博碩士論文 111323019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.135.184.166
姓名 陳裕仁(Yu-Ren Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波振動輔助液中銑削SKD11加工之研究
(A Study on Ultrasonic Vibration Assisted Submerged-Milling of SKD11)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-25以後開放)
摘要(中) SKD11經熱處理後,硬度達HRC58至60,係屬於難切削材料,利用傳統機械加工方法不易對其進行切削加工,容易使刀具產生磨耗而鈍化,致使切削力上升,本研究藉由超音波振動輔助液中銑削方式針對熱處理後的SKD11進行開槽銑削之研究,探討不同輔助方式與參數如超音波功率等級、主軸轉速、進給速率及切削深度對加工品質特性之影響,加工品質特性包括有表面粗糙度、刀具磨耗與加工深度、刀腹磨耗現象與加工後表面形貌,藉由表面粗糙度量測儀量測加工後工件表面粗糙度,透過千分錶量測加工後工件加工深度,另透過雷射共軛焦暨白光干涉顯微鏡(LSCM)、光學顯微影像量測儀(OM)及場發射掃描式電子顯微儀(SEM)觀察加工後刀腹磨耗現象與表面形貌分析。
實驗結果顯示,藉由超音波振動輔助與於切削液中加工之方式,透過超音波高頻振動刀具,可使連續性切削轉變為間歇性切削,且因刀尖與材料之間產生間歇性分離作用,使切削液更容易進入刀具尖端,能降低切削區域中的切削力,並同時藉由將刀具及工件浸沒於切削液中,降低切削中之溫度,減少刀具磨耗情形,從而改善加工後的表面品質,根據實驗結果,於超音波功率等級 Level 1 (Amplitude:1.9 μm)、進給速率為100 mm/min、主軸轉速 6000 rpm及切削深度為0.01 mm下,可得到較佳的表面粗糙度0.070 μmRa、加工深度0.023 mm及較小之刀具磨耗量0.034 mm,使用液中輔助方法相較於未使用液中輔助,表面粗糙度下降約4.87%,而刀具磨耗量下降了13.1%。
摘要(英) SKD11, with a hardness of HRC58 to 60 after heat treatment, is difficult to be cut using traditional machining methods. The tool is likely to be worn and passivated, so that the cutting force increases. This study used the ultrasonic vibration assisted submerged-milling for slotting milling of SKD11 after heat treatment, and discussed the influence of different assistant methods and parameters such as ultrasonic power level, spindle speed, feed rate and cutting depth on machining quality characteristics. The machining quality characteristics included surface roughness, tool wear and machining depth, flank wear phenomenon and surface morphology after machining. The workpiece surface roughness after machining was measured by a surface roughness measuring instrument, and the workpiece machining depth after machining was measured by a dial gauge. The flank wear phenomenon after machining was observed and the surface morphology was analyzed using a LSCM, an OM and a SEM.
The experimental results show that by the ultrasonic vibration assist and submerged-milling, continuous cutting can be transformed into intermittent cutting through ultrasonic high-frequency vibration of the tool. Due to the intermittent separation between the tool tip and the material, the cutting fluid is easier to enter the tool tip. The cutting force in the cutting area can thus be reduced. The tool and workpiece were immersed in the cutting fluid, the cutting temperature was lowered, and the tool wear was reduced, thereby improving the surface quality after machining. According to experimental results, in the conditions of ultrasonic power Level 1 (Amplitude: 1.9 μm), feed rate 100 mm/min, spindle speed 6000 rpm and cutting depth 0.01 mm, a better surface roughness of 0.070 μmRa, machining depth of 0.023 mm and less tool wear of 0.034 mm can be obtained. In comparison to the method without submerged-milling, the surface roughness of the method with submerged-milling was reduced by about 4.87%, and the tool wear was reduced by 13.1%.
關鍵字(中) ★ SKD11
★ 超音波振動輔助
★ 液中銑削
關鍵字(英) ★ SKD11
★ ultrasonic vibration assist
★ submerged-milling
論文目次 摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 文獻回顧 4
1-4 論文架構 11
第二章 實驗基礎原理 12
2-1 切削加工原理[34] 12
2-2 銑削加工原理[28, 34] 12
2-2-1 銑削加工基本原理 12
2-2-2 銑削加工型態 12
2-3 切削理論[28, 34] 14
2-4 銑削加工參數計算[34] 17
2-5 刀具磨耗理論[34] 19
2-5-1 刀具磨耗型式 19
2-6 超音波振動輔助加工理論[35, 36] 21
2-6-1 超音波輔助加工的分類 21
2-6-2 超音波振動刀尖軌跡方程式 24
第三章 實驗設備與材料 26
3-1 實驗簡介 26
3-2 實驗設備 28
3-2-1 CNC高速切削中心機 28
3-2-2 超音波設備 28
3-2-3 切削液槽 30
3-2-4 刀具 30
3-2-5 切削液 31
3-2-6 超音波洗淨機 32
3-2-7 線切割放電加工機 33
3-2-8 表面粗糙度量測儀 34
3-2-9 超音波振幅量測器 34
3-2-10 千分錶 36
3-2-11 數控平面磨床 36
3-2-12 光學顯微影像量測儀 37
3-2-13 場發射掃描式電子顯微儀 38
3-2-14 雷射共軛焦暨白光干涉顯微鏡 39
3-3 實驗材料 41
3-4 實驗流程與方法 43
3-4-1 試片製作 44
3-4-2 實驗架設參數設定 44
3-4-3 實驗結果與量測方法 46
3-4-3-1 表面粗糙度 ( μm-Ra ) 46
3-4-3-2 加工深度 47
3-4-3-3 刀腹磨耗量 48
第四章 結果與討論 49
4-1 不同的輔助方法對於SDK11加工之影響 49
4-2 不同的超音波功率等級對於SKD11加工之影響 54
4-3 不同的進給速率對於SKD11加工之影響 62
4-4 不同的主軸轉速對於SKD11加工之影響 69
4-5 不同的切削深度對於SKD11加工之影響 75
4-6 TiAlN鍍層圓鼻端銑刀磨耗觀察 81
第五章 結論 83
未來展望 85
參考文獻 86
參考文獻 [1] H. Sui, X. Zhang, D. Zhang, X. Jiang, and R. Wu, “Feasibility study of high-speed ultrasonic vibration cutting titanium alloy”, Journal of Materials Processing Technology, vol. 247, pp. 111-120, 2017.
[2] Y. Liu, Z. Liu, X. Wang, and T. Huang, “Experimental study on tool wear in ultrasonic vibration–assisted milling of C/SiC composites”, The International Journal of Advanced Manufacturing Technology, vol. 107, no. 1-2, pp. 425-436, 2020.
[3] X. H. Shen, J. Zhang, D. X. Xing, and Y. Zhao, “A study of surface roughness variation in ultrasonic vibration-assisted milling”, The International Journal of Advanced Manufacturing Technology, vol. 58, no. 5-8, pp. 553-561, 2011.
[4] M. Chen, L. l. Jing, and X. k. Li, “The surface integrity in machining hardened steel SKD11 for die and mold”, Machining science and technology, vol. 11, no. 1, pp. 99-116, 2007.
[5] Z. Peng, X. Zhang, and D. Zhang, “Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools”, Tribology International, vol. 155, p. 106766, 2021.
[6] S. Cho, I. Jo, H. Kim, H. T. Kwon, S. K. Lee, and S. B. Lee, “Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites”, Applied Surface Science, vol. 415, pp. 155-160, 2017.
[7] Y. Feng, F. C. Hsu, Y. T. Lu, Y. F. Lin, C. T. Lin, C. F. Lin, Y. C. Lu, and S. Y. Liang, “Temperature prediction of ultrasonic vibration-assisted milling”, Ultrasonics, vol. 108, p. 106212, 2020.
[8] K. Kadirgama, M. Noor, M. Rejab, M. Rahman, M. Sani, and T. Mon, “The Effect of End Milling Parameters on Surface Roughness when Machining Corrosion Resistance Alloy”, in International Conference on Advance Mechanical Engineering (ICAME09), 2009.
[9] C. Y. Hsu, C. C. Tsao, C. H. Huang, and Y. C. Lin, “A Study on Ultrasonic Vibration Milling of Inconel 718”, Key Engineering Materials, vol. 419-420, pp. 373-377, 2009.
[10] B. Lauwers, F. Bleicher, P. Ten Haaf, M. Vanparys, J. Bernreiter, T. Jacobs, and J. Loenders, “Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials”, in Proceedings of the 4th CIRP International Conference on High Performance Cutting, 2010.
[11] M. R. Razfar, P. Sarvi, and M. M. A. Zarchi, “Experimental investigation of the surface roughness in ultrasonic-assisted milling”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 225, no. 9, pp. 1615-1620, 2011.
[12] E. Rahim and H. Sasahara, “A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys”, Tribology international, vol. 44, no. 3, pp. 309-317, 2011.
[13] B. A. Khidhir and B. Mohamed, “Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based Hastelloy–276”, in IOP conference series: materials science and engineering, vol. 17, no. 1, 2011.
[14] 張家豪,「微量潤滑之切削環境對模具鋼高速銑削刀具磨耗與磨耗機制影響性之研究」,南開科技大學,碩士論文,民國101年。
[15] A. Akdemir, Ş. Yazman, H. Saglam, and M. Uyaner, “The effects of cutting speed and depth of cut on machinability characteristics of austempered ductile iron”, 2012.
[16] K. M. Li and S. L. Wang, “Effect of tool wear in ultrasonic vibration-assisted micro-milling”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 228, no. 6, pp. 847-855, 2013.
[17] K. Kamdani, S. Hasan, and M. A. Lajis, “The Effects of TiAlN and TiN Coating during End Milling of INCONEL 718”, Applied Mechanics and Materials, vol. 564, pp. 566-571, 2014.
[18] C. Wang, Y. Xie, Z. Qin, H. Lin, Y. Yuan, and Q. Wang, “Wear and breakage of TiAlN-and TiSiN-coated carbide tools during high-speed milling of hardened steel”, Wear, vol. 336, pp. 29-42, 2015.
[19] 林祐暘,「超音波振動輔助鑽削不鏽鋼之研究」,國立中興大學,碩士論文,民國108年。
[20] V. N. Gaitonde, S. R. Karnik, C. H. A. Maciel, J. C. C. Rubio, and A. M. Abrão, “Machinability evaluation in hard milling of AISI D2 steel”, Materials Research, vol. 19, pp. 360-369, 2016.
[21] X. H. Shen and G. F. Xu, “Study of milling force variation in ultrasonic vibration-assisted end milling”, Materials and Manufacturing Processes, vol. 33, no. 6, pp. 644-650, 2017.
[22] K. Zheng, W. Liao, Q. Dong, and L. Sun, “Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 9, 2018.
[23] Y. Liu, X. Jiang, F. Yan, S. Jiang, and J. Zhen, “Study on the single process parameter in the cutting force of C/SiC composites by ultrasonic vibration method”, in IOP Conference Series: Materials Science and Engineering, vol. 397, no. 1, 2018.
[24] T. D. Hoang, N. T. Nguyen, Đ. Q. Tran, and V. T. Nguyen, “Cutting Forces and Surface Roughness in Face-Milling of SKD61 Hard Steel”, Journal of Mechanical Engineering/Strojniški Vestnik, vol. 65, no. 6, 2019.
[25] T. M. Duc and T. B. Ngoc, “Effectiveness of alumina nanofluid on slotting end milling performance of SKD 11 tool steel”, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), vol. 9, no. 2, pp. 359-369, 2020.
[26] Y. Ding, G. Shi, X. Luo, G. Shi, and S. Wang, “Study on the critical negative rake angle of the negative rake angle tool based on the stagnant characteristics in micro-cutting”, The International Journal of Advanced Manufacturing Technology, vol. 107, no. 5-6, pp. 2055-2064, 2020.
[27] Y. J. Sun, H. Gong, Y. Wang, and H. Ni, “Tribological viewpoint of the cutting force in rotary ultrasonic vibration-assisted side milling (RUVSM)”, The International Journal of Advanced Manufacturing Technology, vol. 114, no. 9-10, pp. 2839-2848, 2021.
[28] 邱子瑜,「超音波振動輔助高速銑削 Inconel 718 之研究」,國立臺灣大學,碩士論文,民國111年。
[29] T. B. Mac, T. T. Luyen, and D. T. Nguyen, “The Impact of High-Speed and Thermal-Assisted Machining on Tool Wear and Surface Roughness during Milling of SKD11 Steel”, Metals, vol. 13, no. 5, 2023.
[30] M. S. Y. Lubis, S. D, A. Briantio, and R. Rosehan, “Determination of Optimal Cutting Parameters for Milling Process Against Surface Roughness of SKD11 Steel Using the Taguchi Method”, IRA Jurnal Teknik Mesin dan Aplikasinya (IRAJTMA), vol. 1, no. 3, pp. 44-50, 2023.
[31] X. Yin, X. Li, Y. Liu, D. Geng, and D. Zhang, “Surface integrity and fatigue life of Inconel 718 by ultrasonic peening milling”, Journal of Materials Research and Technology, vol. 22, pp. 1392-1409, 2023.
[32] G. Li, W. Xie, H. Wang, Y. Chai, S. Zhang, and L. Yang, “Optimizing processing parameters and surface quality of TC18 via ultrasonic-assisted milling (UAM): an experimental study”, Micromachines, vol. 14, no. 6, p. 1111, 2023.
[33] M. Baraya, J. Yan, and M. Hossam, “Improving and Predicting the Surface Roughness and the Machining Accuracy in Ultrasonic Vibration-Assisted Milling”, Journal of Vibration Engineering & Technologies, pp. 1-14, 2024.
[34] Serope Kalpakjian,Steven R. Schmi, Manufacturing Engineering and Technology,蘇春熺,第七版,機械製造,歐亞書局有限公司,民國103年8月。
[35] Z. Pei, D. Prabhakar, P. Ferreira, and M. Haselkorn, “Rotary ultrasonic drilling and milling of ceramics”, Ceramic Transactions, vol. 49, pp. 185-185, 1995.
[36] K. l. Kuo and C. c. Tsao, “Rotary ultrasonic-assisted milling of brittle materials”, Transactions of Nonferrous Metals Society of China, vol. 22, pp. s793-s800, 2012.
[37] M. Günay, E. Aslan, İ. Korkut, and U. Şeker, “Investigation of the effect of rake angle on main cutting force”, International Journal of Machine Tools and Manufacture, vol. 44, no. 9, pp. 953-959, 2004.
[38] Q. Liu, J. Xu, and H. Yu, “Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V”, The International Journal of Advanced Manufacturing Technology, vol. 108, no. 9-10, pp. 2917-2928, 2020.
指導教授 崔海平(HAI-PING TSUI) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明