博碩士論文 111323076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.15.223.214
姓名 艾信甫(Hsin-Fu Ai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 物理氣相傳輸法生長8吋碳化矽單晶之熱場、流場與熱應力數值模擬分析
(Numerical Simulation Analysis of Thermal Field、Flow Field and Thermal Stress of 8-inch Silicon Carbide Single Crystal Growth by Physical Vapor Transport Method)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 物理氣相傳輸法(Physical vapor transport, PVT)是目前生長碳化矽單晶的主流製程,製程時坩堝內須處於低壓狀態並利用高溫將碳化矽粉末昇華為反應氣體,反應氣體會因腔室內的溫度梯度和濃度差的關係傳輸至上方較低溫的晶種表面,當晶種表面濃度處於飽和時,便會凝固生成晶體,為了維持晶體生長環境,爐體採密閉狀態,難以透過實驗測量獲得數值資料。
本研究優化前人開發之PVT法利用感應加熱生長6吋碳化矽單晶熱流場模型,將感應加熱系統變更為電阻加熱系統,使溫度分佈更為均勻,減少熱應力的產生,並依據業界的主流產品尺寸,將尺寸增至8吋,因此本研究針對8吋碳化矽單晶,改進前人開發之物理氣相傳輸法準穩態(Quasi-steady state)熱流場模型,並依據文獻在坩堝上絕緣層結構做變化,形成一形狀相異之絕緣層結構,減小徑向溫差的同時,亦提升晶體品質,進而分析晶體隨時間變化下對於坩堝內部熱流場和濃度的影響,探討其對晶體在不同時間下的長速、表面形貌與熱應力分佈,並分析不同孔隙率、不同輸入功率及改變絕緣層結構形狀下優化晶體品質及表面長速曲線的方法,藉此導入製程可降低晶體缺陷提高長速。
模擬結果顯示晶體厚度增加時,晶體與粉末間距離會減少,造成腔體內軸向溫度梯度降低,造成長速下降。而PVT製程上的改善建議為(1)減少碳化矽粉末之間的孔隙率,可增加傳導至粉末中心之熱能,以增加晶體的長速。(2)調整加熱器輸入功率來改善晶種表面徑向溫度差,並且能發現製程溫度上升,晶體的長速也隨之提高。(3)改變坩堝上絕緣層結構形狀,減少晶種邊緣處的軸向溫度差,降低晶體邊緣處多晶的生長的可能,使整體長率差減少,並有利於提升晶種邊緣區域長率。
摘要(英) The Physical Vapor Transport (PVT) method is currently the mainstream process for growing silicon carbide single crystals. During the process, the crucible must be under low pressure and high temperature to sublimate the silicon carbide powder into reactive gases. These reactive gases are transported due to the temperature gradient and concentration difference within the chamber, moving to the cooler seed crystal surface above. When the concentration on the seed crystal surface reaches saturation, the gases solidify and form crystals. To maintain the crystal growth environment, the furnace is kept in a sealed state, making it difficult to obtain numerical data through experimental measurements.
This study optimizes the PVT method developed by predecessors and uses induction heating to grow a 6-inch silicon carbide single crystal thermal flow field model. The induction heating system is changed to a resistance heating system to make the temperature distribution more uniform and reduce the generation of thermal stress. According to industry standards, the size of the mainstream product has increased to 8 inches. Therefore, this study focuses on the 8-inch silicon carbide single crystal, improving the physical vapor transport method quasi-steady-state thermal flow field model developed previously anthors. Based on the literatures, the structure of the insulating layer on the crucible is changed to form an insulating layer structure with a different shape, which not only reduces the radial temperature difference but also improves the quality of the crystal. Then, the impact of the change of the crystal over time on the heat flow field andconcentration inside the crucible is analyzed and discussed. The study analyzes the growth rate, surface morphology, and thermal stress distribution of crystals at different times and examines methods for optimizing crystal quality and surface growth rate curves under different porosity, different input power, and changes in the structure and shape of the insulating layer to introduce them into the manufacturing process. This can reduce crystal defects and increase the growth rate.
The simulation results indicate that as the thickness of the crystal increases, the distance between the crystal and the powder decreases, resulting in a reduction of the axial temperature gradient within the cavity and causing a decrease in growth rate. Improvement suggestions for the PVT process are as follows: (1) reducing the porosity between silicon carbide powders can enhance the conduction of thermal energy to the center of the powder, thereby increasing the growth rate of the crystal; (2) adjusting the input power of the heater to improve the radial temperature difference on the crystal seed surface, which also leads to an increase in growth rate as the process temperature rises; (3) modifying the insulation layer structure on the crucible to reduce the axial temperature difference at the edge of the crystal seed, thus lowering the likelihood of polycrystalline growth at the crystal edges, reducing overall growth rate disparity, and facilitating the enhancement of growth rate in the edge region of the crystal seed.
關鍵字(中) ★ 物理氣相傳輸法
★ 碳化矽
★ 數值模擬
★ 熱應力
關鍵字(英) ★ physical vapor transport method
★ silicon carbide single crystal
★ numerical simulation
★ thermal stress
論文目次 目錄
摘要 I
Abstract III
誌謝 V
圖目錄 IX
表目錄 XI
符號說明 XII
1 第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 生長室中溫度分佈對晶體型態的影響 2
1.2.2 PVT法中粉料顆粒尺寸對6H-SiC晶體的影響 2
1.2.3 三分離加熱法-PVT法長8吋SiC晶體熱場最佳化 3
1.2.4 PVT法採用電阻式加熱對大尺寸SiC熱場模擬設計 4
1.3 研究動機與目的 10
2 第二章 研究方法 11
2.1 物理系統 11
2.2 模型幾何 13
2.3 基本假設 15
2.4 統御方程式 16
2.4.1 熱傳導 16
2.4.2 表面間的熱輻射 16
2.4.3 流體力學 18
2.4.4 長晶室中的質量傳遞 18
2.4.5 晶體生長速率 19
2.4.6 熱應力 20
2.4.7 多孔性材料之熱傳導係數 21
2.5 邊界條件 22
2.5.1 冷卻系統 22
2.5.2 固體表面輻射 22
2.5.3 物種的傳輸 23
2.5.4 混合氣體流場 24
2.5.5 應力邊界 25
2.5.6 材料性質 26
3 第三章 數值方法 30
3.1 數值分析模擬 30
3.2 網格配置測試 31
3.3 收斂公差測試 32
3.4 輻射解析度測試 33
4 第四章 結果與討論 35
4.1 PVT法熱流場關係與模型驗證 35
4.1.1 爐體內溫度分佈與熱源關係 35
4.1.2 生長室內流場與濃度分佈 35
4.2 不同孔隙率比較 41
4.3 電阻加熱器輸入不同功率之比較 44
4.3.1 不同功率對長晶速率的影響 44
4.3.2 不同功率對徑向溫度差的影響 44
4.4 不同絕緣層頂部形狀之影響比較 49
4.4.1 溫度的變化 49
4.4.2 長率的變化 50
4.5 晶體生長厚度變化 54
4.5.1 長率的變化 54
4.5.2 熱應力的變化 55
5 第五章 結論與未來方向 63
5.1 結論 63
5.2 未來方向 64
參考文獻 66
參考文獻 [1] J. Q. Tian, X. J. Xie, L. B. Zhao, "Origins and characterization techniques of stress in SiC crystals: A review," Progress in Crystal Growth and Characterization of Materials, vol. 70, 2024.
[2] S. Lin, Z. Chen, B. Liu, L. Li, X. Feng, "Identification and control of SiC polytypes in PVT method," Journal of Materials Science, vol. 21, p.p. 326-329, 2010.
[3] R. Ma, H. Zhang, V. Prasad, M. Dudley, "Growth kinetics and thermal stress in the sublimation growth of silicon carbide", Crystal Growth & Design, vol. 2, p.p. 213-220, 2002.
[4] Y. G. Shi, P. Y. Dai , J. F. Yang , Z. H. Jin , "Effects of Grain Size of Source Material on Growing 6H-SiC Bulk Crystal by Physical Vapor Transport," Taylor & Francis, vol. 27, p.p. 84-87, 2012.
[5] B. J. Xu, X. F. Han, S. C. Xu, "Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with 3 separation heater method," Journal of Crystal Growth, vol. 614, p.p. 238-242, 2023.
[6] Y. B. Yang, J. Wang, Y. M. Wang, "Thermal stress simulation of optimized SiC single crystal growth crucible structure," Journal of Crystal Growth, vol. 504, p.p. 31–36, 2018.
[7] S. T. Zhang, T. Li, Z. X. Li, J. Sui, L. L. Zhao, "Thermal Field Design of a Large-Sized SiC Using the Resistance Heating PVT Method via Simulations," Multidisciplinary Digital Publishing Institute, vol. 12, 2023.
[8] J. Lu, Z-B. Zhang, Q.-S. Chen, "Numerical simulation of the flow field and concentration distribution in the bulk growth of silicon carbide crystals," Journal of Crystal Growth, vol. 292, p.p. 519-522, 2006.
[9] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, "Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals," Journal of Heat Transfer, vol. 123, p.p. 1098-1109, 2001.
[10] D. Duc, I. Naoki, F. Kazuyoshi, "A study of near-infrared nanosecond laser ablation of silicon carbide," International Journal of Heat and Mass Transfer, vol. 65, p.p. 713-718, 2013.
[11] P. Vueghs, P. Beckers, "Presentation of the hemisphere method," Engineering Sciences, vol. 53, 2006.
[12] O. Klein, P. Philip, "Transient numerical investigation of induction heating during sublimation growth of silicon carbide single crystals," Journal of Crystal Growth, vol. 247, p.p. 219-235, 2003.
[13] N. M. Ravindra, S. R. Marthi, A. Banobre, "Radiative properties of semiconductors," IOP Concise Physics, 2017.
[14] P. J. Wellmann, "Review of SiC crystal growth technology," Semiconductor Science and Technology, vol. 33, p.p. 1-21, 2018.
[15] Q.-S. Chen, J.-Y. Yan, and V. Prasad, "Application of flow-kinetics model to the PVT growth of SiC crystals," Journal of Crystal Growth, vol. 303, p.p. 357-361, 2007.
[16] S. Ota, T. Furusho, H. Takagi, S. Oshima, S. Nishino, "High Quality SiC bulk growth by sublimation method using elemental Silicon and Carbon powder as SiC source materials," Materials Science Forum, vol. 457-460, p.p. 115-118, 2004.
[17] M. Bickermann, D. Hofmann, P. J. Wellmann, A. Winnacker, "On the preparation of semi-insulating SiC bulk crystals by the PVT technique," Applied Surface Science, vol. 184, p.p. 84-89, 2001.


[18] X. Wang, D. Cai, H. Zhang, "Increase of SiC sublimation growth rate by optimizing of powder packaging," Journal of Crystal Growth, vol. 305, p.p. 122-132, 2007.
[19] I. A. Zhmakin, A. V. Kulik, S. Yu. Karpov, S. E. Demina, " Evolution of thermoelastic strain and dislocation density during sublimation growth of silicon carbide," Diamond and Related Materials 9, p.p. 446-451, 2000.
[20] S. H. P. Chen, S. C. Saxena, "Thermal conductivity of argon in the temperature range 350 to 2500 K," Molecular Physics, vol. 29, p.p. 455-466, 1975.
[21] L. Yin, E-Y. J. Vancoille, K. Ramesh, H. Huang, "Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining," International Journal of Machine Tools & Manufacture 44 , p.p. 607-615, 2004.
[22] J. Su, X. Chen, and Y. Li, "Numerical design of induction heating in the PVT growth of SiC crystal", Journal of Crystal Growth, vol. 401, p.p. 128-132, 2014.
[23] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, "Fundamentals of heat and mass transfer," John Wiley & Sons, 6th Edition, p.p. 569-583, 2007.
[24] Z. Li, R. C. Bradt, "Thermal Expansion of the Hexagonal (6H) Polytype of Silicon Carbide," J. Am. Ceram. Soc, vol.69, p.p. 863–866, 1986.
[25] T. Kaneko, "Growth kinetics of vapor-grown SiC," Journal of Crystal Growth, vol. 128, p.p. 354-357, 1993.
[26] 藍嶸洧,「PVT法生長碳化矽單晶過程中熱場、流場與濃度分佈對長晶影響」,國立中央大學,碩士論文,民國一百一十一年。
[27] 丁芷馨,「物理氣相傳輸法生長6吋碳化矽單晶之熱場與熱應力數值分析」,國立中央大學,碩士論文,民國一百一十二年。

[28] P. Tan, W. Y. Kang, J. Yin, "200mm silicon carbide bulk growth optimization: mass transport controlled by a designed gas deflector," IOP Concise Physics, 2022.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明