博碩士論文 111323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.15.60.240
姓名 簡翌安(Yi-An Jian)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多光譜光照治療結合皮膚阻抗監測 穿戴式裝置之開發
(Multispectral Light Therapy Combined with Skin Impedance Monitoring Development of Wearable Devices)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-16以後開放)
摘要(中) 近年來,穿戴式電子裝置在健康監測領域的應用愈加廣泛,這些裝置能即時偵測使用者的健康狀況,並通過有線或無線方式將數據傳送至接收裝置,必要時再傳至雲端進行處理,以達成即時健康監控的目的。同時,智慧型傷口敷料的發展亦引起了越來越多的關注。傳統的智慧型傷口敷料主要依賴於軟性印刷電路板(FPC),然而,這類技術雖適合大規模生產,但在面對個別患者需求的客製化生產時,成本將大幅增加。積層製造技術因其能夠列印複雜外型,特別適合用於針對不規則形狀傷口的智慧型敷料客製化生產。

本研究基於積層製造技術,使用高解析度光固化成形技術製作了一款雙層智慧穿戴式繃帶。該貼片結構包含生物電阻抗電極電路和 3x3 多光譜光療模組電路,其電路直接列印於撓性基板上,並將發光二極體嵌入基板中,從而減少裝置整體厚度並提高電路穩定性。導電電路透過直接墨水書寫技術列印導電墨水,並在固化後,將兩片撓性基板利用基板材料作為黏著劑進行接合,最終再以導電墨水連接導通接合後的雙層基板電路。此外,為了均勻擴散多光譜光療模組的光線和保護發光二極體,防止外部環境對電路和電子元件的影響,研究中使用了二氧化矽與聚二甲基矽氧烷混合的光擴散層進行封裝。

該穿戴式繃帶可透過微處理器結合低功耗藍牙技術,以無線方式由手機 APP 控制其生物阻抗測量和多光譜光療模組的操作,讓使用者能夠迅速獲取並管理健康資訊。為驗證貼片的可靠性,本研究將進行阻抗量測分析、不同彎曲條件下的電路穩定性測試、表面溫度穩定性測試及光擴散層性能評估。
摘要(英) In recent years, wearable electronic devices have found increasingly broad applications in health monitoring. These devices can detect the user’s health status in real time and transmit data to receiving devices via wired or wireless communication. When necessary, the data can be sent to the cloud for processing, enabling real-time health monitoring. Simultaneously, the development of smart wound dressings has garnered growing attention. Traditional smart wounddressings primarily rely on flexible printed circuit boards (FPC). While these technologies are suitable for mass production, they significantly increase costs when customized for individual patient needs. Additive manufacturing, with its ability to fabricate complex shapes, is particularly well-suited for producing custom smart dressings tailored to irregularly shaped wounds.

This study utilizes additive manufacturing to develop a dual-layer smart wearable bandage using high-resolution photopolymerization technology. The patch structure includes bioimpedance electrode circuits and multispectral phototherapy module circuits. The circuits are directly printed onto flexible substrates, with light-emitting diodes (LEDs) embedded in the substrate, reducing the overall thickness of the device and enhancing circuit stability. Conductive circuits are printed using direct ink writing (DIW) of conductive ink, and after curing, the two flexible substrates are bonded using the substrate material as an adhesive. The bonded double-layer substrate circuits are then electrically connected with conductive ink.Furthermore, to evenly diffuse light from the multispectral phototherapy module and protect the LEDs from external environmental impacts, a light-diffusion encapsulation layer, composed of a mixture of silicon dioxide and polydimethylsiloxane (PDMS), is employed.

The wearable bandage integrates a microcontroller and low-power Bluetooth technology, enabling wireless control of bioimpedance measurement and the operation of the multispectral phototherapy module via a smartphone app. This allows users to quickly access and manage health information. To validate the patch’s reliability, the study will conduct impedance measurement analysis, circuit stability tests under different bending conditions, surface temperature stability tests, and performance evaluations of the light-diffusion layer.
關鍵字(中) ★ 積層製造
★ 軟性印刷電路板
★ 醫療穿戴式裝置
★ 生物電阻抗
★ 發光二極體
關鍵字(英) ★ Additive Manufacturing
★ Flexible Printed Circuit Board
★ Medical Wearable Devices
★ Bioelectrical Impedance
★ Light Emitting Diode
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 ivvi
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 團隊先前研究 14
1-4 研究動機與目的 15
1-5 論文架構 17
第二章 研究與理論說明 18
2-1 印刷電路板簡介 18
2-2 直接墨水書寫技術簡介 20
2-3 光生物調節療法 21
2-4 脈衝寬度調變 23
2-5 生物電阻抗分析 24
2-6 低功耗藍牙無線通訊技術 25
2-7 醫療器材電氣設備和生物相容性規範 25
第三章 系統架構與研究方法 30
3-1 雙層智慧穿戴式繃帶系統架構和製作 30
3-2 雙層電路製作流程 37
3-3 多光譜光照模組 40
3-4 生物電阻抗量測模組 45
3-5 遠端傳輸架構 50
3-6 封裝層光擴散性測試 56
3-7 彎曲電路穩定性測試 63
3-8 表面工作溫度測試 64
第四章 實驗結果與討論 66
4-1 雙層智慧穿戴式繃帶製作結果 66
4-2 多光譜光照模組功能測試 68
4-3 封裝層的光散射影響 72
4-4 生物電阻抗量測結果 81
4-5 彎曲電路穩定性測試結果 83
4-6 表面工作溫度測試結果 85
第五章 結論與未來展望 87
5-1 結論 87
5-2 未來展望 87
參考文獻 89
參考文獻 [1] G. A. M. d. A. Nunes, M. d. C. d. Reis, M. F. F. Rosa, L. R. T. Peixoto, A. F. d. Rocha, and S. d. S. R. F. Rosa, “A System for Treatment of Diabetic Foot Ulcers Using LED Irradiation and Natural Latex”, Research on Biomedical Engineering, Vol. 32, pp. 3-13, 2016.
[2] S. Y. Lee, S. Jeon, Y. W. Kwon, M. Kwon, M. S. Kang, K. Y. Seong, T. E. Park, S. Y. Yang, D. W. Han, S. W. Hong, and K. S. Kim, “Combinatorial Wound Healing Therapy Using Adhesive Nanofibrous Membrane Equipped with Wearable LED Patches for Photobiomodulation”, Science Advances, Vol. 8, eabn1646, 2022.
[3] K. Kim, I. S. Min, T. H. Kim, D. H. Kim, S. Hwang, K. Kang, K. Kim, S. Park, J. Lee, Y. U. Cho, J. W. Lee, W. H. Yeo, Y. M. Song, Y. Jung, and K. J. Yu, “Fully Implantable and Battery-Free Wireless Optoelectronic System for Modulable Cancer Therapy and Real-Time Monitoring”, NPJ Flexible Electronics, Vol. 7, 41, 2023.
[4] J. H. Lee, Y. Ahn, H. E. Lee, Y. N. Jang, A. Y. Park, S. Kim, Y. H. Jung, S. H. Sung, J. H. Shin, S. H. Lee, S. H. Park, K. S. Kim, M. S. Jang, B. J. Kim, S. H. Oh, and K. J. Lee, “Wearable Surface-Lighting Micro-Light-Emitting Diode Patch for Melanogenesis Inhibition”, Advanced Healthcare Materials, Vol. 12, 2201796, 2023.
[5] H. Masuda, M. Kimura, A. Nishioka, H. Kato, and A. Morita, “Dual Wavelength 5-Aminolevulinic Acid Photodynamic Therapy using a Novel Flexible Light-Emitting Diode Unit”, Journal of Dermatological Science, Vol. 93, pp. 109-115, 2019.
[6] Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao, S. Dong, L. Ma, C. Gao, and Z. Wu, “Smart Flexible Electronics-Integrated Wound Dressing for Real-Time Monitoring and On-Demand Treatment of Infected Wounds”, Advanced Science, Vol. 7, 1902673, 2020.
[7] G. Xu, Y. Lu, C. Cheng, X. Li, J. Xu, Z. Liu, J. Liu, G. Liu, Z. Shi, Z. Chen, F. Zhang, Y. Jia, D. Xu, W. Yuan, Z. Cui, S. S. Low, and Q. Liu,“Battery-Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled On-Demand Drug Delivery”, Advanced Functional Material, Vol. 31, 2100852, 2021.
[8] G. Yao, X. Mo, C. Yin, W. Lou, Q. Wang, S. Huang, L. Mao, S. Chen, K. Zhao, T. Pan, L. Huang, and Y. Lin, “A Programmable and Skin Temperature-Activated Electromechnical Synergistic Dressing for Effective Wound Healing”, Science Advances, Vol. 8, eabl8379, 2022.
[9] N. Nguyen, Z. H. Lin, S. R. Barman, C. Korupalli, J. Y. Cheng, N. X. Song, Y. Chang, F. L. Mi, H. L. Song, H. W. Sung, and Y. J. Lin, “Engineering an Integrated Electroactive Dressing to Accelerate Wound Healing and Monitor Noninvasively Progress of Healing”, Nano Energy, Vol. 99, 107393, 2022.
[10] C. Lim, Y. J. Hong, J. Jung, Y. Shin, S. H. Sunwoo, S. Baik, O. K. Park, S. H. Choi, T. Hyeon, J. H. Kim, S. Lee, and D. H. Kim, “Tissue-Like Skin-Device Interface for Wearable Bioelectronics by Using Ultrasoft, Mass-Permeable, and Low-Impedance Hydrogels”, Science Advances, Vol. 7, 2021.
[11] S. H. Kim, A. Basir, R. Avila, J. Lim, S. W. Hong, G. Choe, J. H. Shin, J. H. Hwang, S. Y. Park, J. Joo, C. Lee, J. Choi, B. Lee, K. S. Choi, S. Jung, T. Kim, H. Yoo, and Y. H. Jung, “Strain-Invariant Stretchable Radio-Frequency Electronics”, Nature, Vol. 629, pp. 1047-1054, 2024.
[12] R. Kaveti, M. A. Jakus, H. Chen, B. Jain, D. G. Kennedy, E. A.Caso, N. Mishra, N. Shaarma, B. E. Uzunogli, W. B. Han, T. M. Jang, S. W. Hwang, G. Theocharidis, B. J. Sumpio, A. Veves, S. K. Sia, and A. J. Bandodkar, “Water-Powered, Electronics-Free Dressings that Electrically Stimulate Wounds for Rapid Wound Closure”, Science Advances, Vol. 10, 2024.
[13] J. LaDou, “Printed Circuit Board Industry”, Hygiene and Environmental Health, Vol. 209, pp. 211-219, 2006.
[14] Q. Zheng, B. Xie, Z. Xu, and H. Wu, “A Systematic Printability Study of Direct Ink Writing Towards High-Resolution Rapid Manufacturing”, Extreme Manufacturing, Vol. 5, 035002, 2023.
[15] Z. Gong, Z. Xiang, X. O. Yang, J. Zhang, N. Lau, J. Zhou, and C. C. Chan, “Wearable Fiber Optic Technology Based on Smart Textile: A Review”, Materials, Vol. 12, 3311, 2019.
[16] V. V. Tran, M. Chae, J. Y. Moon, and Y. C. Lee, “Light Emitting Diodes Technology-Based Photobiomodulation Therapy (PBMT) for Dermatology and Aesthetics: Recent Applications, Challenges, and Perspectives”, Optics and Laser Technology, Vol. 135 , 106698, 2021.
[17] G. Singh, S. Anand, B. Lall, A. Srivastava, and V. Singh, “A Technical Review of Various Bioelectric Impedance Methods for Health Monitoring”, IEEE, 2018.
[18] A. KeKonen, M. Bergelin, J. E. Eriksson, A. Vaalasti, H. Ylanen, and J. Viik, “Bioimpedance Measurement Based Evaluation of Wound Healing”, Physiological Measurement, Vol. 38, 1373, 2017.
[19] A. KeKonen, M. Bergelin, J. E. Eriksson, A. Vaalasti, H. Ylanen, S. Kielosto, and J. Viik, “Bioimpedance Method for Monitoring Venous Ulcers: Clinical Proof-of-Concept Study”, Vol. 178, 112974, 2021.
[20] H. C. Lukaski and M. Moore, “Bioelectrical Impedance Assessment of Wound Healing”, Diabetes Science and Technology, Vol. 6, pp. 209-212, 2012.
[21] M. F. Moore, N. Donbson, S. Huang, L. Castelllino, and S. Kapp, “Phase Angle, an Alternative Physiological Tool to Assess Woun”, The Journal of the American College of Certified Wound Specialists, Vol. 3, pp. 2-7, 2011.
[22] K. Townsend : Introduction to Bluetooth Low Energy. 2024年3月8日,取自https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
[23] Soldered官方網站 : PWM – Pulse-width modulation. 2023年4月2日,取自https://soldered.com/learn/pwm-pulse-width-modulation/
[24] T. Wu, F. Wu, C. Qiu, J. M. Reddoute, and M. R. Yucev, “A Rigid-Flex Wearable Health Monitoring Sensor Patch for IoT-Connected Healthcare Applications”, IEEE, Vol. 7, pp. 6932-6945, 2020.
[25] X. Ye, L. Wu, K. Mao, Y. Feng, J. Li, L. Ning, and J. Chen, “Bioimpedance Measurement of Knee Injuries Using Bipolar Electrode Configuration”, IEEE Transactions on Biomedical Circuits and Systems, Vol. 16, pp. 962-971, 2022.
[26] X. Pei, H. Jin, S. Dong, D. Lou, L. Ma, X. Wang, W. Cheng, and H. Wong, “Flexible Wireless Skin Impedance Sensing System for Wound Healing Assessment”, Vacuum, Vol. 168, 108808, 2019.
[27] S. Lee, J. Y. Hong, and J. Jang, “Multifunctional Graphene Sheets Embedded in Silicone Encapsulant for Superior Performance of Light-Emitting Diodes”, Acs Nano, Vol. 7, pp. 5784-5790, 2013.
[28] Y. Jeon, H. R. Choi, M. Lim, S. Choi, H. King, J. H. Kwon, K. C. Park, and K. C. Choi, “A Wearable Photobiomodulation Patch Using a Flexible Red-Wavelength OLED and Its In Vitro Differential Cell Proliferation Effects”, Advanced Materials Technologies, Vol. 3, 1700391, 2018.
[29] T. Lin, P. Zou, R. Lin, H. Guan, Z. Fang, J. Chen, Z. Long , Y. Zhang, L. Xing, F. Qi, J.Lang, X. Xue, and M. Chen, “A Self-Powered Wireless Detachable Drug/Light Injector for Metronomic Photodynamic Therapy in Cancer Treatment”, Nano Energy, Vol. 116, 108826, 2023.
[30] Q. D. Ling, L. Y. Ho, Y. A. Ko, Y. Chang, and A. Higuchi, “Visible Light-Eegulated Gene Expression and Neurite Outgrowth of Nerve Cells”, Journal of Chemical Engineering of Japan, Vol. 44, pp. 171-178, 2011.
[31] H. Ahmadi, A. Amini, F. F. Fathabady, A. Mostafavinia, F. Zare, R. E. Malekshah, M. N. Ghalibaf, M. Abrisham, F. Rezaei, R. Albright, S. K. Ghoreishi, S. Chien, and M. Bayat, “Transplantation of Photobiomodulation-Preconditioned Diabetic Stem Cells Accelerates Ischemic Wound Healing in Diabetic Rats”, Stem Cell Research and Therapy, Vol. 11, 2020.
[32] S. Guo, S. Zhou, H. Li, and B. You, “Light Diffusing FilBattery-Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled On-Demand Drug Deliveryms Fabricated by Strawberry-Like PMMA/SiO2 Composite Microspheres for LED Application”, Journal of Colloid and Interface Science, Vol. 448, pp. 123-129, 2015.
[33] F. A. H. A. Watban and B. L. Andres, “Polychromatic LED in Oval Full-Thickness Wound Healing in Non-Diabetic and Diabetic rats”, Photomedicine and Laser Surgery, Vol. 24, pp. 10-16, 2006.
[34] N. Wuthibenjaphonchai, M. Haruta, K. Sasagawa, T. Tokuda, S. Carrara, and J. Ohta, “Wearable and Battery-Free Health-Monitoring Devices with Optical Power Transfer”, IEEE Sensors Journal, Vol. 21, pp. 9402-9412, 2021.
[35] 陳柏任,「組織工程應用之平面與旋轉兩用式三維生物列印機開發」,國立中央大學,碩士論文,民國111年。
[36] B. Levit, P. Krebsbach, C. B. Haim, G. H. Sosa, and Y. Hanein, “Printed Soft Skin Electrodes for Seamless Bio-Impedance Measurements”, Flexible and Printed Electronics, Vol. 8, 015020, 2023.
[37] C. D. Pascali, L. Francioso, L. Giampetruzzi, G. Rescio, M. A. Signore, A. Leone, and P. Siciliano, “Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients”, Sensors, Vol. 21, 1847, 2021.
[38] N. Tomita, S. Takamatsu, and T. Itoh, “Fabrication of an E-Textile Bioelectrode Array With Screen-Printed Wiring and an Ionic Liquid Gel Toward Cutaneous Whole-Body Electromyography”, IEEE Access, Vol. 11, pp. 68421-68427, 2023.
[39] Android Developers 官方網站,https://developer.android.com/?hl=zh-tw。
[40] Analog Devices官方網站,https://www.analog.com/en/index.html。
[41] 張家豪,「基於積層製造技術之醫用穿戴裝置軟性印刷電路板製程設計與應用開發」,國立中央大學,碩士論文,民國113年。
[42] M. A. Triana, A. A. Restrepo, R. J Lanzafame, P. Palomaki, and Y. Dong, “Quantum Dot Light-Emitting Diodes as Light Sources in Photomedicine : Photodynamic Therapy and Photobiomodulation”, JPhys Materials, Vol. 3, 032002, 2020.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明