參考文獻 |
[1] D. Takagi, J. N. McElwaine, and H. E. Huppert, "Shallow granular flows". Physical Review E, Vol. 83(3): pp. 031306, 2011.
[2] G. Lube, H. E. Huppert, R. S. J. Sparks, and A. Freundt, "Granular column collapses down rough, inclined channels". Journal of Fluid Mechanics, Vol. 675: pp. 347-368, 2011.
[3] K. van der Vaart, A. Thornton, C. Johnson, T. Weinhart, L. Jing, P. Gajjar, J. Gray, and C. Ancey, "Breaking size-segregation waves and mobility feedback in dense granular avalanches". Granular Matter, Vol. 20: pp. 1-18, 2018.
[4] Y.-h. Sun, W.-t. Zhang, X.-l. Wang, and Q.-q. Liu, "Numerical study on immersed granular collapse in viscous regime by particle-scale simulation". Physics of Fluids, Vol. 32(7), 2020.
[5] R. Maiti, G. Das, and P. K. Das, "Self organization of granular flow by basal friction variation: Natural jump, moving bore, and flying avalanche". AIChE Journal, Vol. 69(1): pp. e17943, 2023.
[6] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, and D. Maza, "Silo clogging reduction by the presence of an obstacle". Physical Review Letters, Vol. 107(27): pp. 278001, 2011.
[7] K. Endo, K. A. Reddy, and H. Katsuragi, "Obstacle-shape effect in a two-dimensional granular silo flow field". Physical Review Fluids, Vol. 2(9): pp. 094302, 2017.
[8] A. B. Harada, E. Thackray, and K. N. Nordstrom, "Silo flow and clogging in the presence of an obstacle". Physical Review Fluids, Vol. 7(5): pp. 054301, 2022.
[9] R. Caitano, A. Garcimartín, and I. Zuriguel, "Anchoring effect of an obstacle in the silo unclogging process". Physical review letters, Vol. 131(9): pp. 098201, 2023.
[10] D. Mancarella and O. Hungr, "Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers". Canadian Geotechnical Journal, Vol. 47(8): pp. 827-841, 2010.
[11] A. Leonardi, G. Goodwin, and M. Pirulli, "The force exerted by granular flows on slit dams". Acta Geotechnica, Vol. 14: pp. 1949-1963, 2019.
[12] Y. Fan, F. Zhang, Y. Liu, and D. Ma, "Numerical Investigation of Impact Characteristics of Rigid Retaining Wall for Blocking Landslides: A Case Study of the Shum Wan Road Landslide". Geofluids, Vol. 2022, 2022.
[13] B.-J. Kim, D. Kim, and C.-Y. Yune, "Experimental Study on the Impact Dynamics of Cylindrical Baffles with a Rigid Barrier against Debris Flows". Applied Sciences, Vol. 12(17): pp. 8632, 2022.
[14] C. W. W. Ng, C. E. Choi, R. Koo, S. R. Goodwin, D. Song, and J. S. Kwan, "Dry granular flow interaction with dual-barrier systems". Géotechnique, Vol. 68(5): pp. 386-399, 2018.
[15] C. W. Ng, U. Majeed, and C. E. Choi, "Effects of solid fraction of saturated granular flows on overflow and landing mechanisms of rigid barriers". Géotechnique, Vol. 74(1): pp. 27-41, 2022.
[16] C. Choi, C. W. W. Ng, S. R. Goodwin, L. Liu, and W. Cheung, "Flume investigation of the influence of rigid barrier deflector angle on dry granular overflow mechanisms". Canadian Geotechnical Journal, Vol. 53(10): pp. 1751-1759, 2016.
[17] C. W. W. Ng, C. E. Choi, G. Goodwin, and W. Cheung, "Interaction between dry granular flow and deflectors". Landslides, Vol. 14: pp. 1375-1387, 2017.
[18] Y. Huang, B. Zhang, and C. Zhu, "Computational assessment of baffle performance against rapid granular flows". Landslides, Vol. 18: pp. 485-501, 2021.
[19] H. Luo and L. Zhang, "Earth pressure buildup in impacting earth flow behind a barrier". International Journal of Geomechanics, Vol. 20(2): pp. 04019170, 2020.
[20] Y.-J. Jiang, Z.-Z. Wang, Y. Song, and S.-Y. Xiao, "Cushion layer effect on the impact of a dry granular flow against a curved rock shed". Rock Mechanics and Rock Engineering, Vol. 51: pp. 2191-2205, 2018.
[21] B. Zhang and Y. Huang, "Unsteady overflow behavior of polydisperse granular flows against closed type barrier". Engineering Geology, Vol. 280: pp. 105959, 2021.
[22] S. B. Savage, "Gravity flow of cohesionless granular materials in chutes and channels". Journal of Fluid Mechanics, Vol. 92(1): pp. 53-96, 1979.
[23] J. Gray, Y.-C. Tai, and S. Noelle, "Shock waves, dead zones and particle-free regions in rapid granular free-surface flows". Journal of Fluid Mechanics, Vol. 491: pp. 161-181, 2003.
[24] J. Gray and K. Hutter, "Pattern formation in granular avalanches". Continuum Mechanics and Thermodynamics, Vol. 9: pp. 341-345, 1997.
[25] Y.-C. Tai, S. Noelle, J. Gray, and K. Hutter, "Shock-capturing and front-tracking methods for granular avalanches". Journal of Computational Physics, Vol. 175(1): pp. 269-301, 2002.
[26] A. Edwards and N. M. Vriend, "Size segregation in a granular bore". Physical Review Fluids, Vol. 1(6): pp. 064201, 2016.
[27] X. Cui, "Strong oblique shock waves in granular free-surface flows". Physics of Fluids, Vol. 33(8), 2021.
[28] A. Khan, S. Verma, P. Hankare, R. Kumar, and S. Kumar, "Shock–shock interactions in granular flows". Journal of Fluid Mechanics, Vol. 884: pp. R4, 2020.
[29] C. Liu, Z. Yu, and S. Zhao, "Consideration of maximum impact force design for a rock shed against dry granular flow". European Journal of Environmental and Civil Engineering, Vol. 26(7): pp. 2963-2984, 2022.
[30] Y.-J. Jiang and I. Towhata, "Experimental study of dry granular flow and impact behavior against a rigid retaining wall". Rock Mechanics and Rock Engineering, Vol. 46: pp. 713-729, 2013.
[31] Y.-J. Jiang, Y. Zhao, I. Towhata, and D.-X. Liu, "Influence of particle characteristics on impact event of dry granular flow". Powder Technology, Vol. 270: pp. 53-67, 2015.
[32] C. W. W. Ng, C. Choi, L. Liu, Y. Wang, D. Song, and N. Yang, "Influence of particle size on the mechanism of dry granular run-up on a rigid barrier". Géotechnique Letters, Vol. 7(1): pp. 79-89, 2017.
[33] A. Ahmadipur and T. Qiu, "Impact force to a rigid obstruction from a granular mass sliding down a smooth incline". Acta Geotechnica, Vol. 13: pp. 1433-1450, 2018.
[34] W. Shen, T. Zhao, J. Zhao, F. Dai, and G. G. Zhou, "Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses". Engineering Geology, Vol. 241: pp. 86-96, 2018.
[35] Y. Huang, X. Jin, and J. Ji, "Effects of barrier stiffness on debris flow dynamic impact—I: Laboratory flume test". Water, Vol. 14(2): pp. 177, 2022.
[36] B. Zanuttigh and A. Lamberti, "Experimental analysis of the impact of dry avalanches on structures and implication for debris flows". Journal of Hydraulic research, Vol. 44(4): pp. 522-534, 2006.
[37] C. Niu, H. Shen, Z. Lin, and J. Fu. "Real-Time Map Compression Method Based on Boolean Operation and Moore-Neighborhood Search". in International Conference on Intelligent Robotics and Applications. 2023. Springer.
[38] H. Nobach and C. Tropea, "Improvements to PIV image analysis by recognizing the velocity gradients". Experiments in fluids, Vol. 39: pp. 614-622, 2005.
[39] A. Armanini, M. Larcher, and M. Odorizzi, "Dynamic impact of a debris flow front against avertical wall. Int Conf Debris-Flow Hazards Mitig Mech Predict Assessment, Proc 1041–1049". 2011.
[40] Y. Jiang and Y. Zhao, "Experimental investigation of dry granular flow impact via both normal and tangential force measurements". Géotechnique Letters, Vol. 5(1): pp. 33-38, 2015.
[41] S. P. Pudasaini and C. Kröner, "Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results". Physical Review E, Vol. 78(4): pp. 041308, 2008.
[42] R. L. Handy, "The arch in soil arching". Journal of Geotechnical Engineering, Vol. 111(3): pp. 302-318, 1985.
[43] H. Hu, G. G. Zhou, D. Song, K. F. E. Cui, Y. Huang, C. E. Choi, and H. Chen, "Effect of slit size on the impact load against debris-flow mitigation dams". Engineering Geology, Vol. 274: pp. 105764, 2020.
[44] A. Ahmadipur, T. Qiu, and B. Sheikh, "Investigation of basal friction effects on impact force from a granular sliding mass to a rigid obstruction". Landslides, Vol. 16: pp. 1089-1105, 2019.
[45] A. Armanini, G. Rossi, and M. Larcher, "Dynamic impact of a water and sediments surge against a rigid wall". Journal of Hydraulic Research, Vol., 2019.
[46] T. Jóhannesson, P. Gauer, P. Issler, K. Lied, and K. Hákonardóttir, "The design of avalanche protection dams: recent practical and theoretical developments". Mitigative Measures against, Vol.: pp. 200, 2009.
[47] J. Fang, Y. Cui, H. Liu, L. Zhang, G. G. Zhou, and H. Fan, "Influences of deposition upslope the barrier on the dynamic impact of dry granular flow". Engineering Geology, Vol. 323: pp. 107212, 2023. |