博碩士論文 111323012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.223.23.30
姓名 湯智銘(Chih-Ming Tang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法探討具中空圓柱形置入物之三維儲槽內顆粒流的卸載行為
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-31以後開放)
摘要(中) 本研究採用離散元素法(Discrete Element Method, DEM)模擬顆粒體於具中空圓柱形置入物之三維儲槽內的循環卸載行為,探討不同尺寸參數的置入物對儲槽顆粒流質量流率的影響,並進一步分析三種置入物尺寸參數,包含置入物的裝置位置、高度與直徑,探討這些參數對儲槽中顆粒流傳輸性質與內部性質的影響,研究結果顯示:(1) 質量流率受置入物尺寸參數的影響差異甚鉅,置入物儲槽的最大質量流率為無置入物儲槽的1.35倍,最小質量流率僅有無置入物儲槽的0.6倍;(2) 採用高度較高與直徑較大的置入物導致置入物半徑範圍內的垂直速度顯著增加,並使置入物半徑範圍外的速度減少,速度分佈發生不連續;(3) 裝有置入物的儲槽於置入物下方的顆粒匯流處速度擾動較大,呈現較高的粒子溫度;(4) 裝入高度較高或直徑較大的置入物使置入物內側的顆粒滯留時間減少;(5) 同時採用高度與直徑皆大於60 mm的置入物,造成儲槽圓柱區域的壁面峰值壓力顯著增加;(6) 採用高度較高或直徑較大的置入物,在儲槽漏斗區域的壁面壓力均小於無置入物儲槽的壁面壓力;(7) 置入物儲槽的正向應力分佈均在置入物內側呈現較小值,並於置入物外側因顆粒堆積與漏斗斜面阻礙呈現較大的應力值。
摘要(英) This study employs the Discrete Element Method (DEM) to simulate the cyclic discharging behavior of granular materials within a three-dimensional silo equipped with hollow cylinder inserts. It investigates the effects of different size parameters of the inserts on the mass flow rate of the granular flow in the silo. Additionally, the study analyzes three size parameters of the inserts: device position, height, and diameter. To explore their influence on the transport properties and internal physical properties of the granular flow within the silo. The findings reveal the following: (1) The mass flow rate is significantly affected by the size parameters of the inserts. The maximum mass flow rate of a silo with inserts is 1.35 times that of a silo without inserts, while the minimum mass flow rate is only 0.6 times that of a silo without inserts. (2) Inserts with greater height and larger diameter lead to a significant increase in vertical velocity within the radius of the insert, while reducing the velocity outside the insert′s radius, resulting in discontinuities in the velocity distribution. (3) Silos with inserts exhibit greater fluctuation velocities and higher granular temperatures at the confluence below the insert. (4) Inserts with greater height and larger diameter reduce the residence time of particles within the radius of the insert. (5) Inserts with both height and diameter exceeding 60 mm cause a significant increase in peak wall pressure within the cylindrical region of the silo. (6) In the hopper region of the silo, the wall pressure for silos with inserts is lower than that of silos without inserts when using inserts with greater height or larger diameter. (7) The normal stress distribution in silos with inserts shows smaller values inside the insert, while outside the insert, due to particle accumulation and obstruction by the hopper slope, the stress values are higher.
關鍵字(中) ★ 三維儲槽
★ 中空圓柱形置入物
★ 離散元素電腦模擬
★ 傳輸性質
★ 內部性質
★ 應力分佈
關鍵字(英) ★ 3D silo
★ hollow cylindrical inserts
★ discrete element simulation
★ transport properties
★ internal physical properties
★ stress distribution
論文目次 摘 要 i
Abstract ii
目 錄 iii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1 儲槽顆粒流傳輸性質 1
1-2-2 儲槽顆粒流內部性質 4
1-3 研究動機與目的 6
第二章 研究方法 7
2-1 離散元素法 7
2-1-1 離散元素法之架構 7
2-1-2 三維剛體運動方程式 7
2-1-3 接觸力模型 9
2-1-4 臨界時間步 10
2-2 離散元素電腦模擬參數 11
2-2-1 儲槽與置入物模型建模 11
2-2-2 離散元素模擬輸入參數 12
2-2-3 降低模數法 12
2-2-4 時間與空間平均技術 13
2-3 顆粒流傳輸性質 13
2-3-1 局部平均速度 13
2-3-2 擾動速度 14
2-3-3 粒子溫度 15
2-4 顆粒流內部性質 16
2-4-1 邊壁壓力 16
2-4-2 粒子體積佔有率 16
2-4-3 平均配位數 16
2-4-4 應力 17
2-4-4-1 應力張量 17
2-4-4-2 von Mises應力 18
第三章 結果與討論 19
3-1 置入物尺寸對儲槽顆粒流傳輸性質的影響 19
3-1-1 質量流率 19
3-1-2 垂直速度分佈 21
3-1-3 徑向速度分佈 22
3-1-4 擾動速度分佈 23
3-1-5 滯留時間 25
3-1-6 粒子溫度 27
3-2 置入物尺寸對儲槽顆粒流內部性質的影響 28
3-2-1 邊壁法向壓力 28
3-2-2 邊壁垂直切向壓力 30
3-2-3 粒子體積佔有率 32
3-2-4 平均配位數 34
3-3 置入物尺寸對儲槽顆粒流應力的影響 36
3-3-1 徑向應力 36
3-3-2 環向應力 37
3-3-3 垂直應力 39
3-3-4 剪應力 40
3-3-5 von Mises 應力 41
第四章 結論與未來展望 44
4-1 結論 44
4-2 未來展望 45
參考文獻 46
附 錄 49
附 表 50
附 圖 52
參考文獻 [1]
R. M. Gandia, F. C. Gomes, W. C. de Paula, P. J. A. Rodriguez, The influence of flow pattern and hopper angle on static and dynamic pressures in slender silos, Powder Technol., 427 (2023) 118756.
[2]
J. Du, C. Liu, C. Wang, P. Wu, Y. Ding, L. Wang, Discharge of granular materials in a hemispherical bottom silo under vertical vibration, Powder Technol., 372 (2020) 128-135.
[3]
A. Pascot, J. Y. Morel, S. Antonyuk, M. Jenny, Y. Cheny, S. K. De Richter, Discharge of vibrated granular silo: A grain scale approach, Powder Technol., 397 (2022) 116998.
[4]
S.S. Hsiau, J. Smid, Y.P. Chyou, T.C. Huang, C.J. Hsu, Impact of flow-corrective insert on flow patterns in two-dimensional moving bed, Chem. Eng. Process., 73 (2013) 7-15.
[5]
K. Endo, K. Anki Reddy, H. Katsuragi, Obstacle-shape effect in a two-dimensional granular silo flow field, Phys. Rev. Fluids, 2 (2017) 094302.
[6]
M. G. Arean, A. Boschan, M. A. Cachile, M. A. Aguirre, Granular flow through an aperture: Influence of obstacles near the outlet, Phys. Rev. E, 101 (2020) 022901.
[7]
D. Sun, H. Lu, J. Cao, Y. Wu, X. Guo, X. Gong, Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert, Powder Technol., 367 (2020) 277-284.
[8]
L.A. Fullard, A.J.R. Godfrey, M. F. Manaf, C. E. Davies, A. Cliff, M. Fukuoka, Mixing experiments in 3D- printed silos; the role of wall friction and flow correcting inserts, Adv. Powder Technol., 31 (2020) 1915-1923.
[9]
J. Wu, J. Binbo, J. Chen, Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol., 20 (2009) 62-73.
[10]
F. Alonso-Marroquin, S. I. Azeezullah, S. A. Galindo-Torres, L. M. Olsen-Kettle, Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?, Phys. Rev. E, 85 (2012) 020301.
[11]
S. Volpato, R. Artonib, A. C. Santomasoa, Numerical study on the behavior of funnel flow silos with and without inserts through a continuum hydrodynamic approach, Chem. Eng. Res. Des., 92 (2014) 256-263.
[12]
Y. Li, N. Gui, X.T. Yang, J.Y. Tu, S.Y. Jiang, Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor, Nucl. Eng. Des., 300 (2016) 495-505.
[13]
A. Cliff, L. A. Fullard, E. C. P. Breard, J. Dufek, C. E. Davies, Granular size segregation in silos with and without inserts, Proc. Royal Soc. A, 477 (2021) 2245.
47
[14]
X. Xiao, B. Li, M. Chen, J. Peng, R. Peng, Research on the effect of the cone-in-cone insert on the discharge behaviour of conical silo, Powder Technol., 419 (2023) 118336.
[15]
R. Koby?ka, J. Wi?cek, M. Molenda, J. Horabik, M. Ba?da, N. Govender, P. Parafiniuk, M. Stasiak, Precise control of discharge of spherical particles by cone valve configuration: Insert– Converging orifice, Powder Technol., 433 (2024) 119225.
[16]
J. H?rtl, J.Y. Ooi, J. M. Rotter, M. Wojcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des., 86 (2008) 370-378.
[17]
S. Ding, A. Dyroy, M. Karlsen, G. G. Enstad, M. Jecmenica, Experimental Investigation of Load Exerted on a Double-Cone Insert and Effect of the Insert on Pressure Along Walls of a Large-Scale Axisymmetrical Silo, Part. Sci. Technol., 29 (2011) 127-138.
[18]
M. Wojcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts — Full- scale experiments, Powder Technol., 222 (2012) 15-36.
[19]
H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) 177-183.
[20]
S. Ding, M. Wojcik, M. Jecmencia, S. R. De Silva, Loads on walls and inserts in mass-flow silos, Task Q., 7 (2003) 525–538.
[21]
R. Koby?ka, M. Molenda, J. Horabik, Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis, Powder Technol., 343 (2019) 521-532.
[22]
R. Koby?ka, M. Molenda, J. Horabik, DEM simulation of the pressure distribution and flow pattern in a model grain silo with an annular segment attached to the wall, Biosyst. Eng., 193 (2020) 75-89.
[23]
J. Krzy?anowski, J. Tejchman, M. Wojcik, Modelling of full-scale silo experiments with flow correcting inserts using material point method (MPM) based on hypoplasticity, Powder Technol., 392 (2021) 375-392.
[24]
Y.C. Chung, T.C. Kuo, S.S. Hsiau, Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- part I: exploration of transport properties, Powder Technol., 400 (2022) 117220.
[25]
C.C. Liao, Y.C. Chung, T.C. Kuo, Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- part II: exploration of internal dynamic properties, Powder Technol., 399 (2022) 117221.
[26]
P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29 (1979) 47–65.
48
[27]
PFC3D 6.0 Documentation, https://docs.itascacg.com/pfc600/pfc/docproject/index.html, Itasca, (2019).
[28]
D.O. Potyondy, P.A. Cundall, A bonded- particle model for rock, Int. J. Rock Mech. Min., 41 (2004) 1329-1364.
[29]
Y.C. Chung, C.K. Lin, J. Ai, Mechanical behaviour of agranular solid and its contacting deformable structure under uni-axial compression- PartII: Multi-scale exploration of internal physical properties, Chem. Eng. Sci., 144 (2016) 421-443.
[30]
郭庭君,「以離散元素法電腦模擬探討顆粒體在不同置入物儲槽中的傳輸性質與內部性質」,國立中央大學,碩士論文,西元2020年。
指導教授 鍾雲吉 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明