參考文獻 |
Abegunde, O. O., Akinlabi, E. T., Oladijo, O. P., Akinlabi, S., & Ude, A. U. (2019). Overview of thin film deposition techniques. AIMS Materials Science, 6(2), 174-199.
Akdag, O., Akkus, Y., Cetin, B., & Dursunkaya, Z. (2021). Interplay of transport mechanisms during the evaporation of a pinned sessile water droplet. Physical Review Fluids, 6(7), 073605.
Al-Sharafi, A., Yilbas, B. S., Sahin, A. Z., Ali, H., & Al-Qahtani, H. (2016). Heat transfer characteristics and internal fluidity of a sessile droplet on hydrophilic and hydrophobic surfaces. Applied Thermal Engineering, 108, 628-640.
Barash, L. Y., Bigioni, T. P., Vinokur, V. M., & Shchur, L. N. (2009). Evaporation and fluid dynamics of a sessile drop of capillary size. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 79(4), 046301.
Bhardwaj, R., Fang, X., & Attinger, D. (2009). Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New Journal of Physics, 11(7), 075020.
Birdi, K. S., Vu, D. T., & Winter, A. (1989). A study of the evaporation rates of small water drops placed on a solid surface. The Journal of physical chemistry, 93(9), 3702-3703.
Bozorgmehr, B., & Murray, B. T. (2021). Numerical simulation of evaporation of ethanol–water mixture droplets on isothermal and heated substrates. ACS omega, 6(19), 12577-12590.
Buongiorno, J. (2006). Convective transport in nanofluids.
Carney, R. R. P. (2010). Probing metal nanoparticles and assemblies with analytical ultracentrifugation (Doctoral dissertation, Massachusetts Institute of Technology).
Carreon, Y. J., Rios-Ramirez, M., Moctezuma, R. E., & Gonzalez-Gutierrez, J. (2018). Texture analysis of protein deposits produced by droplet evaporation. Scientific reports, 8(1), 9580.
Chen, Y., Hong, F., & Cheng, P. (2020). Transient flow patterns in an evaporating sessile drop: A numerical study on the effect of volatility and contact angle. International Communications in Heat and Mass Transfer, 112, 104493.
Dash, S., Chandramohan, A., Weibel, J. A., & Garimella, S. V. (2014). Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces. Physical Review E, 90(6), 062407.
Deegan, R. D. (2000). Pattern formation in drying drops. Physical review E, 61(1), 475.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
Diddens, C., Li, Y., & Lohse, D. (2021). Competing Marangoni and Rayleigh convection in evaporating binary droplets. Journal of fluid mechanics, 914, A23.
Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
Edwards, A. M. J., Atkinson, P. S., Cheung, C. S., Liang, H., Fairhurst, D. J., & Ouali, F. F. (2018). Density-driven flows in evaporating binary liquid droplets. Physical review letters, 121(18), 184501.
Einstein, A. (1905). Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der physik, 4.
Engineering ToolBox, (2004). Moist Air - Water Vapor and Saturation Pressure. [online] Available at: https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-air-d_689.html.
Erbil, H. Y., McHale, G., & Newton, M. I. (2002). Drop evaporation on solid surfaces: constant contact angle mode. Langmuir, 18(7), 2636-2641.
Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate. The Journal of Physical Chemistry B, 106(6), 1334-1344.
Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9), 3972-3980.
Jang et al. (2012). Highly crystalline soluble acene crystal arrays for organic transistors: mechanism of crystal growth during dip?coating. Advanced Functional Materials, 22(5), 1005-1014.
Jia, W., & Qiu, H. H. (2003). Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science, 27(7), 829-838.
Jiang, W., Ding, G., Peng, H., & Hu, H. (2010). Modeling of nanoparticles’ aggregation and sedimentation in nanofluid. Current Applied Physics, 10(3), 934-941.
Kajiya, T., Kobayashi, W., Okuzono, T., & Doi, M. (2009). Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. The Journal of Physical Chemistry B, 113(47), 15460-15466.
Kang, K. H., Lim, H. C., Lee, H. W., & Lee, S. J. (2013). Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Physics of Fluids, 25(4).
Li, X., Murray, B., & Narayan, S. (2023). Investigation of sessile droplet evaporation using a transient two-step moving mesh model. International Journal of Heat and Mass Transfer, 209, 124151.
Li, Y., Diddens, C., Lv, P., Wijshoff, H., Versluis, M., & Lohse, D. (2019). Gravitational effect in evaporating binary microdroplets. Physical review letters, 122(11), 114501.
Lin, Y., Chu, F., & Wu, X. (2023). Evaporation of heated droplets at different wetting modes: A decoupled study of diffusive and convective effects. International Journal of Heat and Mass Transfer, 207, 123993.
Lu, G., Duan, Y. Y., Wang, X. D., & Lee, D. J. (2011). Internal flow in evaporating droplet on heated solid surface. International journal of heat and mass transfer, 54(19-20), 4437-4447.
McHale, G., Rowan, S. M., Newton, M. I., & Banerjee, M. K. (1998). Evaporation and the wetting of a low-energy solid surface. The Journal of Physical Chemistry B, 102(11), 1964-1967.
McNab, G. S., & Meisen, A. (1973). Thermophoresis in liquids. Journal of Colloid and Interface Science, 44(2), 339-346.
Nguyen Thanh Cao. (2024). Transient flow patterns in a particle-containing sessile droplet: A numerical study on temperature effect. Central University Master Thesis.
Panwar, A. K., Barthwal, S. K., & Ray, S. (2003). Effect of evaporation on the contact angle of a sessile drop on solid substrates. Journal of adhesion science and technology, 17(10), 1321-1329.
Parsa, M., Harmand, S., & Sefiane, K. (2018). Mechanisms of pattern formation from dried sessile drops. Advances in colloid and interface science, 254, 22-47.
Paul, A., & Dhar, P. (2023). Transients of Marangoni and Stefan advection dynamics during generic sessile droplet evaporation. Physics of Fluids, 35(10).
Pearson, J. R. A. (1958). On convection cells induced by surface tension. Journal of fluid mechanics, 4(5), 489-500.
Polyanin, A. D., & Manzhirov, A. V. (2006). Handbook of mathematics for engineers and scientists. CRC Press
Pradhan, T. K., & Panigrahi, P. K. (2017). Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 1-12.
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J., & Stone, H. A. (2007). Influence of substrate conductivity on circulation reversal in evaporating drops. Physical review letters, 99(23), 234502.
Savino, R., & Monti, R. (1996). Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer. Journal of crystal growth, 165(3), 308-318.
Schlottke, J., & Weigand, B. (2008). Direct numerical simulation of evaporating droplets. Journal of Computational Physics, 227(10), 5215-5237.
Shao, X., Duan, F., Hou, Y., & Zhong, X. (2020). Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies. Advances in colloid and interface science, 275, 102049.
Son, G. (2010). A level-set method for analysis of microdroplet evaporation on a heated surface. Journal of mechanical science and technology, 24, 991-997.
Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
Tritton, D. J. (2012). Physical fluid dynamics. Springer Science & Business Media.
Varanakkottu, S. N., Anyfantakis, M., Morel, M., Rudiuk, S., & Baigl, D. (2016). Light-directed particle patterning by evaporative optical marangoni assembly. Nano letters, 16(1), 644-650.
Wang, T. S., & Shi, W. Y. (2020). Transition of Marangoni convection instability patterns during evaporation of sessile droplet at constant contact line mode. International Journal of Heat and Mass Transfer, 148, 119138.
Wits, W. W., & Sridhar, A. (2010, February). Inkjet Printing of 3D Metallic Silver Complex Microstructures. In International Conference on Competitive Manufacturing, COMA 2010 (pp. 45-50). Stellenbosch University.
Xu, X., & Luo, J. (2007). Marangoni flow in an evaporating water droplet. Applied Physics Letters, 91(12).
Yang, K., Hong, F., & Cheng, P. (2014). A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian–Eulerian formulation. International Journal of Heat and Mass Transfer, 70, 409-420.
Yoo, J. H., Kwon, H. J., Paeng, D., Yeo, J., Elhadj, S., & Grigoropoulos, C. P. (2016). Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal. Nanotechnology, 27(14), 145604.
Zhang et al. (2015). Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 11(10), 1889-1900.
楊凱傑. (2017). 微/奈米粒子粒徑與材質在液滴中對於不同親疏水表面咖啡環形成之自附著現象影響探討. 國立臺灣大學化學工程學系學位論文, 2017, 1-125.
賴冠霖. (2024). 疏水膠體液滴的蒸發及沉積物:溫度與表面活性劑的影響. 國立中央大學能源工程研究所碩士論文.
賴美蓁. (2023). 奈米流體親水液滴於蒸發初期的流場模擬:表面活性劑的影響. 國立中央大學機械工程學系碩士論文. |