參考文獻 |
[1] Baliga, B.J., Advanced Power MOSFET Concepts. 2010.
[2] Moore, G.E., Cramming more components onto integrated circuits, in Electronics. 1965. p. 82-85.
[3] Salahuddin, S., K. Ni, and S. Datta, The era of hyper-scaling in electronics. Nature Electronics, 2018. 1(8): p. 442-450.
[4] Frank, D.J., et al., Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE, 2001. 89(3): p. 259-288.
[5] Dutta, T., et al., Origins of the Short Channel Effects Increase in III-V nMOSFET Technologies, in 2012 13th International Conference on Ultimate Integration on Silicon (ULIS). 2012, IEEE: Grenoble, France. p. 25-28.
[6] Uchida, K., et al., Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI Thickness less than 5 nm, in IEEE International Electron Devices Meeting (IEDM). 2002: San Francisco, CA, USA. p. 47-50.
[7] Nian Yang a, Jimmie J. Wortman, A study of the effects of tunneling currents and reliability of sub-2 nm gate oxides on scaled n-MOSFETs. Microelectronics Reliability, 2001. 41: p. 37-46.
[8] Wang, Y., et al., Hot Carrier Injection Reliability in Nanoscale Field Effect Transistors: Modeling and Simulation Methods. Electronics, 2022. 11(21): p. 3601.
[9] Das, R.R., T.R. Rajalekshmi, and A. James, FinFET to GAA MBCFET: A Review and Insights. IEEE Access, 2024. 12: p. 50556-50577.
[10] Lyu, P., Q. Wang, and L. Sun, Optimization of Metal Line Thickness & CD and Effect on RC Delay, in 2022 China Semiconductor Technology International Conference (CSTIC). 2022, IEEE: Shanghai, China. p. 1-3.
[11] Chou, H.-C., et al., Strain Evolution in SiGe Nanosheet Transistor Process Flow. IEEE Transactions on Electron Devices, 2024. 71(5): p. 2907-2913.
[12] Samy, O., et al., A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals, 2021. 11(4): p. 355.
[13] Gertych, A.P., et al., Thermal properties of thin films made from MoS2 nanoflakes and probed via statistical optothermal Raman method. Scientific Reports, 2019. 9(1): p. 13338.
[14] Tong, S.W., et al., High Performance Field Effect Transistor based on Large-sized Highly Crystalline MoS2 Single Crystal, in Electron Devices Technology and Manufacturing Conference (EDTM). 2019, IEEE: Singapore. p. 188-190.
[15] Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
[16] Tang, J., et al., Low power flexible monolayer MoS2 integrated circuits. Nature Communications, 2023. 14(1): p. 3633.
[17] Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
[18] Mak, K.F., et al., Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letter, 2010. 105(13): p. 136805.
[19] Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020. 4(1): p. 29.
[20] Hsu, Y.T., et al., Topological superconductivity in monolayer transition metal dichalcogenides. Nature Communications, 2017. 8: p. 14985.
[21] Nakata, Y., et al., Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2. Nature Communications, 2021. 12(1): p. 5873.
[22] Sipos, B., et al., From Mott state to superconductivity in 1T-TaS2. Nature Materials, 2008. 7(12): p. 960-965.
[23] Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712.
[24] Nagarajan, T., et al., Enhanced tribological properties of diesel-based engine oil through synergistic MoS2-graphene nanohybrid additive. Scientific Report, 2023. 13(1): p. 17424.
[25] Toh, R.J., et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communication, 2017. 53(21): p. 3054-3057.
[26] Ellis, J.K., M.J. Lucero, and G.E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Applied Physics Letters, 2011. 99(26): p. 261908.
[27] Xu, X., et al., Growth of 2D Materials at the Wafer Scale. Advanced Materials, 2022. 34(14): p. e2108258.
[28] Li, L., et al., Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nature Communications, 2024. 15(1): p. 1825.
[29] Xia, Y., et al., 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nature Materials, 2023. 22(11): p. 1324-1331.
[30] Hu, Z., et al., Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures. Nature Communications, 2024. 15(1): p. 1747.
[31] Muñoz, R., et al., Low T direct plasma assisted growth of graphene on sapphire and its integration in graphene/MoS2 heterostructure-based photodetectors. npj 2D Materials and Applications, 2023. 7(1): p. 57.
[32] Liu, C., et al., MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020. 33: p. 470-502.
[33] Zhang, Y., et al., MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production. Scientific Reports, 2022. 12(1): p. 3261.
[34] Illarionov, Y.Y., et al., Process implications on the stability and reliability of 300 mm FAB MoS2 field-effect transistors. npj 2D Materials and Applications, 2024. 8(1): p. 8.
[35] Liu, L., et al., Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nature Communications, 2024. 15(1): p. 165.
[36] Wu, F., et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022. 603(7900): p. 259-264.
[37] Zhang, Y., et al., The Improvement of the Mechanical Exfoliation Method to Prepare Impurity-free Few-layer MoS2, in 2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). 2023, IEEE: Chengdu, China. p. 477-481.
[38] Sahoo, D., et al., Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports, 2020. 10(1): p. 10759.
[39] Kwack, Y.-J., T.T.T. Can, and W.-S. Choi, Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications. npj 2D Materials and Applications, 2021. 5(1): p. 84.
[40] Tang, L., et al., Chemical Vapor Deposition Growth of Two-Dimensional Compound Materials: Controllability, Material Quality, and Growth Mechanism. Accounts of Materials Research, 2020. 2(1): p. 36-47.
[41] Aspiotis, N., et al., Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition process. npj 2D Materials and Applications, 2023. 7(1): p. 18.
[42] Ono, R., et al., Improvement of MoS2 Film Quality by Solid-Phase Crystallization from PVD Amorphous MoSx Film, in 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). 2023, IEEE: Seoul, Korea, Republic of. p. 1-3.
[43] Fu, D., et al., Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. Journal of the American Chemical Society, 2017. 139(27): p. 9392-9400.
[44] Lu, X.-W., et al., Synthesis of uniform two-dimensional MoS2 films via thermal evaporation. Nano Research, 2024. 17(4): p. 3217-3223.
[45] Hirano, S., et al., Crystallinity improvement using migration-enhancement methods for sputtered-MoS2 films, in 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM). 2017, IEEE: Toyama, Japan. p. 28-29.
[46] N. Goel, R.K. and M. Kumar, Scalable Growth of High-Quality MoS2 Film by Magnetron Sputtering Application for NO2 Gas Sensing, in 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). 2019, IEEE: Bombay, India. p. 1-3.
[47] Dumcenco, D., et al., Large-Area Epitaxial Monolayer MoS2. ACS Nano. 9(4): p. 4611-4620.
[48] Bae, J. and Y. Yoo, A Novel Carbon-Assisted Chemical Vapor Deposition Growth of Large-Area Uniform Monolayer MoS2 and WS2. Nanomaterials (Basel), 2021. 11(9): p. 2423.
[49] Zhu, J., et al., Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nature Nanotechnology, 2023. 18(5): p. 456-463.
[50] Lei, J., et al., Salt-Assisted MoS2 Growth: Molecular Mechanisms from the First Principles. Journal of American Chemical Society, 2022. 144(16): p. 7497-7503.
[51] Han, G.H., et al., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nature Communications, 2015. 6: p. 6128.
[52] Patsha, A., V. Sheff, and A. Ismach, Seeded-growth of WS2 atomic layers: the effect on chemical and optical properties. Nanoscale, 2019. 11(46): p. 22493-22503.
[53] Li, Y., et al., Site-Specific Positioning and Patterning of MoS2 Monolayers: The Role of Au Seeding. ACS Nano, 2018. 12(9): p. 8970-8976.
[54] Najmaei, S., et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013. 12(8): p. 754-759.
[55] Ding, D., et al., Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni. ACS Nano, 2016. 10(12): p. 11196-11204.
[56] Wang, F., et al., Two‐Dimensional Non‐Layered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2016. 27(19): p. 1603254.
[57] Li, J., et al., General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020. 579(7799): p. 368-374.
[58] Liu, F., et al., Site-selective growth of two-dimensional materials: strategies and applications. Nanoscale, 2022. 14(28): p. 9946-9962.
[59] Kim, K.S., et al., Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature, 2023. 614(7946): p. 88-94.
[60] Wang, J., et al., Twin Defect Derived Growth of Atomically Thin MoS2 Dendrites. ACS Nano, 2018. 12(1): p. 635-643.
[61] Feng, Q., et al., Chemical vapor deposition growth of sub-centimeter single crystal WSe2 monolayer by NaCl-assistant. Nanotechnology, 2019. 30(3): p. 034001.
[62] Shinde, S.M., et al., Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Materials, 2018. 10(2): p. e468-e468.
[63] Ye, M., et al., Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. Photonics, 2015. 2(1): p. 288-307.
[64] Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 146033.
[65] Changgu Lee, H.Y., et al., Anomalous Lattice Vibrations of Single-and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
[66] Li, Z., et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nature Communications, 2020. 11(1): p. 1151.
[67] Chakraborty, B., et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B, 2012. 85(16): p. 161304.
[68] Li, H., et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
[69] McCreary, K.M., et al., A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. APL Materials, 2018. 6(11): p. 1-8.
[70] Thomas, A. and K.B. Jinesh, Excitons and Trions in MoS2 Quantum Dots: The Influence of the Dispersing Medium. ACS Omega, 2022. 7(8): p. 6531-6538.
[71] Mouri, S., Y. Miyauchi, and K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Letters, 2013. 13(12): p. 5944-5948.
[72] Xu, H., et al., Control of the Nucleation Density of Molybdenum Disulfide in Large-Scale Synthesis Using Chemical Vapor Deposition. Materials (Basel), 2018. 11(6): p. 870.
[73] Xu, W., et al., Large Dendritic Monolayer MoS2 Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces, 2018. 10(5): p. 4630-4639.
[74] Ullah, S., et al., Controllable p-type doping of 2D MoS2 via Sodium intercalation for optoelectronics. Journal of Materials Chemistry C, 2023. 11(9): p. 3386-3394.
[75] Yang, C., et al., Photoluminescence and X-Ray Excited Luminescence from Glutathione-Stabilized Gold Nanoparticles. Journal of biomedical nanotechnology, 2013. 9: p. 1827-1836. |