博碩士論文 111323017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.144.40.46
姓名 曾學澧(Hsueh-Li Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 射頻及脈衝直流反應濺鍍沉積c 軸取向氮化鋁薄膜質 量的比較研究與OES 大數據關聯性分析
(Comparative study on the Quality of c-axis Oriented AlN Film Deposited by RF and Pulsed DC Reactive Sputtering with OES Correlation Analysis)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 本研究比較了在相同製程條件下,使用350 kHz脈衝直流和13.56 MHz射頻反應濺鍍技術在矽基板上沉積的氮化鋁(AlN)薄膜的質量,並針對不同電源進行改變。我們的重點是評估薄膜屬性如晶體性、表面形態和厚度均勻性的差異。我們的結果表明,雖然SEM橫斷面圖像顯示射頻濺鍍的沉積速率較低,但產生的薄膜展示出更好的結晶性,這一點從XRD峰的更尖銳和更強烈,特別是<002>方向的峰可以看出。從針對c軸取向AlN薄膜的XRD光譜導出的計算顯示,利用射頻電源,最佳的c軸晶格常數為4.8706 Å,而<002>方向的紋理係數(TC002)為1.99。這些值都超過了在相同功率下,脈衝直流電源得到的值。此外,原子力顯微鏡(AFM)的測量顯示,無論是射頻還是脈衝直流濺鍍沉積的薄膜,其表面粗糙度隨著濺鍍功率的增加而略有增加,均方根(RMS)值範圍在2.08 nm至5.98 nm之間。光發射光譜(OES)被用來研究在氮氣氛圍中被脈衝直流和射頻電源所激發電漿中的活性物質的生成。射頻濺鍍中觀察到的更高光譜強度,特別是在約390.93 nm處的氮離子(N2+)的特徵發射,種種研究都顯示射頻電漿提供了有利於形成高質量AlN薄膜的能量條件。
摘要(英) This study compares the quality of aluminum nitride (AlN) thin films deposited on Si substrates using 350 kHz pulsed DC and 13.56 MHz RF reactive sputtering techniques under identical process conditions with varied source power. Our focus was on evaluating differences in film properties such as crystallinity, surface morphology, and thickness uniformity. Our results indicated that, although SEM cross-sectional images showed a lower deposition rate for RF sputtering the produced films exhibit better crystallinity, as evidenced by sharper and more intense XRD peaks, particularly the <002> peak. Calculations derived from XRD spectra of c-axis oriented AlN thin films, utilizing RF source power, revealed that the optimal c-axis lattice constant is 4.9525 angstroms, and the texture coefficient in the <002> (TC002) direction is 1.99. Both values surpass those obtained at the same power level in pulse DC power source. Additionally, AFM measurements indicate that the surface roughness of films deposited by both RF and pulsed DC sputtering slightly increased with the sputtering power, with the root mean square (RMS) values ranging between 2.08 nm and 5.98 nm. Optical emission spectroscopy (OES) has been used to study the generation of reactive species in plasma excited by both pulsed DC and RF power sources in a nitrogen atmosphere. The higher spectral intensities observed in RF sputtering, particularly the emission characteristic of ionized nitrogen (N2+) at around 390.93 nm, suggest that RF plasma provides energy conditions conducive to the formation of high-quality AlN films. Additionally, we applied the PCA algorithm for big data analysis to reduce dimensionality and visualize clustering results of Optical Emission Spectroscopy (OES) data recorded during the deposition of thin films using two different power sources. It is evident from the analysis that there are distinct clustering effects for both power sources, thus substantiating the presence of diverse characteristics between the two sources.
關鍵字(中) ★ 反應磁控濺鍍
★ 氮化鋁
★ 主成分分析
★ 光學放射光譜
關鍵字(英) ★ reactive magnetron sputtering
★ aluminum nitride
★ principal component Analysis
★ optical emission spectroscopy
論文目次 中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 4
第二章 材料與背景介紹 5
2-1 氮化鋁(AlN) 5
2-2 物理氣相沉積(PVD) 5
2-3 薄膜沉積原理 7
2-4 脈衝直流與射頻濺鍍簡介 8
2-5 電漿簡介 9
2-6 光學放射光譜(OES) 12
第三章 研究方法 14
3-1 實驗流程 14
3-2 實驗方法 15
3-2-1參數設定 15
3-2-2試片清洗步驟 16
3-2-3實驗步驟 16
3-3 實驗裝置與量測 18
3-3-1非對稱雙極脈衝直流與射頻反應式磁控濺鍍(Pulsed DC / RF reactive magnetron sputtering) 18
3-3-2光學放射光譜儀(Optical Emission Spectroscopy, OES) 20
3-3-3原子力顯微鏡(Atomic Force Microscope, AFM) 22
3-3-4掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 24
3-3-6 X-射線繞射分析(X-ray diffraction, XRD) 26
第四章 實驗結果與討論 28
4-1 脈衝直流與射頻電源對薄膜結構及機械性質之影響 28
4-1-1掃描電子顯微鏡對氮化鋁薄膜分析 28
4-1-2原子力顯微鏡(AFM)對氮化鋁薄膜表面粗糙度分析 30
4-2 氮化鋁薄膜品質分析 32
4-2-1 X-射線繞射分析(XRD)對氮化鋁薄膜晶面分析 32
4-2-2氮化鋁薄膜c軸向晶格常數 (c-axis lattice constant) 34
4-2-3氮化鋁薄膜織構係數 (Texture coefficient) 36
4-2-4氮化鋁薄膜晶粒尺寸 (Crystallite size) 38
4-3 光放射光譜資料結合主成分分析差異化分析 39
4-3-1 光放射光譜資料之特徵波長分析 39
4-3-2 光放射光譜資料與主成分分析 43
第五章 結論 45
參考文獻 46
參考文獻 [1] J. Lopez, W. Zhu, A. Freilich, A. Belkind, and K. Becker, "Time-resolved optical emission spectroscopy of pulsed DC magnetron sputtering plasmas," Journal of Physics D: Applied Physics, vol. 38, no. 11, p. 1769, 2005.
[2] S. Khamseh, M. Nose, T. Kawabata, T. Nagae, K. Matsuda, and S. Ikeno, "A comparative study of CrAlN films synthesized by dc and pulsed dc reactive magnetron facing target sputtering system with different pulse frequencies," Journal of alloys and compounds, vol. 508, no. 1, pp. 191-195, 2010.
[3] N. Fateh, G. Fontalvo, and C. Mitterer, "Structural and mechanical properties of dc and pulsed dc reactive magnetron sputtered V2O5 films," Journal of Physics D: Applied Physics, vol. 40, no. 24, p. 7716, 2007.
[4] D. Gahan et al., "Ion energy distribution measurements in rf and pulsed dc plasma discharges," Plasma Sources Science and Technology, vol. 21, no. 2, p. 024004, 2012.
[5] A. Iqbal and F. Mohd-Yasin, "Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review," Sensors, vol. 18, no. 6, p. 1797, 2018.
[6] F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, "Thickness dependence of the properties of highly c-axis textured AlN thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 2, pp. 361-365, 2004.
[7] T.-Y. Lu et al., "Minimizing film residual stress with in situ OES big data using principal component analysis of deposited AlN films by pulsed DC reactive sputtering," The International Journal of Advanced Manufacturing Technology, vol. 114, pp. 1975-1990, 2021.
[8] H.-H. Lo, W.-L. Chen, P. J. Wang, W. Lai, Y.-K. Fuh, and T. T. Li, "Residual stress classification of pulsed DC reactive sputtered aluminum nitride film via large-scale data analysis of optical emission spectroscopy," The International Journal of Advanced Manufacturing Technology, vol. 119, no. 11, pp. 7449-7462, 2022.
[9] Z. Wu, G. Zhang, M. Wang, X. Fan, P. Yan, and T. Xu, "Structure and mechanical properties of Al/AlN multilayer with different AlN layer thickness," Applied Surface Science, vol. 253, no. 5, pp. 2733-2738, 2006.
[10] H. H. Yue, S. J. Qin, J. Wiseman, and A. Toprac, "Plasma etching endpoint detection using multiple wavelengths for small open-area wafers," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, no. 1, pp. 66-75, 2001.
[11] E. A. Hudson and F. C. Dassapa, "Sensitive end-point detection for dielectric etch," Journal of the Electrochemical Society, vol. 148, no. 3, p. C236, 2001.
[12] L. H. Kau, H. J. Huang, H. E. Chang, Y. L. Hsieh, Y. K. Fuh, and T. T. Li, "Large‐scale data principal component analysis of phase transition from a‐Si: H to nc‐Si: H using PECVD optical emission spectra," Micro & Nano Letters, vol. 15, no. 5, pp. 323-326, 2020.
[13] W.-Y. Zhou et al., "Impact of Pulse Parameters of a DC Power Generator on the Microstructural and Mechanical Properties of Sputtered AlN Film with In-Situ OES Data Analysis," Materials, vol. 16, no. 8, p. 3015, 2023.
[14] S.-H. Wang, H.-E. Chang, C.-C. Lee, Y.-K. Fuh, and T. T. Li, "Evolution of a-Si: H to nc-Si: H transition of hydrogenated silicon films deposited by trichlorosilane using principle component analysis of optical emission spectroscopy," Materials Chemistry and Physics, vol. 240, p. 122186, 2020.
[15] W.-L. Chen et al., "A multi-step deposited AlN films in a DC pulsed sputtering and film characteristics classification with principal component analysis of OES data," The International Journal of Advanced Manufacturing Technology, vol. 127, no. 5, pp. 2955-2967, 2023.
[16] A. Daffertshofer, C. J. Lamoth, O. G. Meijer, and P. J. Beek, "PCA in studying coordination and variability: a tutorial," Clinical biomechanics, vol. 19, no. 4, pp. 415-428, 2004.
[17] A. George and A. Vidyapeetham, "Anomaly detection based on machine learning: dimensionality reduction using PCA and classification using SVM," International Journal of Computer Applications, vol. 47, no. 21, pp. 5-8, 2012.
[18] M. A. H. Khan, B. Thomson, R. Debnath, A. Motayed, and M. V. Rao, "Nanowire-based sensor array for detection of cross-sensitive gases using PCA and machine learning algorithms," IEEE Sensors Journal, vol. 20, no. 11, pp. 6020-6028, 2020.
[19] A. Wright and J. Nelson, "Consistent structural properties for AlN, GaN, and InN," Physical Review B, vol. 51, no. 12, p. 7866, 1995.
[20] E. Ruiz, S. Alvarez, and P. Alemany, "Electronic structure and properties of AlN," Physical Review B, vol. 49, no. 11, p. 7115, 1994.
[21] X. Peng et al., "Structural and optical properties of AlN sputtering deposited on sapphire substrates with various orientations," Journal of Semiconductors, vol. 43, no. 2, p. 022801, 2022.
[22] G. Bu, D. Ciplys, M. Shur, L. J. Schowalter, S. Schujman, and R. Gaska, "Surface acoustic wave velocity in single-crystal AlN substrates," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 1, pp. 251-254, 2006.
[23] K. Tsubouchi and N. Mikoshiba, "Zero-temperature-coefficient SAW devices on AlN epitaxial films," Tohoku University, 1985.
[24] T. Suetsugu, T. Yamazaki, S. Tomabechi, K. Wada, K. Masu, and K. Tsubouchi, "ALN epitaxial growth on atomically flat initially nitrided α-Al2O3 wafer," Applied Surface Science, vol. 117, pp. 540-545, 1997.
[25] K.-H. Chiu, J.-H. Chen, H.-R. Chen, and R.-S. Huang, "Deposition and characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic wave resonator," Thin Solid Films, vol. 515, no. 11, pp. 4819-4825, 2007.
[26] J. Sellers, "Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD," Surface and Coatings Technology, vol. 98, no. 1-3, pp. 1245-1250, 1998.
[27] D. Depla and R. De Gryse, "Target poisoning during reactive magnetron sputtering: Part I: the influence of ion implantation," Surface and Coatings Technology, vol. 183, no. 2-3, pp. 184-189, 2004.
[28] D. Depla and R. De Gryse, "Target poisoning during reactive magnetron sputtering: Part II: the influence of chemisorption and gettering," Surface and Coatings Technology, vol. 183, no. 2-3, pp. 190-195, 2004.
[29] D. Güttler, R. Grötzschel, and W. Möller, "Lateral variation of target poisoning during reactive magnetron sputtering," Applied physics letters, vol. 90, no. 26, 2007.
[30] A. Belkind, A. Freilich, J. Lopez, Z. Zhao, W. Zhu, and K. Becker, "Characterization of pulsed dc magnetron sputtering plasmas," New Journal of Physics, vol. 7, no. 1, p. 90, 2005.
[31] D. Carter, H. Walde, G. McDonough, and G. Roche, "Parameter optimization in pulsed DC reactive sputter deposition of aluminum oxide," in Proceedings of the Annual Technical Conference-Society of Vacuum Coaters, 2002, pp. 570-577.
[32] P. Chabert and N. Braithwaite, Physics of radio-frequency plasmas. Cambridge University Press, 2011.
[33] L.-H. Lyu, 基礎太空電漿物理學 (Elementary Space Plasma Physics). Airiti Press, 2014.
[34] G. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G.-A. Rizzi, "PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition," Thin Solid Films, vol. 371, no. 1-2, pp. 126-131, 2000.
[35] T. Yamada, J. Kim, M. Ishihara, and M. Hasegawa, "Low-temperature graphene synthesis using microwave plasma CVD," Journal of Physics D: Applied Physics, vol. 46, no. 6, p. 063001, 2013.
[36] M. S. J. Hashmi, Comprehensive materials processing. Newnes, 2014.
[37] J. Pelletier and A. Anders, "Plasma-based ion implantation and deposition: A review of physics, technology, and applications," IEEE Transactions on Plasma Science, vol. 33, no. 6, pp. 1944-1959, 2005.
[38] C. Cardinaud, M.-C. Peignon, and P.-Y. Tessier, "Plasma etching: principles, mechanisms, application to micro-and nano-technologies," Applied Surface Science, vol. 164, no. 1-4, pp. 72-83, 2000.
[39] P. Murugesan, J. Moses, and C. Anandharamakrishnan, "Water decontamination using non-thermal plasma: Concepts, applications, and prospects," Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104377, 2020.
[40] H. Tanaka et al., "State of the art in medical applications using non-thermal atmospheric pressure plasma," Reviews of Modern Plasma Physics, vol. 1, pp. 1-89, 2017.
[41] T. Mieno, Plasma Science and Technology: Progress in Physical States and Chemical Reactions. BoD–Books on Demand, 2016.
[42] C. Aragón and J. A. Aguilera, "Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 63, no. 9, pp. 893-916, 2008.
[43] B. Kim, S. Im, and G. Yoo, "Performance evaluation of CNN-based end-point detection using in-situ plasma etching data," Electronics, vol. 10, no. 1, p. 49, 2020.
[44] H. E. Litvak, "End point control via optical emission spectroscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 1, pp. 516-520, 1996.
[45] B. Abdallah et al., "Thickness and substrate effects on AlN thin film growth at room temperature," The European Physical Journal-Applied Physics, vol. 43, no. 3, pp. 309-313, 2008.
[46] H. Cheng, Y. Sun, and P. Hing, "The influence of deposition conditions on structure and morphology of aluminum nitride films deposited by radio frequency reactive sputtering," Thin Solid Films, vol. 434, no. 1-2, pp. 112-120, 2003.
[47] H.-E. Cheng, T.-C. Lin, and W.-C. Chen, "Preparation of [0 0 2] oriented AlN thin films by mid frequency reactive sputtering technique," Thin Solid Films, vol. 425, no. 1-2, pp. 85-89, 2003.
[48] A. Ababneh, U. Schmid, J. Hernando, J. Sánchez-Rojas, and H. Seidel, "The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films," Materials Science and Engineering: B, vol. 172, no. 3, pp. 253-258, 2010.
[49] J. Zhang et al., "Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering," Surface and Coatings Technology, vol. 198, no. 1-3, pp. 68-73, 2005.
[50] C. Zuo, N. Sinha, J. Van der Spiegel, and G. Piazza, "Multifrequency pierce oscillators based on piezoelectric AlN contour-mode MEMS technology," Journal of Microelectromechanical Systems, vol. 19, no. 3, pp. 570-580, 2010.
[51] M. Pătru et al., "Structural, mechanical and piezoelectric properties of polycrystalline AlN films sputtered on titanium bottom electrodes," Applied Surface Science, vol. 354, pp. 267-278, 2015.
[52] W. Gu et al., "Comprehensive study of crystalline AlN/sapphire templates after high-temperature annealing with various sputtering conditions," Journal of Semiconductors, vol. 41, no. 12, p. 122802, 2020.
[53] H. Kao, P. Shih, and C.-H. Lai, "The study of preferred orientation growth of aluminum nitride thin films on ceramic and glass substrates," Japanese Journal of Applied Physics, vol. 38, no. 3R, p. 1526, 1999.
[54] X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, "Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin Solid Films, vol. 388, no. 1-2, pp. 62-67, 2001.
[55] M. V. Pelegrini and I. Pereyra, "Characterization of AlN films deposited by rf reactive sputtering aiming MEMS applications," physica status solidi c, vol. 7, no. 3‐4, pp. 840-843, 2010.
[56] W. Yim and R. Paff, "Thermal expansion of AlN, sapphire, and silicon," Journal of Applied Physics, vol. 45, no. 3, pp. 1456-1457, 1974.
[57] J. Epp, "X-ray diffraction (XRD) techniques for materials characterization," in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 81-124.
[58] A. K. Zak, W. A. Majid, M. E. Abrishami, and R. Yousefi, "X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods," Solid State Sciences, vol. 13, no. 1, pp. 251-256, 2011.
[59] H.-C. Lee, J.-Y. Lee, and H.-J. Ahn, "Effect of the substrate bias voltage on the crystallographic orientation of reactively sputtered AlN thin films," Thin Solid Films, vol. 251, no. 2, pp. 136-140, 1994.
[60] H. Cheng, Y. Sun, J. Zhang, Y. Zhang, S. Yuan, and P. Hing, "AlN films deposited under various nitrogen concentrations by RF reactive sputtering," Journal of crystal growth, vol. 254, no. 1-2, pp. 46-54, 2003.
[61] A. E. Giba, P. Pigeat, S. Bruyère, T. Easwarakhanthan, F. Mücklich, and D. Horwat, "Controlling refractive index in AlN films by texture and crystallinity manipulation," Thin Solid Films, vol. 636, pp. 537-545, 2017.
[62] L. Alexander and H. P. Klug, "Determination of crystallite size with the X‐Ray spectrometer," Journal of Applied Physics, vol. 21, no. 2, pp. 137-142, 1950.
[63] A. Qayyum, S. Zeb, S. Ali, A. Waheed, and M. Zakaullah, "Optical emission spectroscopy of abnormal glow region in nitrogen plasma," Plasma Chemistry and Plasma Processing, vol. 25, pp. 551-564, 2005.
指導教授 傅尹坤(Yiin-kuen Fuh) 審核日期 2024-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明