博碩士論文 111323045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.218.206.106
姓名 葉昱謙(Yu-Chien Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超短脈衝雷射於碳化矽晶圓內部改質層之特性研究
(Characterizations of Internal Modifications in Silicon Carbide Wafers Induced by Ultrashort Laser Pulses)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著半導體產業的迅速發展,第一代晶圓材料「矽」逐漸無法滿足現代需求。因此,研究者積極尋找性能更為優越的替代材料。第三代半導體材料「碳化矽」因其卓越的物理特性與化學穩定性,成為矽的有力替代者。碳化矽具備高導熱率與寬能隙,使其在各類半導體元件中展現出極高的應用價值。然而,碳化矽晶圓的製程面臨多重挑戰,其晶體生長耗時且產量有限,製作晶圓需經歷分片、切割、研磨、拋光與蝕刻等多道工序。由於碳化矽的高硬度與化學穩定性,加工過程中常出現瓶頸,並伴隨高耗時與高成本。因此,亟需開發新型加工技術,以提升製造效率並降低成本。
在碳化矽晶圓製程中,分片是至關重要的環節。長晶完成後需將晶錠切割成晶圓,目前主流的分片技術是線鋸切割。然而,由於碳化矽的高硬度與線鋸的線徑和強度限制,該技術不僅耗時,還導致材料損耗率偏高。為解決這些問題,雷射隱形切割技術逐漸成為新興的分片方法。該技術利用雷射對材料內部進行改質,並通過外部拉力使改質層分離,完成晶圓切割。
本研究聚焦於使用波長1030 nm的飛秒雷射對N型4H-SiC晶圓進行內部改質。透過精確聚焦於材料內部,加工後可在試片內部生成改質層。實驗顯示,單次雷射掃描可在不同參數下形成單層或雙層改質層,其中單層結構又可分為「上單層」與「下單層」。為深入理解改質層的形成機制,本研究透過橫切面觀察討論不同改質層形態的生成過程,並進一步分析雷射參數(如脈衝重疊率、能量與掃描間距)對改質層形貌的影響。我們成功實現三種改質層形態的分離,並發現拉開面的表面品質會因改質層類型有所差異。此外,上分片與下分片的表面亦因晶面暴露的不同而存在一定差異。本研究還利用穿透式電子顯微鏡(TEM)對改質前後的碳化矽試片進行晶格繞射與微結構分析,深入探討雷射改質對碳化矽內部結構的影響,為改質技術的優化提供了理論基礎。
摘要(英) In recent years, the rapid development of the semiconductor industry has rendered the first-generation wafer material, silicon, increasingly unable to meet modern demands. Consequently, researchers have been actively seeking superior alternative materials. Third-generation semiconductor material silicon carbide (SiC), with its exceptional physical properties and chemical stability, has emerged as a strong candidate to replace silicon. SiC′s high thermal conductivity and wide bandgap make it highly valuable for various semiconductor applications. However, the manufacturing of SiC wafers faces multiple challenges, including the lengthy crystal growth process and low production yield. The fabrication of SiC wafers involves multiple steps such as slicing, cutting, grinding, polishing, and etching. Due to SiC’s high hardness and excellent chemical stability, these processes encounter significant bottlenecks and are time-intensive and costly. As a result, the development of novel pro-cessing technologies is critical to improving manufacturing efficiency and reducing costs.
Slicing is a crucial step in SiC wafer manufacturing. After crystal growth, the ingot must be cut into wafers. Currently, wire sawing is the predominant slicing technology. However, SiC′s high hard-ness, combined with the limitations of wire diameter and strength, results in prolonged processing times and high material wastage rates. To address these issues, laser stealth dicing has gradually become a promising alternative. This technology uses a laser to modify the internal structure of the material and applies external tensile force to separate the modified layer, completing the wafer slicing process.
This study focuses on using a 1030 nm femtosecond laser to perform internal modification on N-type 4H-SiC wafers. By precisely focusing the laser within the material, a modified layer is formed inside the wafer. Experimental results show that single-pass laser scanning under various parameters can produce single-layer or double-layer modified structures. The single-layer structure can be further categorized into "upper single-layer" and "lower single-layer." The formation of these structures is primarily influenced by the pulse overlap rate: a lower overlap rate generates a lower single-layer, while increasing the overlap rate can result in double-layer or upper single-layer structures. Additionally, laser parameters such as energy and scanning spacing significantly impact the morphology of the mod-ified layers.
To better understand the formation mechanisms of these modified layers, this study examines cross-sections to analyze different structural morphologies and investigates how various laser parame-ters influence the modifications. The successful separation of three types of modified layers revealed that the surface quality of the separated layers varies with the type of modification. Furthermore, the upper and lower wafer surfaces differ slightly due to the distinct exposed crystal planes. This research also employs transmission electron microscopy (TEM) to analyze the lattice diffraction and micro-structure of SiC samples before and after laser modification, providing an in-depth understanding of how laser-induced modifications affect the internal structure of SiC and offering a theoretical basis for optimizing modification techniques.
關鍵字(中) ★ 碳化矽
★ 晶圓薄化技術
★ 飛秒雷射切片
★ 材料內部改質
★ 晶圓分片
★ 雙改質切層
關鍵字(英) ★ Silicon carbide
★ Wafer thinning technology
★ Femtosecond laser wafer slicing
★ Internal modification
★ Dual-layer modification
★ slicing
論文目次 目錄
摘 要 i
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
Chapter 2 文獻回顧 5
2.1 碳化矽晶圓簡介 5
2.1.1 碳化矽晶圓的製作流程 5
2.1.2 碳化矽晶圓性質 7
2.1.3 碳化矽的原子結構 10
2.1.4 碳化矽的應用 12
2.2 現行碳化矽晶圓切片技術 13
2.2.1 線切割 14
2.2.2 雷射隱形切割 18
Chapter 3 實驗方法 22
3.1 實驗架構與流程 22
3.2 試片備製 23
3.2.1 試片分割 23
3.2.2 試片清洗與黏貼 24
3.3 雷射加工 25
3.3.1 加工方式 25
3.3.2 雷射加工參數設定 26
3.4 雷射加工後處理 27
3.4.1 試片清洗 27
3.4.2 切割 27
3.4.3 鑲埋與研磨 28
3.4.4 拉力分片試片黏貼 29
3.4.5 拉力分片 30
3.4.6 檢測設備介紹 31
3.4.7 蝕刻 33
3.4.8 拉伸試片檢測 34
Chapter 4 結果與討論 35
4.1 拉伸分片之表面形貌 40
4.1.1 下單層改質面 40
4.1.2 雙層改質結構 42
4.1.3 上單層改質結構 43
4.2 雷射處理參數對雙改質層結構的影響 45
4.2.1 掃描間距 45
4.2.2 脈衝能量 49
4.2.3 脈衝頻率 51
4.2.4 上改質層的TEM晶格繞射與微結構 54
4.2.5 形成雙層結構掃描時間減少的參數調整 57
4.3 下單層裂紋、改質混合層 58
4.3.1 掃描間距對下單層改質結構的影響 58
4.3.2 脈衝能量對下單層改質的影響 60
4.4 上單層改質結構 62
4.4.1 掃描間距對上單層改質的影響 63
4.4.2 雷射能量對上單層改質的影響 64
4.5 雷射改質層向上飄移 67
4.6 以100倍物鏡進行雷射分片 71
Chapter 5 結論 74
參考文獻 75
碩士論文口試教授問題集 78
參考文獻 參考文獻
1. Acheson, E.G.Acheson, E.G., Process of making graphite. 1902, Google Patents.
2. Wellmann, P.J., Review of SiC crystal growth technology. Semiconductor Science and Technology, 2018. 33(10): p. 103001.
3. Chen, G., J. Li, J. Long, H. Luo, Y. Zhou, X. Xie, and G. Pan, Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face. Applied Surface Science, 2021. 536: p. 147963.
4. Ji, P., K. Zhang, Z. Zhang, M. Zhao, R. Li, D. Hao, R. Moro, Y. Ma, and L. Ma, A general strategy for polishing SiC wafers to atomic smoothness with arbitrary facets. Materials Science in Semiconductor Processing, 2022. 144: p. 106628.
5. Ostling, M., R. Ghandi, and C.-M. Zetterling. SiC power devices—Present status, applications and future perspective. in 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. 2011. IEEE.
6. Chaussende, D. and N. Ohtani, Silicon carbide. Single crystals of electronic materials, 2019: p. 129-179.
7. Ostling, M., S.-M. Koo, M. Domeij, E. Danielsson, and C.-M. Zetterling, S i C Device Technologies. Encyclopedia of RF and Microwave Engineering, 2005.
8. Li, Z. and R. Bradt, Thermal expansion of the hexagonal (6H) polytype of silicon carbide. Journal of the American Ceramic Society, 1986. 69(12): p. 863-866.
9. Liu, X., R. Wang, J. Zhang, Y. Lu, Y. Zhang, D. Yang, and X. Pi, Anisotropic deformation of 4H-SiC wafers: insights from nanoindentation tests. Journal of Physics D: Applied Physics, 2022. 55(49): p. 494001.
10. Pegourie, B., Optical properties of alpha silicon carbide. Astronomy and Astrophysics (ISSN 0004-6361), vol. 194, no. 1-2, April 1988, p. 335-339., 1988. 194: p. 335-339.
11. Kaloyeros, A.E. and B. Arkles, Silicon carbide thin film technologies: recent advances in processing, properties, and applications-Part I. ECS Journal of Solid State Science and Technology, 2023.
12. Shenai, K., R.S. Scott, and B.J. Baliga, Optimum semiconductors for high-power electronics. IEEE transactions on Electron Devices, 1989. 36(9): p. 1811-1823.
13. Stephani, D., Today′s and tomorrow′s industrial utilization of silicon carbide semiconductor power devices. Revue de l′Electricite et de l′Electronique, 2004.
14. Shi, B., A.I. Ramones, Y. Liu, H. Wang, Y. Li, S. Pischinger, and J. Andert, A review of silicon carbide MOSFETs in electrified vehicles: Application, challenges, and future development. IET Power Electronics, 2023. 16(12): p. 2103-2120.
15. Sun, J.W., V. Jokubavicius, L. Gao, I. Booker, M. Jansson, X.Y. Liu, J.P. Hofmann, E.J. Hensen, M.K. Linnarsson, and P.J. Wellmann. Solar driven energy conversion applications based on 3C-SiC. in Materials Science Forum. 2016. Trans Tech Publ.
16. Zacharias, P. Perspectives of SiC power devices in highly efficient renewable energy conversion systems. in Materials Science Forum. 2009. Trans Tech Publ.
17. Senesky, D.G., B. Jamshidi, K.B. Cheng, and A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: A review. IEEE Sensors Journal, 2009. 9(11): p. 1472-1478.
18. Moller, H., Wafering of silicon crystals. physica status solidi (a), 2006. 203(4): p. 659-669.
19. Wu, H., Wire sawing technology: A state-of-the-art review. Precision engineering, 2016. 43: p. 1-9.
20. Maeda, H., R. Takanabe, A. Takeda, S. Matsuda, and T. Kato. High-speed slicing of SiC ingot by high-speed multi wire saw. in Materials Science Forum. 2014. Trans Tech Publ.
21. Huang, H., Y. Zhang, and X. Xu, Experimental investigation on the machining characteristics of single-crystal SiC sawing with the fixed diamond wire. The International Journal of Advanced Manufacturing Technology, 2015. 81: p. 955-965.
22. Zhao, Y., M. Kunieda, and K. Abe, A novel technique for slicing SiC ingots by EDM utilizing a running ultra-thin foil tool electrode. Precision Engineering, 2018. 52: p. 84-93.
23. Zhang, Y., X. Xie, Y. Huang, W. Hu, and J. Long, Internal modified structure of silicon carbide prepared by ultrafast laser for wafer slicing. Ceramics International, 2023. 49(3): p. 5249-5260.
24. Geng, W., Q. Shao, Y. Pei, L. Xu, C. Cui, X. Pi, D. Yang, and R. Wang, Slicing of 4H?SiC Wafers Combining Ultrafast Laser Irradiation and Bandgap?Selective Photo?Electrochemical Exfoliation. Advanced Materials Interfaces, 2023. 10(21): p. 2300200.
25. Yamada, Y., T. Ikeda, and J. Ikeno, Precision laser slicing technology for single crystal SiC wafer 1st report: Study on slicing method considering kerf-loss. J. Jpn. Soc. Abras. Technol, 2020. 64(12): p. 635.
26. Yamada, Y., T. IKEDA, and J. Ikeno, Precision laser slicing technology for single crystal SiC wafer 2nd report: Relationship between laser scanning direction and cleavage. J. Jpn. Soc. Abras. Technol, 2021. 65(10): p. 549.
27. 山田洋平, 小松崎伶美, 菊池拓, and 池野順一, SiC ?精密????????? 第 4 報: 短?????????高速?高安定加工??討. 砥粒加工??誌, 2023. 67(11): p. 600-605.
28. Keyence 形狀分析雷射顯微鏡 VK-X1000. Available from: https://www.keyence.com.tw/ss/products/measure-sys/vk-x_ai/.
29. 謝孟倫謝孟倫, 碳化矽晶圓超快雷射隱形切層之改質研究, in 機械工程學系. 2024, 國立中央大學: 桃園縣. p. 103.
30. Miyakoda, K., K. Sunayama, K. Sakamoto, D. Tokunaga, H. Hidai, and S. Matsusaka, Curved hole drilling by laser manipulation of a heat spot inside glass. Precision Engineering, 2023. 81: p. 1-7.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2025-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明