博碩士論文 111323096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.119.122.106
姓名 王紹庭(Shao-Ting Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 水中流度微粒抓取實驗設計與分析
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究成功讓流動中的微粒被聲波抓取,且利用調變波技術判斷此微粒之種類。透過COMSOL模擬出顆粒在管中流動、水中聲輻射壓力,以及調變波之動態分析的情況,進而模擬出各個對於實驗有影響的參數。然而聲波對於不同情況會有不同的實驗方法,為此我們設計了一系列不同的實驗情況,對於不同粒徑的微粒所表現出來的抓取情況也會有所不同,對於不同密度的微粒也可以透過調整調變波的參數,成功抓取出特定微粒,也判斷出不同密度的顆粒差異。而目前實驗階段,可以在混合的微粒溶液的情況下,分離出半波長大小的塑膠微粒。
摘要(英) This study successfully utilized acoustic waves to trap particles in flow and employed modulation wave techniques to determine the types of these particles. Using COMSOL, we simulated the flow of particles in a tube, the acoustic radiation force in water, and the dynamic analysis of modulation waves, thereby simulating various parameters that could affect the experiment. However, different experimental methods are required for different situations. To address this, we designed a series of experiments. The trapping performance varies for particles of different sizes, and the parameters of the modulation waves can be adjusted for particles of different densities. Ultimately, we successfully trapped specific particles under different conditions and verified the use of modulation waves to distinguish between particles of different densities. At the current experimental stage, we are able to separate plastic particles of half-wavelength size from a mixed particle solution.
關鍵字(中) ★ 聲波
★ 微粒
★ 聲輻射壓力
關鍵字(英) ★ sound waves
★ particles
★ acoustic radiation pressure
論文目次 摘要 I
致謝 IV
ABSTRACT IV
目錄 IV
圖目錄 VII
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
1.3 文獻回顧 1
第二章 基礎理論 8
2.1 駐波理論 8
2.2 流體運動方程式 10
2.2.1 連續方程式 10
2.2.2 動量方程式 111
2.2.3 流體狀態方程式 12
2.3 線性波動方程式 12
2.4 聲輻射壓力 14
2.4.1聲場的駐波理論 15
2.4.2平面駐波場中剛性小球體的聲輻射力 16
2.5 斯托克斯黏滯阻力 17
2.5 雷諾數 18
2.7 粒子-超聲波相互作用 19
2.7.1固有吸收 19
2.7.2黏慣性耗散損失 19
2.7.3熱耗散損失 20
2.7.4散射損失 20
第三章 實驗架設與設計 21
3.1 實驗方法及概述 21
3.2 實驗架構與材料 22
3.2.1 實驗裝置與系統組成 22
3.2.2 實驗重點設備與材料 23
3.3 PZT理論 28
3.4 聲阻抗匹配理論 31
3.5 聲流產生機制 34
3.6 調變波之參數設定 36
3.7實驗模擬與設計 37
3.7.1 駐波場模擬分析 38
3.7.2 調變波模擬分析 44
3.7.3 模擬討論與實驗設計 51
第4章 實驗結果與討論 51
4.1 實驗結果 55
4.1.1 抓取特定尺寸的微粒 55
4.1.2 量測微粒溶液濃度並判斷種類 59
4.2 實驗討論彙整 64
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67
參考文獻 [01] J. Zhou, P. Mukherjee, H. Gao, Q. Luan, and I. Papautsky, "Label-free microfluidic sorting of microparticles," APL Bioengineering, vol. 3, no. 4, p. 041504, 2019.
[02] F. Cui1, M. Rhee, Anup Singh, and A. Tripathi, " Microfluidic Sample Preparation for Medical Diagnostics", Annu Rev Biomed Eng 17 : 267-86, 2015.
[03] Gómez-Pastora, J. et al., " Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. ", J. Phys. Chem. C 121(13) : 7466–7477, 2017.
[04] Jenifer Gómez-Pastora, Ioannis H. Karampelas, Eugenio Bringas, Edward P. Furlani & Inmaculada Ortiz, " Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions ," Scientific Reports vol. 9 , pp. 7265, 2019.
[05] Xiaoming Luo, Haiyang Gong, Haoran Yin, Ziling He,and Limin He," Droplets banding characteristics of water-in-oil emulsion under ultrasonic standing waves." Ultrasonics Sonochemistry, vol. 41, pp. 319-326, 2018.
[06] Xiaoming Luo, Haiyang Gong, Haoran Yin, Ziling He,and Limin He,"Optimization of acoustic parameters for ultrasonic separation of emulsions with different physical properties," Ultrasonics Sonochemistry vol. 68(B), 105221, 2020.
[07] Leah M. Johnson, et al. "Elastomeric microparticles for acoustic mediated bioseparations." Journal of nanobiotechnology 11 : 1-8, 2013.
[08] Li, P.; Mao, Z.; Peng, Z.; Zhou, L.; Chen, Y.; Huang, P.-H.; Truica, C.I.; Drabick, J.J.; El-Deiry, W.S.; Dao, M.; et al. "AcousticSeparation of Circulating Tumor Cells." Proc. Natl. Acad. Sci. USA, 2015.
[09] D. J. Collins, T. Alan, and A. Neild, "Particle separation using virtual deterministic lateral displacement (vDLD)," Lab on a Chip, vol. 14, no. 9, pp. 1595-1603, 2014
[10] C. Richard , A. Fakhfouri , M. Colditz , F. Striggow , R. Kronstein-Wiedemann , T. Tonn , M. Medina-Sanchez , O. G. Schmidt , T. Gemming and A. Winkler, "Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips," Lab on a Chip, vol. 19,no. 24, pp. 4043-4051, 2019.
[11] X. Luo, J. Cao, H. Gong, H. Yan, and L. He, "Phase separation technology based on ultrasonic standing waves: A review," Ultrasonics Sonochemistry, vol. 48, pp. 287-298, 2018.
[12] Dzenan Hajdarovic. "Suppression of acoustic streaming in liquids of inhomogeneous density and compressibility." LUND UNIVERSITY, MASTER’S THESIS, 2016.
[13] 趙凱華, 羅蔚茵, "新概念物理教程力学(第二版) ", 高等教育出版社, 2004.
[14] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz, "Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics." Volume 6. Vol. 6. Elsevier, 2013.
[15] S. Kadri Harouna and Etienne Mémin. "Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling." Computers & Fluids, vol. 156, pp. 456-469, 2017.
[16] M. A. Andrade, N. Pérez and J. C. Adamowski, "Review of progress in acoustic levitation. " Brazilian Journal of Physics, vol 48, no.2, pp. 190-213, 2018.
[17] David Julian McClements, "Ultrasonic Measurements in Particle Size Analysis." University of Massachusetts, Amherst, 2009
[18] B. Jaffe, R. S. Roth, and S. Marzullo. "Piezoelectric properties of lead zirconate‐lead titanate solid‐solution ceramics." Journal of Applied Physics, vol. 55, no. 5, pp. 239-254, 1954.
[19] I.C.Lien and Y.C.Shu,"Introduction to Vibration – Based Piezoelectric Energy Harvesting.", Insustrial Materials Magazine No.263, 2008
[20] M. Wiklund, R. Green, and M. Ohlin, "Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices." Lab on a Chip, vol. 12, no. 14, pp. 2438-2451, 2012.
[21] Wagner A. Kamakura and Jose Afonso Mazzon. "Value segmentation: A model for the measurement of values and value systems." Journal of consumer research, vol. 18, no. 2, pp. 208-218, 1991.
[22] Martin Wiklund, Roy Green, and Mathias Ohlin. "Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices." Lab on a Chip 12.14 : 2438-2451, 2012.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明