博碩士論文 111323088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.216.60.85
姓名 張紘溢(Hong-Yi Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 線切割矽晶錠之溫度分布及熱膨脹分析之數值模擬
(Numerical Simulation Of Temperature Distribution And Thermal Expansion Analysis Of Wire-Cut Silicon Ingots)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著晶錠尺寸的擴大,切割後晶圓表面不平整的問題日益顯著,這不僅增加了後續半導體製程的難度與成本,還可能導致材料浪費並降低製程效率。根據本研究的觀察,晶圓翹曲主要由熱膨脹不均與銅線震動兩個因素引起。其中,熱膨脹不均是由於不同深度的晶錠在切割過程中受熱和散熱不均,導致各區域的熱膨脹程度不同,進而使晶圓表面產生高低不平的形變。鋸線震動則會在切割過程中引起晶圓表面的局部不平整,但其影響範圍較小,主要造成局部形貌的變異。本研究認為熱膨脹不均是導致晶圓整體表面形變的主要原因,並因此著重探討了不同切割條件下的熱膨脹行為及其對晶圓表面的影響。
研究採用了直徑300mm、長度180mm的晶錠模型,通過數值模擬工具分析了切割過程中的溫度分布,並且將模擬結果與實驗數據進行比對。模擬過程中,調整外圍漿料噴灑流速,研究了其對不同切割深度下的溫度影響。最終,研究表明改變漿料噴灑流速能顯著改善晶錠表面的溫度分布,從而減少熱膨脹不均對晶圓表面翹曲的影響。此外,結合下方主輪的熱膨脹效應,綜合考量了整個系統中的熱力學影響,進一步提高了模擬結果的準確性。這些結果有助於理解並提出改善晶圓切割過程中翹曲問題的策略,有效降低材料浪費並減少製程成本。
摘要(英) As the size of the ingot increases, the issue of uneven wafer surfaces after cutting has become increasingly pronounced. This not only raises the difficulty and cost of subsequent semiconductor processes but also leads to material waste and reduces production efficiency. According to observations from this study, wafer warping is primarily caused by two factors: uneven thermal expansion and wire vibration. Uneven thermal expansion occurs due to inconsistent heating and cooling of different depths of the ingot during the cutting process, resulting in varying degrees of thermal expansion across regions, which in turn causes surface height variations on the wafer. Wire vibration can also induce localized surface irregularities during cutting; however, its overall impact is limited and primarily affects localized morphology. This study posits that uneven thermal expansion is the primary reason for overall surface deformation of the wafer, and thus focuses on investigating the thermal expansion behavior under different cutting conditions and its effects on wafer surface quality.
The research employed a model with a diameter of 300 mm and a length of 180 mm, analyzing the temperature distribution during the cutting process using numerical simulation tools and comparing the simulation results with experimental data. Throughout the simulation, the spray flow rate of the slurry was adjusted to study its impact on temperature at various cutting depths. Ultimately, the study demonstrated that altering the slurry spray flow rate significantly improves the temperature distribution on the ingot surface, thereby mitigating the impact of uneven thermal expansion on wafer warping. Additionally, by incorporating the thermal expansion effects of the lower main wheel and considering the thermodynamic influences throughout the entire system, the accuracy of the simulation results was further enhanced. These findings contribute to understanding and developing strategies to address the warping issues encountered during the wafer cutting process, effectively reducing material waste and lowering production costs.
關鍵字(中) ★ 線切割矽晶錠
★ 漿料
★ 晶圓翹曲
關鍵字(英) ★ Wire-sliced silicon wafers
★ Slurry
★ Wafer warping
論文目次 摘要 i
Abstract ii
誌謝 iv
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 1
1.1. 研究背景 1
1.2. 文獻回顧 2
1.3. 研究目的與動機 3
第二章 物理模型與系統描述 4
2.1. 物理模型 4
2.2. 物理系統 9
2.3. 漿料量測 9
2.4. 基本假設 10
2.5. 數學模型與邊界條件 12
2.5.1. 統御方程式 12
2.5.2. 邊界條件 13
第三章 研究方法 23
3.1. 有限元素方法 23
3.2. 網格配置與收斂性測試 24
3.3. 公差收斂性測式 24
第四章 結果與討論 28
4.1. 切割180mm晶錠之溫度分布 28
4.2. 降低晶錠切割各深度溫度差 35
4.3. 晶錠的熱膨脹比較 37
4.4. 考慮主輪的熱膨脹 42
第五章 結論與未來 46
5.1. 結論 46
5.2. 未來方向 47
第六章 參考文獻 49
參考文獻 [1] T. Liedke and M. Kuna, "A macroscopic mechanical model of the wire sawing process," International Journal of Machine Tools and Manufacture, vol. 51, no. 9, pp. 711-720, 2011.
[2] H. J. Moller, "Basic mechanisms and models of multi?wire sawing," Advanced engineering materials, vol. 6, no. 7, pp. 501-513, 2004.
[3] T. Yamada, M. Fukunaga, T. ICHIKAWA, K. FURUNO, K. MAKINO, and A. YOKOYAMA, "Prediction of warping in silicon wafer slicing with wire-saw machine," Theoretical and Applied Mechanics Japan, vol. 51, pp. 251-258, 2002.
[4] S. Bhagavat and I. Kao, "A finite element analysis of temperature variation in silicon wafers during wiresaw slicing," International Journal of Machine Tools and Manufacture, vol. 48, no. 1, pp. 95-106, 2008.
[5] X. Huang, H. Huang, and H. Guo, "Simulation and experimental research on the slicing temperature of the sapphire with diamond wire," International Journal of Computational Methods, vol. 16, no. 04, p. 1843003, 2019.
[6] L. Johnsen, J. E. Olsen, T. Bergstrom, and K. Gastinger, "Heat transfer during multiwire sawing of silicon wafers," 2012.
[7] M. Bhagavat, V. Prasad, and I. Kao, "Elasto-hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw: modeling and finite element analysis," J. Trib., vol. 122, no. 2, pp. 394-404, 2000.
[8] T. L. Bergman, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2024-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明