博碩士論文 111323133 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:3.142.124.83
姓名 林品宏(Ping-Hung Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 液體輔助超短脈衝雷射薄石英晶圓微鑽孔研究
(Research on Liquid-assisted Micro-drilling of Thin Quartz Wafers Using Ultrashort Pulse Laser)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-22以後開放)
摘要(中) 自19世紀末期居禮兄弟發現單晶石英之壓電特性以來,由於其出色之物理特性和化學穩定性,使之被廣為應用於頻率震盪元件。藉由單晶種子晶體於高壓釜中進行長晶得以長出高純度及可用體積極高之合成晶體石英(Synthetic Quartz),並採用具備優異的頻率/溫度特性之AT-CUT晶體切割角度以作為中樞核心之頻率震盪基板。隨著高頻化與高速運算的時代來臨,裝置進一步導向精密微型化趨勢,石英基板微型鑽孔製程成為微米等級佈線之前置作業。然而,單晶石英之硬脆特性,使得傳統接觸式機械加工於微型鑽孔逐漸遇到瓶頸。為符合商業需求,取而代之的是更高效率及高精準性之非接觸式微型加工技術,即超快雷射精密微型鑽孔技術。
本研究以波長515 nm之飛秒振鏡雷射系統,並輔以純水進行石英晶圓背向微鑽孔之特性研究,旨在提升在空氣中雷射微鑽孔的時效、減少孔內表面雷射削除(Ablation)沉積物與雷射加工過程的熱影響區。藉由高速微距攝影技術,本研究同時也觀察雷射石英晶體微鑽孔過程中,等離子體(Plasma)的成形與消散、空化氣泡(Cavitation)及液中水射流(Water jets)等微觀現象,進一步揭示液中超快雷射單晶石英鑽孔過程,光、材料與輔助液體間交互作用現象(Interactions),藉以說明鑽孔機理並探討輔助液體的功能。實驗結果顯示,相較於空氣中鑽孔,液體輔助,可有效減少雷射削除物的再沉積、縮小熱影響區,同時加快鑽孔速率。對於厚度65 μm石英晶圓,可於0.106秒即完成70 μm直徑通孔。鑽孔後,透過氫氧化鉀(35 wt.% KOH)蝕刻後處理,可達到修整微孔形貌及周圍晶相結構之目的,最終可實現錐度小於1°、粗糙度Ra為0.353 μm之高品質圓孔。透過TEM進行蝕刻前後之微孔熱影響範圍檢測,並得出蝕刻前之孔壁熱影響區範圍呈現次微米等級(≈ 200 nm),經蝕刻後處理過後則進一步降為45 nm,幾乎僅剩單晶結構存於微孔中。
摘要(英) Since the discovery of the piezoelectric properties of single-crystal quartz by the Curie brothers in the late 19th century, its excellent physical properties and chemical stability have led to widespread application in frequency oscillation components. High-purity and large-volume synthetic quartz crystals are grown using single-crystal seed crystals in auto-claves, and AT-CUT crystal cutting angles with superior frequency/temperature characteristics are employed to serve as the core frequency oscillation substrate. With the advent of the era of high-frequency and high-speed computing, devices are further trending towards precision miniaturization, making the micro-drilling process of quartz substrates a prerequisite for mi-cron-level wiring. However, the hard and brittle nature of single-crystal quartz poses challeng-es for traditional contact-based mechanical machining in micro-drilling. To meet commercial demands, non-contact micro-machining technology with higher efficiency and precision, spe-cifically ultrafast laser precision micro-drilling technology, has become the alternative.
This study investigates the characteristics of backside micro-drilling of quartz wafers us-ing a femtosecond galvanometer laser system with a wavelength of 515 nm, supplemented by pure water. The aim is to improve the efficiency of laser micro-drilling in air, reduce ablation deposits on the inner surface of the holes, and minimize the heat-affected zone (HAZ) during the laser machining process. Utilizing high-speed micro-photography technology, this study also observes the formation and dissipation of plasma, cavitation bubbles, and water jets dur-ing the laser micro-drilling process of quartz crystals. This further elucidates the interactions between light, material, and the assistant liquid during the ultrafast laser drilling process in water, explaining the drilling mechanism and the function of the auxiliary liquid.
Experimental results indicate that, compared to drilling in air, liquid assistance effective-ly reduces the re-deposition of ablation materials and minimizes the heat-affected zone while accelerating the drilling rate. For a 65 μm thick quartz wafer, a through-hole with a diameter of 70 μm can be completed in 0.106 seconds. After drilling, post-treatment with 35 wt.% KOH etching refines the micro-hole morphology and surrounding crystal structure, ultimately achieving a high-quality round hole with a taper less than 1° and a roughness Ra of 0.353 μm. TEM analysis of the HAZ before and after etching shows that the HAZ on the hole wall is submicron (≈ 200 nm) before etching and further reduced to 45 nm after post-etching treat-ment, leaving almost only the single-crystal structure within the micro-hole.
關鍵字(中) ★ 單晶石英
★ 超快雷射
★ 液體輔助雷射微鑽孔
★ 電漿
★ 氣泡
★ 微水射流
★ 蝕刻後處理
關鍵字(英) ★ Single-crystal quartz
★ Ultrashort pulse laser
★ Liquid-assisted laser micro-drilling
★ Plasma
★ Cavitation bubbles
★ Water micro-jets
★ Post-etching treatment
論文目次 致謝 v
中文摘要 vi
Abstract viii
Table of Contents x
List of Figures xiv
List of Tables xx
Chapter 1 緒論 1
1.1 前言 1
1.1.1 合成石英(Synthetic Quartz)之基本特性 1
1.1.2 合成石英晶體之AT-CUT切角特性 3
1.1.3 石英晶體(AT-CUT)之振盪模式概述 5
1.2 研究背景與目的 6
1.2.1 時脈元件之市場需求及製造技術概要 6
1.2.2 非接觸式精密加工技術之發展前景 8
Chapter 2 文獻回顧 11
2.1 微型鑽孔技術之發展與限制 11
2.1.1 接觸式微孔加工發展現況 11
2.1.2 非接觸式雷射鑽孔發展現況 15
2.2 非接觸式超快雷射微孔加工機制 20
2.2.1 線性吸收與非線性吸收之比較 20
2.2.2 等離子體屏蔽效應 23
2.3 雷射誘導背向溼蝕刻(LIBWE)之技術回顧 24
2.4 運用準分子雷射於單晶石英基板形成微米級通孔 26
2.5 空氣中超快雷射薄石英晶圓微鑽孔研究 28
2.5.1 空氣中超快雷射微鑽孔的優化加工策略 28
2.5.2 空氣中超快雷射微鑽孔的實驗結果分析 30
2.6 傳承與創新 32
Chapter 3 實驗方法 34
3.1 實驗流程 34
3.2 樣品材料及製備 34
3.2.1 樣品材料 34
3.2.2 石英晶圓預清洗流程 35
3.3 石英晶圓之液體輔助雷射微鑽孔 37
3.3.1 飛秒雷射加工系統設置 37
3.3.2 雷射光束設置細節 39
3.3.3 飛秒雷射之液體輔助微鑽孔製程 40
3.4 氫氧化鉀(KOH)濕式蝕刻後處理 45
3.5 實驗量測及分析儀器介紹 46
3.6 實驗耗材及量測設備清單 55
Chapter 4 實驗結果與討論 56
4.1 液體輔助超快雷射微鑽孔之製程參數選定 56
4.1.1 焦點位置對液體輔助超快雷射鑽孔之影響 57
4.1.2 脈衝能量針對鑽孔結果之影響性 62
4.1.3 單環鑽孔模式:不同掃描次數下之通孔進程 69
4.2 紅外線熱像儀之溫度監測結果分析 72
4.2.1 不同雷射製程環境之溫度監測結果分析 73
4.2.2 微鑽孔製程之溫度監測及排屑方向初步驗證 76
4.2.3 石英上表面溫度監測結果分析 78
4.2.4 鑽孔過程溫度監測結果分析與討論 81
4.3 高速微距攝影技術之液體輔助雷射微鑽孔機制探討 83
4.3.1 高速微距攝影下之瞬時液體輔助雷射鑽孔進程 84
4.3.2 震盪波(Shock Wave)於鑽孔過程的作用性 87
4.3.3 探討液體輔助雷射鑽孔燒蝕進程 88
4.4 液體輔助雷射鑽孔之結果與討論 96
4.4.1 微孔表面形貌分析 96
4.4.2 鑽孔結果之孔洞截面形貌分析 107
4.4.3 孔壁微結構形貌分析 112
4.5 濕蝕刻後處理製程之結果與討論 116
4.5.1 KOH蝕刻參數之選定 116
4.5.2 KOH蝕刻後形貌分析結果與討論 120
4.5.3 KOH蝕刻後孔壁微結構形貌分析 126
4.6 蝕刻前後之石英晶體結構變化結果與討論 128
4.6.1 TEM試片製備過程及注意事項 128
4.6.2 蝕刻前之雷射熱影響區檢測 130
4.6.3 蝕刻後之雷射熱影響區檢測 133
4.7 飛秒雷射薄石英晶圓鑽孔之技術總結 137
Chapter 5 結論與展望 138
5.1 結論 138
5.2 展望 139
Reference 140
碩士論文口試教授問題集 146
參考文獻 [1] R. G. Inc. "Mono Crystalline Quartz-The Piezoelectric Effect." https://rfx.co.uk/library/Mono-Crystalline-Quartz-The-Piezoelectric-Effect (accessed 5 May, 2024).
[2] R. F. Milsom, D. T. Elliott, S. Terry-Wood, and M. Redwood, "Analysis and design of coupled-mode miniature bar resonators and monolithic filters," IEEE Transactions on Sonics and Ultrasonics, vol. 30, no. 3, pp. 140-155, 1983.
[3] P. Saha, N. Annamalai, and A. K. Guha, "Synthetic quartz production and applications," Transactions of the Indian Ceramic Society, vol. 50, no. 5, pp. 129-135, 1991.
[4] N. Ltd. "Synthetic Quartz Crystal." https://www.ndk.com/catalog/AN-SQC_GG_e.pdf (accessed 05, 2024).
[5] K. Aasly, T. Malvik, and E. Myrhaug, "Advanced methods to characterize thermal properties of quartz," Infacon Xi, vol. 1, pp. 381-392, 2007.
[6] Y.-j. Shen, X. Hou, J.-q. Yuan, S.-f. Wang, and C.-h. Zhao, "Thermal cracking characteristics of high-temperature granite suffering from different cooling shocks," International Journal of Fracture, vol. 225, pp. 153-168, 2020.
[7] J. Danel and G. Delapierre, "Quartz: a material for microdevices," Journal of Micromechanics and Microengineering, vol. 1, no. 4, p. 187, 1991.
[8] A. T. CO. "愛普生石英振盪器產品特性和設計概念(上) " https://zh-tw.argotech.com.tw/news-detail/quartz-oscillator-product-features-and-design-concepts.htm (accessed 2024).
[9] S. Na Songkhla and T. Nakamoto, "Overview of quartz crystal microbalance behavior analysis and measurement," Chemosensors, vol. 9, no. 12, p. 350, 2021.
[10] J. Chen et al., "Review on laser-induced etching processing technology for transparent hard and brittle materials," The International Journal of Advanced Manufacturing Technology, vol. 117, no. 9, pp. 2545-2564, 2021.
[11] M. I. R. Advisory, Crystal Oscillator Market Size & Share Analysis - Growth Trends & Forecasts (2024 - 2029). Mordor Intelligence, 2023.
[12] M. Tanaka, "An overview of quartz MEMS devices," in 2010 IEEE International Frequency Control Symposium, 2010: IEEE, pp. 162-167.
[13] K. Egashira and K. Mizutani, "Micro-drilling of monocrystalline silicon using a cutting tool," Precision Engineering, vol. 26, no. 3, pp. 263-268, 2002.
[14] O. Horiuchi, M. Masuda, and T. Shibata, "Bending of drill and radial forces in micro drilling," Advanced Materials Research, vol. 797, pp. 642-648, 2013.
[15] Y. Dong et al., "Etching of quartz crystals in liquid phase environment: A review," Nanotechnology and Precision Engineering, vol. 7, no. 2, 2024.
[16] H. Huang, L.-M. Yang, and J. Liu, "Micro-hole drilling with femtosecond fiber laser," in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, 2013, vol. 8607: SPIE, pp. 46-54.
[17] L. Lucas and J. Zhang, "Femtosecond laser micromachining: A back-to-basics primer," Industrial laser solutions, vol. 4, pp. 1-22, 2012.
[18] D. Beauchemin, Sample introduction systems in ICPMS and ICPOES. Newnes, 2020.
[19] S.-T. Chen, Z.-H. Jiang, Y.-Y. Wu, and H.-Y. Yang, "Development of a grinding–drilling technique for holing optical grade glass," International Journal of Machine Tools and Manufacture, vol. 51, no. 2, pp. 95-103, 2011/02/01/ 2011, doi: https://doi.org/10.1016/j.ijmachtools.2010.12.001.
[20] B. J. Park, Y. J. Choi, and C. N. Chu, "Prevention of Exit Crack in Micro Drilling of Soda-Lime Glass," CIRP Annals, vol. 51, no. 1, pp. 347-350, 2002/01/01/ 2002, doi: https://doi.org/10.1016/S0007-8506(07)61533-9.
[21] A. K. Jain and P. M. Pandey, "Study of Peck drilling of borosilicate glass with μRUM process for MEMS," Journal of Manufacturing Processes, vol. 22, pp. 134-150, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.jmapro.2016.02.001.
[22] H.-h. Kim, S. Chung, S.-C. Kim, W.-H. Jee, and S.-C. Chung, "Condition Monitoring of Micro-drilling Processes on Glass by Using Machine Vision," in Proceedings of the ASPE, 2006, vol. 21: Citeseer, pp. 535-538.
[23] A. Ghobeity, H. Getu, M. Papini, and J. K. Spelt, "Surface evolution models for abrasive jet micromachining of holes in glass and polymethylmethacrylate (PMMA)," Journal of Micromechanics and Microengineering, vol. 17, no. 11, p. 2175, 2007/09/27 2007, doi: 10.1088/0960-1317/17/11/003.
[24] H. Wensink, J. W. Berenschot, H. V. Jansen, and M. C. Elwenspoek, "High resolution powder blast micromachining," in Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308), 23-27 Jan. 2000 2000, pp. 769-774, doi: 10.1109/MEMSYS.2000.838615.
[25] E. Belloy, A. Sayah, and M. A. M. Gijs, "Oblique powder blasting for three-dimensional micromachining of brittle materials," Sensors and Actuators A: Physical, vol. 92, no. 1, pp. 358-363, 2001/08/01/ 2001, doi: https://doi.org/10.1016/S0924-4247(01)00572-6.
[26] D. Solignac, A. Sayah, S. Constantin, R. Freitag, and M. A. M. Gijs, "Powder blasting for the realisation of microchips for bio-analytic applications," Sensors and Actuators A: Physical, vol. 92, no. 1, pp. 388-393, 2001/08/01/ 2001, doi: https://doi.org/10.1016/S0924-4247(01)00577-5.
[27] S. Stefan, W. Henk, S. Richard, E. Miko, and B. Albert van den, "Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors," Journal of Micromechanics and Microengineering, vol. 11, no. 4, p. 386, 2001/07/01 2001, doi: 10.1088/0960-1317/11/4/318.
[28] H. Wensink, "Fabrication of microstructures by powder blasting," University of Twente: Enshede, The Netherlands, 2002.
[29] D. Sarvela, "Overview of glass micro machining processes for MEMS applications," MEMS Journal, 2010.
[30] A. Schorderet, E. Deghilage, and K. Agbeviade, "Tool Type and Hole Diameter Influence in Deep Ultrasonic Drilling of Micro-Holes in Glass," Procedia CIRP, vol. 6, pp. 565-570, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.procir.2013.03.072.
[31] C. Zhang, R. Rentsch, and E. Brinksmeier, "Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: a brief review and outlook," International Journal of Machine Tools and Manufacture, vol. 45, no. 7, pp. 881-890, 2005/06/01/ 2005, doi: https://doi.org/10.1016/j.ijmachtools.2004.10.018.
[32] K.-i. Ishikawa, H. Suwabe, T. Nishide, and M. Uneda, "A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials," Precision Engineering, vol. 22, no. 4, pp. 196-205, 1998/10/01/ 1998, doi: https://doi.org/10.1016/S0141-6359(98)00014-2.
[33] B. H. Yan, A. C. Wang, C. Y. Huang, and F. Y. Huang, "Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining," International Journal of Machine Tools and Manufacture, vol. 42, no. 10, pp. 1105-1112, 2002/08/01/ 2002, doi: https://doi.org/10.1016/S0890-6955(02)00061-5.
[34] K. Egashira and T. Masuzawa, "Microultrasonic Machining by the Application of Workpiece Vibration," CIRP Annals, vol. 48, no. 1, pp. 131-134, 1999/01/01/ 1999, doi: https://doi.org/10.1016/S0007-8506(07)63148-5.
[35] P. Guzzo, A. Shinohara, and A. Raslan, "A comparative study on ultrasonic machining of hard and brittle materials," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp. 56-61, 2004.
[36] K. Egashira, K. Mizutani, and T. Nagao, "Ultrasonic Vibration Drilling of Microholes in Glass," CIRP Annals, vol. 51, no. 1, pp. 339-342, 2002/01/01/ 2002, doi: https://doi.org/10.1016/S0007-8506(07)61531-5.
[37] K. Egashira, R. Kumagai, R. Okina, K. Yamaguchi, and M. Ota, "Drilling of microholes down to 10 μm in diameter using ultrasonic grinding," Precision Engineering, vol. 38, no. 3, pp. 605-610, 2014.
[38] C. Khan Malek, L. Robert, J.-J. Boy, and P. Blind, "Deep microstructuring in glass for microfluidic applications," Microsystem Technologies, vol. 13, no. 5, pp. 447-453, 2007/03/01 2007, doi: 10.1007/s00542-006-0185-0.
[39] K. Okazaki et al., "Sub-wavelength micromachining of silica glass by irradiation of CO2 laser with Fresnel diffraction," Applied Physics A, vol. 104, no. 2, pp. 593-599, 2011/08/01 2011, doi: 10.1007/s00339-011-6364-6.
[40] A. K. Dubey and V. Yadava, "Laser beam machining—A review," International Journal of Machine Tools and Manufacture, vol. 48, no. 6, pp. 609-628, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.ijmachtools.2007.10.017.
[41] J. P. Bovatsek, R.S. "DPSS Lasers Overcome Glass Process Challenges." http://www.photonics.com/Article.aspx?AID=51733&PID=5&VID=100&IID=631 (accessed 2024).
[42] F. SA. "3D printing for glass microdevices." http://www.femtoprint.ch/ (accessed 2024).
[43] F. ILT. "Selective Laser Etching of Glass and Sapphire." http://www.ilt.fraunhofer.de/en/media-center/brochures/brochure-Selective-Laser-Etching-of-Glass-and-Sapphire.html (accessed 5 May, 2024).
[44] D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, "Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass," Applied Physics A, vol. 79, no. 3, pp. 605-612, 2004/08/01 2004, doi: 10.1007/s00339-004-2547-8.
[45] L. Brusberg, M. Queisser, C. Gentsch, H. Schröder, and K.-D. Lang, "Advances in CO2-Laser Drilling of Glass Substrates," Physics Procedia, vol. 39, pp. 548-555, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.phpro.2012.10.072.
[46] R. An, Y. Li, Y.-P. Dou, Y. Fang, H. Yang, and Q.-H. Gong, "Laser Micro-Hole Drilling of Soda-Lime Glass with Femtosecond Pulses," Chinese Physics Letters, vol. 21, no. 12, p. 2465, 2004/12/01 2004, doi: 10.1088/0256-307X/21/12/040.
[47] C. K. Chung and S. L. Lin, "CO2 laser micromachined crackless through holes of Pyrex 7740 glass," International Journal of Machine Tools and Manufacture, vol. 50, no. 11, pp. 961-968, 2010/11/01/ 2010, doi: https://doi.org/10.1016/j.ijmachtools.2010.08.002.
[48] M. E. Corporation. "Mitsubishi Electric Develops Micro Glass-Processing Technology Incorporating Pulsed CO2 Laser." http://www.mitsubishielectric.com/news/2014/pdf/0213-c.pdf (accessed 2024).
[49] M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in materials science. Springer, 2014.
[50] L. Brusberg, H. Schröder, M. Töpper, and H. Reichl, "Photonic system-in-package technologies using thin glass substrates," in 2009 11th Electronics Packaging Technology Conference, 2009: IEEE, pp. 930-935.
[51] D. Basting and G. Marowsky, "Excimer laser technology," 2005.
[52] L. A. Hof and J. Abou Ziki, "Micro-hole drilling on glass substrates—A review," Micromachines, vol. 8, no. 2, p. 53, 2017.
[53] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Applied physics letters, vol. 64, no. 23, pp. 3071-3073, 1994.
[54] P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Optics communications, vol. 114, no. 1-2, pp. 106-110, 1995.
[55] A. P. Joglekar, H.-h. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining," Applied Physics B, vol. 77, pp. 25-30, 2003.
[56] A. Chimmalgi, T. Choi, C. Grigoropoulos, and K. Komvopoulos, "Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy," Applied Physics Letters, vol. 82, no. 8, pp. 1146-1148, 2003.
[57] S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of scientific instruments, vol. 69, no. 3, pp. 1207-1223, 1998.
[58] U. Keller, "Recent developments in compact ultrafast lasers," nature, vol. 424, no. 6950, pp. 831-838, 2003.
[59] T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Reviews of Modern Physics, vol. 72, no. 2, p. 545, 2000.
[60] G. Steinmeyer, D. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics," Science, vol. 286, no. 5444, pp. 1507-1512, 1999.
[61] R. Boyd, "Nonlinear Optics 2nd edn (Amsterdam: Academic)," 2003.
[62] J. Krüger and W. Kautek, "Ultrashort pulse laser interaction with dielectrics and polymers," Polymers and Light, pp. 247-290, 2004.
[63] F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond technology for technical and medical applications. Springer Science & Business Media, 2004.
[64] N. Bloembergen, "A brief history of light breakdown," Journal of Nonlinear Optical Physics & Materials, vol. 6, no. 04, pp. 377-385, 1997.
[65] 鄭中緯, "飛秒雷射在材料微細加工的應用," 科儀新知, no. 164, pp. 27-32, 2008.
[66] C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Measurement Science and Technology, vol. 12, no. 11, p. 1784, 2001.
[67] E. Glezer et al., "Three-dimensional optical storage inside transparent materials," Optics letters, vol. 21, no. 24, pp. 2023-2025, 1996.
[68] B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Physical review letters, vol. 74, no. 12, p. 2248, 1995.
[69] B. C. Stuart, M. D. Feit, S. Herman, A. Rubenchik, B. Shore, and M. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Physical review B, vol. 53, no. 4, p. 1749, 1996.
[70] N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE Journal of Quantum Electronics, vol. 10, no. 3, pp. 375-386, 1974.
[71] B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied physics A, vol. 63, pp. 109-115, 1996.
[72] X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE journal of quantum electronics, vol. 33, no. 10, pp. 1706-1716, 1997.
[73] M. Knowles, G. Rutterford, D. Karnakis, and A. Ferguson, "Micro-machining of metals, ceramics and polymers using nanosecond lasers," The International Journal of Advanced Manufacturing Technology, vol. 33, pp. 95-102, 2007.
[74] N. B. Dahotre and S. Harimkar, Laser fabrication and machining of materials. Springer Science & Business Media, 2008.
[75] D. W. Hahn and N. Omenetto, "Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community," Applied spectroscopy, vol. 64, no. 12, pp. 335A-366A, 2010.
[76] D. W. Hahn and N. Omenetto, "Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields," Applied spectroscopy, vol. 66, no. 4, pp. 347-419, 2012.
[77] P. Willmott and J. Huber, "Pulsed laser vaporization and deposition," Reviews of Modern Physics, vol. 72, no. 1, p. 315, 2000.
[78] P. M. Ossi, "Cluster synthesis and cluster-assembled film deposition in nanosecond pulsed laser ablation," in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties: Springer, 2009, pp. 99-124.
[79] K. Ding and L. Ye, Laser shock peening: performance and process simulation. Woodhead Publishing, 2006.
[80] N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, "Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses," Applied Surface Science, vol. 257, no. 24, pp. 10876-10882, 2011.
[81] J. Aguilera, C. Aragon, and F. Penalba, "Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis," Applied surface science, vol. 127, pp. 309-314, 1998.
[82] K. Hashimoto and T. Shiotani, "Induction and amplification of elastic wave into cementitious material by applied laser ablation technique," Developments in the Built Environment, vol. 12, p. 100099, 2022.
[83] X. Xie, C. Zhou, X. Wei, W. Hu, and Q. Ren, "Laser machining of transparent brittle materials: from machining strategies to applications," Opto-Electronic Advances, vol. 2, no. 1, pp. 180017-1-180017-13, 2019.
[84] X. Xie et al., "New development and applications of laser-induced cavitation bubbles," Laser Optoelectron Prog, vol. 50, p. 080017, 2013.
[85] Y. Shao, "Study on water-assisted laser induced plasma etching of Pyrex7740 Glass," Wenzhou University, Wenzhou, 2017.
[86] K. Pallav and K. F. Ehmann, "Feasibility of laser induced plasma micro-machining (LIP-MM)," in Precision Assembly Technologies and Systems: 5th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2010, Chamonix, France, February 14-17, 2010. Proceedings 5, 2010: Springer, pp. 73-80.
[87] J. M. Teichman, R. D. Glickman, K. F. Chan, E. D. Jansen, and A. Welch, "Plasma bubble formation induced by holmium laser," Urology, vol. 65, no. 3, pp. 627-628, 2005.
[88] I. Saxena and K. F. Ehmann, "Multimaterial capability of laser induced plasma micromachining," Journal of Micro-and Nano-Manufacturing, vol. 2, no. 3, p. 031005, 2014.
[89] D. J. Stolarski et al., "Integrated light spectroscopy of laser-induced breakdown in aqueous media," in Laser-Tissue Interaction VI, 1995, vol. 2391: SPIE, pp. 100-109.
[90] X. Huang, "Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire," Guangdong University of Technology, Guangzhou, 2015.
[91] J. Long, J. Li, M. Li, and X. Xie, "Fabrication of robust metallic micropatterns on glass surfaces by selective metallization in laser-induced porous surface structures," Surface and Coatings Technology, vol. 374, pp. 338-344, 2019.
[92] J. Long, C. Zhou, Z. Cao, X. Xie, and W. Hu, "Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers," Optics & Laser Technology, vol. 109, pp. 61-70, 2019.
[93] Z. Huang, M. Hong, T. Do, and Q. Lin, "Laser etching of glass substrates by 1064 nm laser irradiation," Applied Physics A, vol. 93, pp. 159-163, 2008.
[94] J. Bonse, J. Wrobel, J. Krüger, and W. Kautek, "Ultrashort-pulse laser ablation of indium phosphide in air," Applied Physics A, vol. 72, pp. 89-94, 2001.
[95] E. Stava, M. Yu, H. C. Shin, H. Shin, D. J. Kreft, and R. H. Blick, "Rapid fabrication and piezoelectric tuning of micro-and nanopores in single crystal quartz," Lab on a Chip, vol. 13, no. 1, pp. 156-160, 2013.
[96] 李韋廷, "超快雷射薄石英晶圓微鑽孔研究," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2023. [Online]. Available: https://hdl.handle.net/11296/xeekap
[97] G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Optics communications, vol. 163, no. 1-3, pp. 95-102, 1999.
[98] L. A. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, and R. Brydson, "Bonding in alpha-quartz (SiO2): A view of the unoccupied states," American Mineralogist, vol. 85, no. 5-6, pp. 732-738, 2000.
[99] K. Corp. "3D Laser Scanning Confocal Microscopy." https://www.keyence.com.tw/ (accessed 2024).
[100] W.-N. Jane. "認識電子顯微鏡(二)、超微結構-原理篇." Academia Sinica. https://lsl.sinica.edu.tw/Blog/2023/03/20-2/ (accessed 3/20, 2023).
[101] S. Yao, H. Li, S. Pang, B. Zhu, X. Zhang, and S. Fatikow, "A review of computer microvision-based precision motion measurement: Principles, characteristics, and applications," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-28, 2021.
[102] R.-M. H. Wen-Hsien Tseng, An-Chung Su. (2007) Transmission Electron Microscopic Analysis of Nanostructures in Polymeric/Soft Materials. 科儀新知. p52-60.
[103] A. Trukhin, "Luminescence of localized states in silicon dioxide glass. A short review," Journal of non-crystalline solids, vol. 357, no. 8-9, pp. 1931-1940, 2011.
[104] F. M. Sogandares and E. S. Fry, "Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements," Applied Optics, vol. 36, no. 33, pp. 8699-8709, 1997.
[105] R. Deng, Y. He, Y. Qin, Q. Chen, and L. Chen, "Measuring pure water absorption coefficient in the near-infrared spectrum(900--2500 nm)," Yaogan Xuebao- Journal of Remote Sensing, vol. 16, no. 1, pp. 192-206, 2012.
[106] C. Press, "CRC Handbook of Chemistry and Physics, Robert C. Weast," Ph. D., editor, 1978-1979.
[107] D. R. Lide, CRC handbook of chemistry and physics. CRC press, 2004.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明