shi, W. Li, C. Wang, R. Agarwal, Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models, RSC advances. 7 (2017) 12764-12774.
[15] H. Zbib, M. Ebrahimi, F. Ein-Mozaffari, A. Lohi, Comprehensive analysis of fluid-particle and particle-particle interactions in a liquid-solid fluidized bed via CFD-DEM coupling and tomography, Powder Technology. 340 (2018) 116-130.
[16] J. Fan, L.H. Luu, P. Philippe, G. Noury, Discharge rate characterization for submerged grains flowing through a hopper using DEM-LBM simulations. Powder Technology, 404 (2022) 117421.
[17] A. Jarray, V. Magnanimo, S. Luding, Wet granular flow control through liquid induced cohesion. Powder Technology, 341 (2019) 126-139.
[18] AEC. Varas, E. Peters, JAM. Kuipers, CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics.Chemical Engineering Science, 169 (2017) 246-258.
[19] C.Y. Hung, P. Aussillous, H. Capart, Granular surface avalanching induced by drainage from a narrow silo. Journal of Fluid Mechanics, 856 (2018) 444-469.
[20] K. Lv, F. Min, J. Zhu, B. Ren, X. Bai, C. Wang, Experiments and CFD-DEM simulations of fine kaolinite particle sedimentation dynamic characteristics in a water environment. Powder Technology, 382 (2021) 60-69.
[21] F. Marchelli, C. Moliner, B. Bosio, E. Arato, A CFD-DEM sensitivity analysis: The case of a pseudo-2D spouted bed, Powder Technology, 353 (2019) 409-425.
[22] D.A. Drew, Mathematical modeling of two-phase flow, Technical Summary Report Wisconsin Univ (1982).
[23] S.H. Peng, P. Eliasson, L. Davidson, Examination of the shear stress transport assumption with a low-Reynolds number k-omega model for aerodynamic flows. 37th AIAA Fluid Dynamics Conference and Exhibit, (2007).
[24] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32.8 (1994)1598-1605.
[25] H. Hertz, Uber die beruhrung fester elastischer korper, (1882) 156-171.
[26] C. Wen, and Y. Yu, Mechanics of fluidization, Fluid Particle Technology, Chemical Engineering, Progress Symposium Series, Vol. 62 (1966).
[27] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach, Fluidization VII (1992) 75-82.
[28] R. Di Felice, The voidage function for fluid-particle interaction systems. International journal of multiphase flow, 20.1 (1994) 153-159.
[29] W.A. Beverloo, H.A. Leniger, J. Van de Velde, The flow of granular solids through orifices. Chemical engineering science, 15.3-4 (1961) 260-269.
[30] M.E. Myers, M. Sellers, Chemical Engineering Tripos, Part 2, Research Project Report, Cambridge: University of Cambridge, doi 10 (1971) 522596.
[31] 陳定偉,以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為,國立中央大學機械工程學系碩士論文 (2017)。
[32] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technology, 77 (1993) 79-87.
[33] S.T.W. Kuruneru, E. Marechal, M. Deligant, S. Khelladi, F. Ravelet, S.C. Saha, E. Sauret, Y. Gu, A comparative study of mixed resolved–unresolved CFD-DEM and unresolved CFD-DEM methods for the solution of particle-laden liquid flows.Archives of Computational Methods in Engineering, 26 (2019) 1239-1254.
[34] L.M. Yao, Z.M. Xiao, J.B. Liu, Q. Zhang, M. Wang, An optimized CFD-DEM method for fluid-particle coupling dynamics analysis.International Journal of Mechanical Sciences, 174 (2020) 105503.
[35] C.M. Boyce, D.J. Holland, S.A. Scott, J.S. Dennis, Limitations on Fluid Grid Sizing for Using Volume-Averaged Fluid Equations in Discrete Element Models of Fluidized Beds.Industrial & Engineering Chemistry Research, 54 (2015) 10684-10697.
[36] K. Liffman, M. Nguyen, G. Metcalfe, P. Cleary, Forces in piles of granular material: an analytic and 3D DEM study. Granular matter, 3.3 (2001) 165-176.
[37] I. Tomac, M. Gutierrez, Fluid lubrication effects on particle flow and transport in a channel. International Journal of Multiphase Flow, 65 (2014) 143-156.
[38] JPF. Campos, KRB. Melo, GC. Lopes, Implementation, validation and application of a lubrication force model in CFD-DEM simulations, Brazilian Journal of Chemical Engineering (2022) 1-12.
[39] J. Zhao, T. Shan, Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics, Powder technology 239 (2013) 248-258.
[40]李韋逸,以計算流體力學及離散元素法雙向耦合模擬水中顆粒體崩塌行為與內部性質:網格尺寸、阻力模型與虛擬質量力模型的參數研究 (2023)。
指導教授 鍾雲吉(Yun-Chic Chung) 審核日期 2024-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明