參考文獻 |
[1] H. Sui, X. Zhang, D. Zhang, X. Jiang, and R. Wu, “Feasibility study of high-speed ultrasonic vibration cutting titanium alloy”, Journal of Materials Processing Technology, vol. 247, pp. 111-120, 2017.
[2] Y. Liu, Z. Liu, X. Wang, and T. Huang, “Experimental study on tool wear in ultrasonic vibration–assisted milling of C/SiC composites”, The International Journal of Advanced Manufacturing Technology, vol. 107, no. 1-2, pp. 425-436, 2020.
[3] X. H. Shen, J. Zhang, D. X. Xing, and Y. Zhao, “A study of surface roughness variation in ultrasonic vibration-assisted milling”, The International Journal of Advanced Manufacturing Technology, vol. 58, no. 5-8, pp. 553-561, 2011.
[4] M. Chen, L. l. Jing, and X. k. Li, “The surface integrity in machining hardened steel SKD11 for die and mold”, Machining science and technology, vol. 11, no. 1, pp. 99-116, 2007.
[5] Z. Peng, X. Zhang, and D. Zhang, “Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools”, Tribology International, vol. 155, p. 106766, 2021.
[6] S. Cho, I. Jo, H. Kim, H. T. Kwon, S. K. Lee, and S. B. Lee, “Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites”, Applied Surface Science, vol. 415, pp. 155-160, 2017.
[7] Y. Feng, F. C. Hsu, Y. T. Lu, Y. F. Lin, C. T. Lin, C. F. Lin, Y. C. Lu, and S. Y. Liang, “Temperature prediction of ultrasonic vibration-assisted milling”, Ultrasonics, vol. 108, p. 106212, 2020.
[8] K. Kadirgama, M. Noor, M. Rejab, M. Rahman, M. Sani, and T. Mon, “The Effect of End Milling Parameters on Surface Roughness when Machining Corrosion Resistance Alloy”, in International Conference on Advance Mechanical Engineering (ICAME09), 2009.
[9] C. Y. Hsu, C. C. Tsao, C. H. Huang, and Y. C. Lin, “A Study on Ultrasonic Vibration Milling of Inconel 718”, Key Engineering Materials, vol. 419-420, pp. 373-377, 2009.
[10] B. Lauwers, F. Bleicher, P. Ten Haaf, M. Vanparys, J. Bernreiter, T. Jacobs, and J. Loenders, “Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials”, in Proceedings of the 4th CIRP International Conference on High Performance Cutting, 2010.
[11] M. R. Razfar, P. Sarvi, and M. M. A. Zarchi, “Experimental investigation of the surface roughness in ultrasonic-assisted milling”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 225, no. 9, pp. 1615-1620, 2011.
[12] E. Rahim and H. Sasahara, “A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys”, Tribology international, vol. 44, no. 3, pp. 309-317, 2011.
[13] B. A. Khidhir and B. Mohamed, “Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based Hastelloy–276”, in IOP conference series: materials science and engineering, vol. 17, no. 1, 2011.
[14] 張家豪,「微量潤滑之切削環境對模具鋼高速銑削刀具磨耗與磨耗機制影響性之研究」,南開科技大學,碩士論文,民國101年。
[15] A. Akdemir, Ş. Yazman, H. Saglam, and M. Uyaner, “The effects of cutting speed and depth of cut on machinability characteristics of austempered ductile iron”, 2012.
[16] K. M. Li and S. L. Wang, “Effect of tool wear in ultrasonic vibration-assisted micro-milling”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 228, no. 6, pp. 847-855, 2013.
[17] K. Kamdani, S. Hasan, and M. A. Lajis, “The Effects of TiAlN and TiN Coating during End Milling of INCONEL 718”, Applied Mechanics and Materials, vol. 564, pp. 566-571, 2014.
[18] C. Wang, Y. Xie, Z. Qin, H. Lin, Y. Yuan, and Q. Wang, “Wear and breakage of TiAlN-and TiSiN-coated carbide tools during high-speed milling of hardened steel”, Wear, vol. 336, pp. 29-42, 2015.
[19] 林祐暘,「超音波振動輔助鑽削不鏽鋼之研究」,國立中興大學,碩士論文,民國108年。
[20] V. N. Gaitonde, S. R. Karnik, C. H. A. Maciel, J. C. C. Rubio, and A. M. Abrão, “Machinability evaluation in hard milling of AISI D2 steel”, Materials Research, vol. 19, pp. 360-369, 2016.
[21] X. H. Shen and G. F. Xu, “Study of milling force variation in ultrasonic vibration-assisted end milling”, Materials and Manufacturing Processes, vol. 33, no. 6, pp. 644-650, 2017.
[22] K. Zheng, W. Liao, Q. Dong, and L. Sun, “Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 9, 2018.
[23] Y. Liu, X. Jiang, F. Yan, S. Jiang, and J. Zhen, “Study on the single process parameter in the cutting force of C/SiC composites by ultrasonic vibration method”, in IOP Conference Series: Materials Science and Engineering, vol. 397, no. 1, 2018.
[24] T. D. Hoang, N. T. Nguyen, Đ. Q. Tran, and V. T. Nguyen, “Cutting Forces and Surface Roughness in Face-Milling of SKD61 Hard Steel”, Journal of Mechanical Engineering/Strojniški Vestnik, vol. 65, no. 6, 2019.
[25] T. M. Duc and T. B. Ngoc, “Effectiveness of alumina nanofluid on slotting end milling performance of SKD 11 tool steel”, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), vol. 9, no. 2, pp. 359-369, 2020.
[26] Y. Ding, G. Shi, X. Luo, G. Shi, and S. Wang, “Study on the critical negative rake angle of the negative rake angle tool based on the stagnant characteristics in micro-cutting”, The International Journal of Advanced Manufacturing Technology, vol. 107, no. 5-6, pp. 2055-2064, 2020.
[27] Y. J. Sun, H. Gong, Y. Wang, and H. Ni, “Tribological viewpoint of the cutting force in rotary ultrasonic vibration-assisted side milling (RUVSM)”, The International Journal of Advanced Manufacturing Technology, vol. 114, no. 9-10, pp. 2839-2848, 2021.
[28] 邱子瑜,「超音波振動輔助高速銑削 Inconel 718 之研究」,國立臺灣大學,碩士論文,民國111年。
[29] T. B. Mac, T. T. Luyen, and D. T. Nguyen, “The Impact of High-Speed and Thermal-Assisted Machining on Tool Wear and Surface Roughness during Milling of SKD11 Steel”, Metals, vol. 13, no. 5, 2023.
[30] M. S. Y. Lubis, S. D, A. Briantio, and R. Rosehan, “Determination of Optimal Cutting Parameters for Milling Process Against Surface Roughness of SKD11 Steel Using the Taguchi Method”, IRA Jurnal Teknik Mesin dan Aplikasinya (IRAJTMA), vol. 1, no. 3, pp. 44-50, 2023.
[31] X. Yin, X. Li, Y. Liu, D. Geng, and D. Zhang, “Surface integrity and fatigue life of Inconel 718 by ultrasonic peening milling”, Journal of Materials Research and Technology, vol. 22, pp. 1392-1409, 2023.
[32] G. Li, W. Xie, H. Wang, Y. Chai, S. Zhang, and L. Yang, “Optimizing processing parameters and surface quality of TC18 via ultrasonic-assisted milling (UAM): an experimental study”, Micromachines, vol. 14, no. 6, p. 1111, 2023.
[33] M. Baraya, J. Yan, and M. Hossam, “Improving and Predicting the Surface Roughness and the Machining Accuracy in Ultrasonic Vibration-Assisted Milling”, Journal of Vibration Engineering & Technologies, pp. 1-14, 2024.
[34] Serope Kalpakjian,Steven R. Schmi, Manufacturing Engineering and Technology,蘇春熺,第七版,機械製造,歐亞書局有限公司,民國103年8月。
[35] Z. Pei, D. Prabhakar, P. Ferreira, and M. Haselkorn, “Rotary ultrasonic drilling and milling of ceramics”, Ceramic Transactions, vol. 49, pp. 185-185, 1995.
[36] K. l. Kuo and C. c. Tsao, “Rotary ultrasonic-assisted milling of brittle materials”, Transactions of Nonferrous Metals Society of China, vol. 22, pp. s793-s800, 2012.
[37] M. Günay, E. Aslan, İ. Korkut, and U. Şeker, “Investigation of the effect of rake angle on main cutting force”, International Journal of Machine Tools and Manufacture, vol. 44, no. 9, pp. 953-959, 2004.
[38] Q. Liu, J. Xu, and H. Yu, “Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V”, The International Journal of Advanced Manufacturing Technology, vol. 108, no. 9-10, pp. 2917-2928, 2020. |