參考文獻 |
[1]
R. M. Gandia, F. C. Gomes, W. C. de Paula, P. J. A. Rodriguez, The influence of flow pattern and hopper angle on static and dynamic pressures in slender silos, Powder Technol., 427 (2023) 118756.
[2]
J. Du, C. Liu, C. Wang, P. Wu, Y. Ding, L. Wang, Discharge of granular materials in a hemispherical bottom silo under vertical vibration, Powder Technol., 372 (2020) 128-135.
[3]
A. Pascot, J. Y. Morel, S. Antonyuk, M. Jenny, Y. Cheny, S. K. De Richter, Discharge of vibrated granular silo: A grain scale approach, Powder Technol., 397 (2022) 116998.
[4]
S.S. Hsiau, J. Smid, Y.P. Chyou, T.C. Huang, C.J. Hsu, Impact of flow-corrective insert on flow patterns in two-dimensional moving bed, Chem. Eng. Process., 73 (2013) 7-15.
[5]
K. Endo, K. Anki Reddy, H. Katsuragi, Obstacle-shape effect in a two-dimensional granular silo flow field, Phys. Rev. Fluids, 2 (2017) 094302.
[6]
M. G. Arean, A. Boschan, M. A. Cachile, M. A. Aguirre, Granular flow through an aperture: Influence of obstacles near the outlet, Phys. Rev. E, 101 (2020) 022901.
[7]
D. Sun, H. Lu, J. Cao, Y. Wu, X. Guo, X. Gong, Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert, Powder Technol., 367 (2020) 277-284.
[8]
L.A. Fullard, A.J.R. Godfrey, M. F. Manaf, C. E. Davies, A. Cliff, M. Fukuoka, Mixing experiments in 3D- printed silos; the role of wall friction and flow correcting inserts, Adv. Powder Technol., 31 (2020) 1915-1923.
[9]
J. Wu, J. Binbo, J. Chen, Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol., 20 (2009) 62-73.
[10]
F. Alonso-Marroquin, S. I. Azeezullah, S. A. Galindo-Torres, L. M. Olsen-Kettle, Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?, Phys. Rev. E, 85 (2012) 020301.
[11]
S. Volpato, R. Artonib, A. C. Santomasoa, Numerical study on the behavior of funnel flow silos with and without inserts through a continuum hydrodynamic approach, Chem. Eng. Res. Des., 92 (2014) 256-263.
[12]
Y. Li, N. Gui, X.T. Yang, J.Y. Tu, S.Y. Jiang, Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor, Nucl. Eng. Des., 300 (2016) 495-505.
[13]
A. Cliff, L. A. Fullard, E. C. P. Breard, J. Dufek, C. E. Davies, Granular size segregation in silos with and without inserts, Proc. Royal Soc. A, 477 (2021) 2245.
47
[14]
X. Xiao, B. Li, M. Chen, J. Peng, R. Peng, Research on the effect of the cone-in-cone insert on the discharge behaviour of conical silo, Powder Technol., 419 (2023) 118336.
[15]
R. Koby?ka, J. Wi?cek, M. Molenda, J. Horabik, M. Ba?da, N. Govender, P. Parafiniuk, M. Stasiak, Precise control of discharge of spherical particles by cone valve configuration: Insert– Converging orifice, Powder Technol., 433 (2024) 119225.
[16]
J. H?rtl, J.Y. Ooi, J. M. Rotter, M. Wojcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des., 86 (2008) 370-378.
[17]
S. Ding, A. Dyroy, M. Karlsen, G. G. Enstad, M. Jecmenica, Experimental Investigation of Load Exerted on a Double-Cone Insert and Effect of the Insert on Pressure Along Walls of a Large-Scale Axisymmetrical Silo, Part. Sci. Technol., 29 (2011) 127-138.
[18]
M. Wojcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts — Full- scale experiments, Powder Technol., 222 (2012) 15-36.
[19]
H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) 177-183.
[20]
S. Ding, M. Wojcik, M. Jecmencia, S. R. De Silva, Loads on walls and inserts in mass-flow silos, Task Q., 7 (2003) 525–538.
[21]
R. Koby?ka, M. Molenda, J. Horabik, Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis, Powder Technol., 343 (2019) 521-532.
[22]
R. Koby?ka, M. Molenda, J. Horabik, DEM simulation of the pressure distribution and flow pattern in a model grain silo with an annular segment attached to the wall, Biosyst. Eng., 193 (2020) 75-89.
[23]
J. Krzy?anowski, J. Tejchman, M. Wojcik, Modelling of full-scale silo experiments with flow correcting inserts using material point method (MPM) based on hypoplasticity, Powder Technol., 392 (2021) 375-392.
[24]
Y.C. Chung, T.C. Kuo, S.S. Hsiau, Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- part I: exploration of transport properties, Powder Technol., 400 (2022) 117220.
[25]
C.C. Liao, Y.C. Chung, T.C. Kuo, Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- part II: exploration of internal dynamic properties, Powder Technol., 399 (2022) 117221.
[26]
P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29 (1979) 47–65.
48
[27]
PFC3D 6.0 Documentation, https://docs.itascacg.com/pfc600/pfc/docproject/index.html, Itasca, (2019).
[28]
D.O. Potyondy, P.A. Cundall, A bonded- particle model for rock, Int. J. Rock Mech. Min., 41 (2004) 1329-1364.
[29]
Y.C. Chung, C.K. Lin, J. Ai, Mechanical behaviour of agranular solid and its contacting deformable structure under uni-axial compression- PartII: Multi-scale exploration of internal physical properties, Chem. Eng. Sci., 144 (2016) 421-443.
[30]
郭庭君,「以離散元素法電腦模擬探討顆粒體在不同置入物儲槽中的傳輸性質與內部性質」,國立中央大學,碩士論文,西元2020年。 |