博碩士論文 111323046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:188 、訪客IP:18.219.89.206
姓名 賴宏霖(Hong-Lin Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電弧噴塗積層製造PVD腔體套件壽命提升與電化學拋光減少應力積累有效性分析研究
(Enhancement of Arc Spray Additively Manufactured PVD Chamber Kit Life via Minimization of Stress Buildup by Electrochemical Polishing)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 目前積體電路的主流技術是銅 (Cu) 金屬製程,使用銅當作導線,以減少傳輸延遲和功耗。然而,由於銅的高擴散係數,銅線在矽基板中容易形成深能階,導致裝置性能退化。此外,銅與介電層之間的附著力較差,嚴重影響裝置效率。因此,需要研究金屬化擴散阻障層來克服銅線的固有缺點。在半導體銅製程中,鉭/氮化鉭 (Ta/TaN) 多層膜的物理氣相沉積 (PVD) 極為重要,作為PVD中的襯裡/阻障層,以防止銅與矽 (Si) 基板之間的擴散。本研究旨在增加PVD腔體套件的壽命,減少顆粒脫落並改善製程品質,對半導體行業具有實際意義。
在實際中,電弧噴塗積層製造 (ASAM) 層在腔體內部會形成一定的表面粗糙度,增強Ta/TaN薄膜的附著力。然而,當PVD薄膜達到特定厚度時會發生剝落,產生顆粒。因此,本研究利用有限元分析 (FEA) 來檢查Ta/TaN多層膜的應力分佈。模擬結果表明,薄膜剝落的主要原因是塗層表面存在尖銳點,這些尖銳點成為電流密度集中點。因此,本論文的主要貢獻是首次提出並採用電化學拋光 (ECP),通過模擬確定最佳電化學參數,以優先去除這些尖銳點,改善塗層表面的曲率。這隨之減少了Ta/TaN薄膜中的應力集中,提升了製程品質,並通過實驗驗證將失控 (OOC) 發生概率從12.5%降低到2.5%。
摘要(英) The current mainstream in integrated circuits is the copper (Cu) metal process, such that the interconnects are made of Cu to reduce propagation delays and power consumption. However, due to its high diffusion coefficient, Cu wires tend to form deep energy levels in silicon substrates, leading to degradation in device performance. Additionally, poor adhesion of Cu to dielectric layers severely affects device efficiency. Therefore, research on metallization diffusion barrier layers is needed to overcome the inherent drawbacks of Cu wires. Hence, in semiconductor Cu processes, physical vapor deposition (PVD) of tantalumand /tantalum Nitride (Ta/TaN) multi-layers are of crucial importance, serving as a liner/barrier layer in PVD to prevent diffusion between Cu and silicon (Si) substrates. This study aims to increase the lifespan of PVD chamber kits, reduce particle shedding, and improve process quality. It has practical implications for the semiconductor industry. In practice, Arc spray additively manufactured (ASAM) layers inside the chamber induce surface roughness, enhancing the adhesion of Ta/TaN films. However, peeling occurs when the PVD film reaches a specific thickness, generating particles. Therefore, this study utilizes finite element analysis (FEA) to examine the Ta/TaN multi-layer stress distribution. Simulation results indicate that the leading cause of film peeling is the presence of sharp points on the coating layer surface, which act as points of current density concentration. Consequently, this manuscript′s main contribution is that electrochemical polishing (ECP) is initially proposed and employed, and optimal electrochemical parameters are determined through simulation to preferentially remove these sharp points, improving the curvature of the coating surface. This subsequently reduces stress concentration in the Ta/TaN film, enhances process quality, and is experimentally validated by reducing the probability of out-of-control (OOC) occurrences from 12.5% to 2.5%.
關鍵字(中) ★ 電弧噴塗積層製造(ASAM)
★ 有限元素分析
★ 薄膜分層
★ Ta/TaN
★ 電化學拋光(ECP)
關鍵字(英) ★ Arc spray additively manufactured(ASAM)
★ Finite element analysis
★ Film delamination
★ Ta/TaN
★ Electrochemical polishing (ECP)
論文目次 目錄
摘 要 I
Abstract III
誌 謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章:緒論 1
1-1 前言 1
1-2 研究動機與方法 2
第二章:研究理論與背景介紹 3
2-1 物理氣象沉積(PVD)原理與設備保養 3
2-2 電弧噴塗積層製造(ASAM) 6
2-3 ASAM、塗層表面輪廓與粗糙度之間的相關性 8
2-4 有限元素應力分析 9
2-5 電化學拋光(ECP) 10
第三章:研究方法 12
3-1實驗流程與規劃 12
3-2 實驗方法 13
3-2-1 噴塗試片製作 13
3-2-2 試片噴砂處理 15
3-2-3 ASAM沉積 16
3-2-4 表面輪廓評估 18
3-3 實驗裝置與量測 19
3-3-1 電弧噴塗積層製造(ASAM) 19
3-3-2 表面粗糙度測量儀 20
3-3-3 掃描式電子顯微鏡 22
3-3-4 共焦雷射掃描顯微鏡 24
3-3-5 電化學拋光 26
3-3-6 PVD Ta/TaN 製程顆粒監測系統 27
第四章:實驗結果與探討 29
4-1 ASAM試片表面與橫截面分析 29
4-2 有限元素網格收斂性 31
4-3 熱膨脹係數不匹配引起的Ta/TaN多層薄膜應力模擬 33
4-4 電化學拋光製程 38
4-5 電化學拋光表面特徵分析 42
4-6 電化學拋光表面應力分析 45
第五章:結論 47
參考文獻 50
參考文獻 [1] Knoops, H.; Baggetto, L.; Langereis, E.; Van De Sanden, M.; Klootwijk, J.; Roozeboom, F.; Niessen, R.; Notten, P.; Kessels, W. Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society 2008, 155 (12), G287.
[2] Rossnagel, S. M. Characteristics of ultrathin Ta and TaN films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2002, 20 (6), 2328-2336.
[3] Lane, M.; Dauskardt, R. H.; Krishna, N.; Hashim, I. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. Journal of Materials Research 2000, 15 (1), 203-211.
[4] Frolov, T.; Darling, K.; Kecskes, L.; Mishin, Y. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Materialia 2012, 60 (5), 2158-2168.
[5] Wojcik, H.; Schwiegel, B.; Klaus, C.; Urbansky, N.; Kriz, J.; Hahn, J.; Kubasch, C.; Wenzel, C.; Bartha, J. Cu barrier properties of very thin Ta and TaN films. In IEEE International Interconnect Technology Conference, 2014; IEEE: pp 167-170.
[6] Zhao, J.; Hung, F.; Wu, S. Interface Characteristics, Erosion Behavior, and Thermal Shock Resistance of Al–Ta Alloy Coatings Produced by Arc Spraying. IEEE Transactions on Semiconductor Manufacturing 2022, 35 (4), 698-705.
[7] Kumar, A.; Bhattacharjee, N.; Patel, B.; Laloë, J.-B.; Famodu, O. O.; Ferain, I. Strategies for Reducing Particle Defects in Ti and TiN Thin-Film Deposition Processes. IEEE Transactions on Semiconductor Manufacturing 2018, 32 (1), 48-53.
[8] Ichou, H.; Arrousse, N.; Berdimurodov, E.; Aliev, N. Exploring the advancements in physical vapor deposition coating: a review. Journal of Bio-and Tribo-Corrosion 2024, 10 (1), 3.
[9] Yang, S.-S.; Lai, H.-L.; Chen, C.-C.; Lu, S.-T.; Dai, Y.-M.; Cheng, W.-C.; Fuh, Y.-K.; Li, T. T. Wire-arc spray directed energy deposition: Correlation of chamber kits refurbishing and particle defects reduction in Ta/TaN thin-film physical deposition processes. Journal of Materials Research and Technology 2024, 30, 2754-2767.
[10] Köhler, M.; Fiebig, S.; Hensel, J.; Dilger, K. Wire and arc additive manufacturing of aluminum components. Metals 2019, 9 (5), 608.
[11] Rodriguez, R. M. P.; Paredes, R. S.; Wido, S. H.; Calixto, A. Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surface and Coatings Technology 2007, 202 (1), 172-179.
[12] Mwema, F. M.; Oladijo, O. P.; Akinlabi, S. A.; Akinlabi, E. T. Properties of physically deposited thin aluminium film coatings: A review. Journal of alloys and compounds 2018, 747, 306-323.
[13] Gedzevicius, I.; Valiulis, A. V. Analysis of wire arc spraying process variables on coatings properties. Journal of Materials Processing Technology 2006, 175 (1-3), 206-211.
[14] Shah, A.; Aliyev, R.; Zeidler, H.; Krinke, S. A review of the recent developments and challenges in wire arc additive manufacturing (WAAM) process. Journal of Manufacturing and Materials Processing 2023, 7 (3), 97.
[15] Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology 2015, 81, 465-481.
[16] Vaz, R. F.; Pukasiewicz, A. G.; Fals, H. D.; Lourençato, L. A.; Paredes, R. S. Study of particle properties of different steels sprayed by arc spray process. Coatings 2020, 10 (4), 417.
[17] Dobrzański, L.; Dobrzański, L.; Dobrzańska-Danikiewicz, A. Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics. Journal of Achievements in Materials and Manufacturing Engineering 2020, 99 (1), 14-41.
[18] Lett, S.; Quet, A.; Hémery, S.; Cormier, J.; Meillot, E.; Villechaise, P. Residual stresses development during cold spraying of Ti-6Al-4V combined with in situ shot peening. Journal of Thermal Spray Technology 2023, 32 (4), 1018-1032.
[19] Syrek-Gerstenkorn, B.; Paul, S.; Davenport, A. J. Sacrificial thermally sprayed aluminium coatings for marine environments: A review. Coatings 2020, 10 (3), 267.
[20] WANG, Hong; HE, Yongxiang; STOW, Clifford C. Method of cleaning a coated process chamber component. U.S. Patent No 6,902,628, 2005.
[21] Hartmann, F.; Katz, C. Structural analysis with finite elements; Springer Science & Business Media, 2013.
[22] Łyczkowska-Widłak, E.; Lochyński, P.; Nawrat, G. Electrochemical polishing of austenitic stainless steels. Materials 2020, 13 (11), 2557.
[23] Baicheng, Z.; Xiaohua, L.; Jiaming, B.; Junfeng, G.; Pan, W.; Chen-nan, S.; Muiling, N.; Guojun, Q.; Jun, W. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Materials & Design 2017, 116, 531-537.
[24] Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization; Springer, 2018.
[25] Teng, X.; Li, F.; Lu, C. Visualization of materials using the confocal laser scanning microscopy technique. Chemical Society Reviews 2020, 49 (8), 2408-2425.
[26] Ji, J.; Khan, M. A.; Zhan, Z.; Yi, R.; Deng, H. Material removal thickness: a universal factor determining the evolution of surface roughness in electrochemical polishing. The International Journal of Advanced Manufacturing Technology 2022, 120 (9), 5755-5762.
[27] Wolters, C. H.; Köstler, H.; Möller, C.; Härdtlein, J.; Anwander, A. Numerical approaches for dipole modeling in finite element method based source analysis. In International Congress Series, 2007; Elsevier: Vol. 1300, pp 189-192.
[28] Moridi, A.; Ruan, H.; Zhang, L.; Liu, M. Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations. International Journal of Solids and Structures 2013, 50 (22-23), 3562-3569.
[29] Fang, W.; Lo, C.-Y. On the thermal expansion coefficients of thin films. Sensors and Actuators A: Physical 2000, 84 (3), 310-314.
[30] Chang, J.; Zhao, G.-P.; Zhou, X.-L.; Liu, K.; Lu, L.-Y. Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study. Journal of Applied Physics 2012, 112 (8).
[31] Zhou, L.; Chen, J.; Li, C.; He, J.; Li, W.; Yuan, T.; Li, R. Microstructure tailoring to enhance strength and ductility in pure tantalum processed by selective laser melting. Materials Science and Engineering: A 2020, 785, 139352.
[32] Hou, Y.; Li, R.; Liang, J. Simultaneous electropolishing and electrodeposition of aluminum in ionic liquid under ambient conditions. Applied Surface Science 2018, 434, 918-921.
[33] Garrigues, L.; Pebere, N.; Dabosi, F. An investigation of the corrosion inhibition of pure aluminum in neutral and acidic chloride solutions. Electrochimica Acta 1996, 41 (7-8), 1209-1215.
[34] Ma, D.; Li, S.; Liang, C. Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions. Corrosion Science 2009, 51 (4), 713-718.
[35] Yi, R.; Zhang, Y.; Zhang, X.; Fang, F.; Deng, H. A generic approach of polishing metals via isotropic electrochemical etching. International Journal of Machine Tools and Manufacture 2020, 150, 103517.
[36] 林金雄,"鋁表面之電解拋光研究",勤益學報 2005, 23 (1), 29-38.
[37] Bai, Y.; Zhao, C.; Yang, J.; Fuh, J. Y. H.; Lu, W. F.; Weng, C.; Wang, H. Dry mechanical-electrochemical polishing of selective laser melted 316L stainless steel. Materials & Design 2020, 193, 108840.
[38] Dibari, G.; Read, H. Electrochemical behavior of high purity aluminum in chloride containing solutions. Corrosion 1971, 27 (11), 483-494.
[39] 陳煥濱,"使用導電高分子工具電解複合磨粒拋光純鋁圓柱面之研究",國立中山大學機械與機電工程學系碩士論文,2017.
[40] Liu, W.; Kunieda, M.; Luo, Z. Three-dimensional simulation and experimental investigation of electrolyte jet machining with the inclined nozzle. Journal of Materials Processing Technology 2021, 297, 117244.
[41] Qu, N.; Fang, X.; Zhang, Y.; Zhu, D. Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte. The International Journal of Advanced Manufacturing Technology 2013, 69, 2703-2709.
[42] Ge, Z.; Chen, W.; Zhu, Y. Simulation and experimental study on improving electrochemical machining stability of highly convex structures on casing surfaces using backwater pressure. Chinese Journal of Mechanical Engineering 2022, 35 (1), 98.
[43] Labarga, J.; Bastidas, J.; Feliu, S. A contribution to the study on electropolishing of mild steel and aluminium using alternating current. Electrochimica acta 1991, 36 (1), 93-95.
[44] Sepúlveda, M.; Quintero, D.; Castaño, J.; Echeverría, F. Improved two-step Brytal process for electropolishing of aluminum alloys. Corrosion Science 2018, 136, 386-392.
[45] Kuo, H. S.; Tsai, W. T. Electrochemical behavior of aluminum during chemical mechanical polishing in phosphoric acid base slurry. Journal of The Electrochemical Society 2000, 147 (1), 149.
[46] 鍾岳峻,"電解拋光對積層製造製備鈦合金材表面與機械性質影響",國立中山大學材料與光電科學學系碩士論文,2018.
[47] Han, W.; Fang, F. Fundamental aspects and recent developments in electropolishing. International Journal of Machine Tools and Manufacture 2019, 139, 1-23.
[48] 郭寬淵,"電解拋光鋁合金微流道模具之研究",國立中央大學機械工程學系碩士論文,2008.
[49] Sato, N.; Okamoto, G. Electrochemical passivation of metals. Electrochemical Materials Science 1981, 193-245.
[50] Acquesta, A.; Monetta, T.; Franchitti, S.; Borrelli, R.; Viscusi, A.; Perna, A. S.; Penta, F.; Esposito, L.; Carrino, L. Green electrochemical polishing of EBM Ti6Al4V samples with preliminary fatigue results. The International Journal of Advanced Manufacturing Technology 2023, 126 (9), 4269-4282.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明