參考文獻 |
[1] R. G. Inc. "Mono Crystalline Quartz-The Piezoelectric Effect." https://rfx.co.uk/library/Mono-Crystalline-Quartz-The-Piezoelectric-Effect (accessed 5 May, 2024).
[2] R. F. Milsom, D. T. Elliott, S. Terry-Wood, and M. Redwood, "Analysis and design of coupled-mode miniature bar resonators and monolithic filters," IEEE Transactions on Sonics and Ultrasonics, vol. 30, no. 3, pp. 140-155, 1983.
[3] P. Saha, N. Annamalai, and A. K. Guha, "Synthetic quartz production and applications," Transactions of the Indian Ceramic Society, vol. 50, no. 5, pp. 129-135, 1991.
[4] N. Ltd. "Synthetic Quartz Crystal." https://www.ndk.com/catalog/AN-SQC_GG_e.pdf (accessed 05, 2024).
[5] K. Aasly, T. Malvik, and E. Myrhaug, "Advanced methods to characterize thermal properties of quartz," Infacon Xi, vol. 1, pp. 381-392, 2007.
[6] Y.-j. Shen, X. Hou, J.-q. Yuan, S.-f. Wang, and C.-h. Zhao, "Thermal cracking characteristics of high-temperature granite suffering from different cooling shocks," International Journal of Fracture, vol. 225, pp. 153-168, 2020.
[7] J. Danel and G. Delapierre, "Quartz: a material for microdevices," Journal of Micromechanics and Microengineering, vol. 1, no. 4, p. 187, 1991.
[8] A. T. CO. "愛普生石英振盪器產品特性和設計概念(上) " https://zh-tw.argotech.com.tw/news-detail/quartz-oscillator-product-features-and-design-concepts.htm (accessed 2024).
[9] S. Na Songkhla and T. Nakamoto, "Overview of quartz crystal microbalance behavior analysis and measurement," Chemosensors, vol. 9, no. 12, p. 350, 2021.
[10] J. Chen et al., "Review on laser-induced etching processing technology for transparent hard and brittle materials," The International Journal of Advanced Manufacturing Technology, vol. 117, no. 9, pp. 2545-2564, 2021.
[11] M. I. R. Advisory, Crystal Oscillator Market Size & Share Analysis - Growth Trends & Forecasts (2024 - 2029). Mordor Intelligence, 2023.
[12] M. Tanaka, "An overview of quartz MEMS devices," in 2010 IEEE International Frequency Control Symposium, 2010: IEEE, pp. 162-167.
[13] K. Egashira and K. Mizutani, "Micro-drilling of monocrystalline silicon using a cutting tool," Precision Engineering, vol. 26, no. 3, pp. 263-268, 2002.
[14] O. Horiuchi, M. Masuda, and T. Shibata, "Bending of drill and radial forces in micro drilling," Advanced Materials Research, vol. 797, pp. 642-648, 2013.
[15] Y. Dong et al., "Etching of quartz crystals in liquid phase environment: A review," Nanotechnology and Precision Engineering, vol. 7, no. 2, 2024.
[16] H. Huang, L.-M. Yang, and J. Liu, "Micro-hole drilling with femtosecond fiber laser," in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, 2013, vol. 8607: SPIE, pp. 46-54.
[17] L. Lucas and J. Zhang, "Femtosecond laser micromachining: A back-to-basics primer," Industrial laser solutions, vol. 4, pp. 1-22, 2012.
[18] D. Beauchemin, Sample introduction systems in ICPMS and ICPOES. Newnes, 2020.
[19] S.-T. Chen, Z.-H. Jiang, Y.-Y. Wu, and H.-Y. Yang, "Development of a grinding–drilling technique for holing optical grade glass," International Journal of Machine Tools and Manufacture, vol. 51, no. 2, pp. 95-103, 2011/02/01/ 2011, doi: https://doi.org/10.1016/j.ijmachtools.2010.12.001.
[20] B. J. Park, Y. J. Choi, and C. N. Chu, "Prevention of Exit Crack in Micro Drilling of Soda-Lime Glass," CIRP Annals, vol. 51, no. 1, pp. 347-350, 2002/01/01/ 2002, doi: https://doi.org/10.1016/S0007-8506(07)61533-9.
[21] A. K. Jain and P. M. Pandey, "Study of Peck drilling of borosilicate glass with μRUM process for MEMS," Journal of Manufacturing Processes, vol. 22, pp. 134-150, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.jmapro.2016.02.001.
[22] H.-h. Kim, S. Chung, S.-C. Kim, W.-H. Jee, and S.-C. Chung, "Condition Monitoring of Micro-drilling Processes on Glass by Using Machine Vision," in Proceedings of the ASPE, 2006, vol. 21: Citeseer, pp. 535-538.
[23] A. Ghobeity, H. Getu, M. Papini, and J. K. Spelt, "Surface evolution models for abrasive jet micromachining of holes in glass and polymethylmethacrylate (PMMA)," Journal of Micromechanics and Microengineering, vol. 17, no. 11, p. 2175, 2007/09/27 2007, doi: 10.1088/0960-1317/17/11/003.
[24] H. Wensink, J. W. Berenschot, H. V. Jansen, and M. C. Elwenspoek, "High resolution powder blast micromachining," in Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308), 23-27 Jan. 2000 2000, pp. 769-774, doi: 10.1109/MEMSYS.2000.838615.
[25] E. Belloy, A. Sayah, and M. A. M. Gijs, "Oblique powder blasting for three-dimensional micromachining of brittle materials," Sensors and Actuators A: Physical, vol. 92, no. 1, pp. 358-363, 2001/08/01/ 2001, doi: https://doi.org/10.1016/S0924-4247(01)00572-6.
[26] D. Solignac, A. Sayah, S. Constantin, R. Freitag, and M. A. M. Gijs, "Powder blasting for the realisation of microchips for bio-analytic applications," Sensors and Actuators A: Physical, vol. 92, no. 1, pp. 388-393, 2001/08/01/ 2001, doi: https://doi.org/10.1016/S0924-4247(01)00577-5.
[27] S. Stefan, W. Henk, S. Richard, E. Miko, and B. Albert van den, "Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors," Journal of Micromechanics and Microengineering, vol. 11, no. 4, p. 386, 2001/07/01 2001, doi: 10.1088/0960-1317/11/4/318.
[28] H. Wensink, "Fabrication of microstructures by powder blasting," University of Twente: Enshede, The Netherlands, 2002.
[29] D. Sarvela, "Overview of glass micro machining processes for MEMS applications," MEMS Journal, 2010.
[30] A. Schorderet, E. Deghilage, and K. Agbeviade, "Tool Type and Hole Diameter Influence in Deep Ultrasonic Drilling of Micro-Holes in Glass," Procedia CIRP, vol. 6, pp. 565-570, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.procir.2013.03.072.
[31] C. Zhang, R. Rentsch, and E. Brinksmeier, "Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: a brief review and outlook," International Journal of Machine Tools and Manufacture, vol. 45, no. 7, pp. 881-890, 2005/06/01/ 2005, doi: https://doi.org/10.1016/j.ijmachtools.2004.10.018.
[32] K.-i. Ishikawa, H. Suwabe, T. Nishide, and M. Uneda, "A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials," Precision Engineering, vol. 22, no. 4, pp. 196-205, 1998/10/01/ 1998, doi: https://doi.org/10.1016/S0141-6359(98)00014-2.
[33] B. H. Yan, A. C. Wang, C. Y. Huang, and F. Y. Huang, "Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining," International Journal of Machine Tools and Manufacture, vol. 42, no. 10, pp. 1105-1112, 2002/08/01/ 2002, doi: https://doi.org/10.1016/S0890-6955(02)00061-5.
[34] K. Egashira and T. Masuzawa, "Microultrasonic Machining by the Application of Workpiece Vibration," CIRP Annals, vol. 48, no. 1, pp. 131-134, 1999/01/01/ 1999, doi: https://doi.org/10.1016/S0007-8506(07)63148-5.
[35] P. Guzzo, A. Shinohara, and A. Raslan, "A comparative study on ultrasonic machining of hard and brittle materials," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp. 56-61, 2004.
[36] K. Egashira, K. Mizutani, and T. Nagao, "Ultrasonic Vibration Drilling of Microholes in Glass," CIRP Annals, vol. 51, no. 1, pp. 339-342, 2002/01/01/ 2002, doi: https://doi.org/10.1016/S0007-8506(07)61531-5.
[37] K. Egashira, R. Kumagai, R. Okina, K. Yamaguchi, and M. Ota, "Drilling of microholes down to 10 μm in diameter using ultrasonic grinding," Precision Engineering, vol. 38, no. 3, pp. 605-610, 2014.
[38] C. Khan Malek, L. Robert, J.-J. Boy, and P. Blind, "Deep microstructuring in glass for microfluidic applications," Microsystem Technologies, vol. 13, no. 5, pp. 447-453, 2007/03/01 2007, doi: 10.1007/s00542-006-0185-0.
[39] K. Okazaki et al., "Sub-wavelength micromachining of silica glass by irradiation of CO2 laser with Fresnel diffraction," Applied Physics A, vol. 104, no. 2, pp. 593-599, 2011/08/01 2011, doi: 10.1007/s00339-011-6364-6.
[40] A. K. Dubey and V. Yadava, "Laser beam machining—A review," International Journal of Machine Tools and Manufacture, vol. 48, no. 6, pp. 609-628, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.ijmachtools.2007.10.017.
[41] J. P. Bovatsek, R.S. "DPSS Lasers Overcome Glass Process Challenges." http://www.photonics.com/Article.aspx?AID=51733&PID=5&VID=100&IID=631 (accessed 2024).
[42] F. SA. "3D printing for glass microdevices." http://www.femtoprint.ch/ (accessed 2024).
[43] F. ILT. "Selective Laser Etching of Glass and Sapphire." http://www.ilt.fraunhofer.de/en/media-center/brochures/brochure-Selective-Laser-Etching-of-Glass-and-Sapphire.html (accessed 5 May, 2024).
[44] D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, "Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass," Applied Physics A, vol. 79, no. 3, pp. 605-612, 2004/08/01 2004, doi: 10.1007/s00339-004-2547-8.
[45] L. Brusberg, M. Queisser, C. Gentsch, H. Schröder, and K.-D. Lang, "Advances in CO2-Laser Drilling of Glass Substrates," Physics Procedia, vol. 39, pp. 548-555, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.phpro.2012.10.072.
[46] R. An, Y. Li, Y.-P. Dou, Y. Fang, H. Yang, and Q.-H. Gong, "Laser Micro-Hole Drilling of Soda-Lime Glass with Femtosecond Pulses," Chinese Physics Letters, vol. 21, no. 12, p. 2465, 2004/12/01 2004, doi: 10.1088/0256-307X/21/12/040.
[47] C. K. Chung and S. L. Lin, "CO2 laser micromachined crackless through holes of Pyrex 7740 glass," International Journal of Machine Tools and Manufacture, vol. 50, no. 11, pp. 961-968, 2010/11/01/ 2010, doi: https://doi.org/10.1016/j.ijmachtools.2010.08.002.
[48] M. E. Corporation. "Mitsubishi Electric Develops Micro Glass-Processing Technology Incorporating Pulsed CO2 Laser." http://www.mitsubishielectric.com/news/2014/pdf/0213-c.pdf (accessed 2024).
[49] M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in materials science. Springer, 2014.
[50] L. Brusberg, H. Schröder, M. Töpper, and H. Reichl, "Photonic system-in-package technologies using thin glass substrates," in 2009 11th Electronics Packaging Technology Conference, 2009: IEEE, pp. 930-935.
[51] D. Basting and G. Marowsky, "Excimer laser technology," 2005.
[52] L. A. Hof and J. Abou Ziki, "Micro-hole drilling on glass substrates—A review," Micromachines, vol. 8, no. 2, p. 53, 2017.
[53] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Applied physics letters, vol. 64, no. 23, pp. 3071-3073, 1994.
[54] P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Optics communications, vol. 114, no. 1-2, pp. 106-110, 1995.
[55] A. P. Joglekar, H.-h. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining," Applied Physics B, vol. 77, pp. 25-30, 2003.
[56] A. Chimmalgi, T. Choi, C. Grigoropoulos, and K. Komvopoulos, "Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy," Applied Physics Letters, vol. 82, no. 8, pp. 1146-1148, 2003.
[57] S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of scientific instruments, vol. 69, no. 3, pp. 1207-1223, 1998.
[58] U. Keller, "Recent developments in compact ultrafast lasers," nature, vol. 424, no. 6950, pp. 831-838, 2003.
[59] T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Reviews of Modern Physics, vol. 72, no. 2, p. 545, 2000.
[60] G. Steinmeyer, D. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics," Science, vol. 286, no. 5444, pp. 1507-1512, 1999.
[61] R. Boyd, "Nonlinear Optics 2nd edn (Amsterdam: Academic)," 2003.
[62] J. Krüger and W. Kautek, "Ultrashort pulse laser interaction with dielectrics and polymers," Polymers and Light, pp. 247-290, 2004.
[63] F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond technology for technical and medical applications. Springer Science & Business Media, 2004.
[64] N. Bloembergen, "A brief history of light breakdown," Journal of Nonlinear Optical Physics & Materials, vol. 6, no. 04, pp. 377-385, 1997.
[65] 鄭中緯, "飛秒雷射在材料微細加工的應用," 科儀新知, no. 164, pp. 27-32, 2008.
[66] C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Measurement Science and Technology, vol. 12, no. 11, p. 1784, 2001.
[67] E. Glezer et al., "Three-dimensional optical storage inside transparent materials," Optics letters, vol. 21, no. 24, pp. 2023-2025, 1996.
[68] B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Physical review letters, vol. 74, no. 12, p. 2248, 1995.
[69] B. C. Stuart, M. D. Feit, S. Herman, A. Rubenchik, B. Shore, and M. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Physical review B, vol. 53, no. 4, p. 1749, 1996.
[70] N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE Journal of Quantum Electronics, vol. 10, no. 3, pp. 375-386, 1974.
[71] B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied physics A, vol. 63, pp. 109-115, 1996.
[72] X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE journal of quantum electronics, vol. 33, no. 10, pp. 1706-1716, 1997.
[73] M. Knowles, G. Rutterford, D. Karnakis, and A. Ferguson, "Micro-machining of metals, ceramics and polymers using nanosecond lasers," The International Journal of Advanced Manufacturing Technology, vol. 33, pp. 95-102, 2007.
[74] N. B. Dahotre and S. Harimkar, Laser fabrication and machining of materials. Springer Science & Business Media, 2008.
[75] D. W. Hahn and N. Omenetto, "Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community," Applied spectroscopy, vol. 64, no. 12, pp. 335A-366A, 2010.
[76] D. W. Hahn and N. Omenetto, "Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields," Applied spectroscopy, vol. 66, no. 4, pp. 347-419, 2012.
[77] P. Willmott and J. Huber, "Pulsed laser vaporization and deposition," Reviews of Modern Physics, vol. 72, no. 1, p. 315, 2000.
[78] P. M. Ossi, "Cluster synthesis and cluster-assembled film deposition in nanosecond pulsed laser ablation," in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties: Springer, 2009, pp. 99-124.
[79] K. Ding and L. Ye, Laser shock peening: performance and process simulation. Woodhead Publishing, 2006.
[80] N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, "Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses," Applied Surface Science, vol. 257, no. 24, pp. 10876-10882, 2011.
[81] J. Aguilera, C. Aragon, and F. Penalba, "Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis," Applied surface science, vol. 127, pp. 309-314, 1998.
[82] K. Hashimoto and T. Shiotani, "Induction and amplification of elastic wave into cementitious material by applied laser ablation technique," Developments in the Built Environment, vol. 12, p. 100099, 2022.
[83] X. Xie, C. Zhou, X. Wei, W. Hu, and Q. Ren, "Laser machining of transparent brittle materials: from machining strategies to applications," Opto-Electronic Advances, vol. 2, no. 1, pp. 180017-1-180017-13, 2019.
[84] X. Xie et al., "New development and applications of laser-induced cavitation bubbles," Laser Optoelectron Prog, vol. 50, p. 080017, 2013.
[85] Y. Shao, "Study on water-assisted laser induced plasma etching of Pyrex7740 Glass," Wenzhou University, Wenzhou, 2017.
[86] K. Pallav and K. F. Ehmann, "Feasibility of laser induced plasma micro-machining (LIP-MM)," in Precision Assembly Technologies and Systems: 5th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2010, Chamonix, France, February 14-17, 2010. Proceedings 5, 2010: Springer, pp. 73-80.
[87] J. M. Teichman, R. D. Glickman, K. F. Chan, E. D. Jansen, and A. Welch, "Plasma bubble formation induced by holmium laser," Urology, vol. 65, no. 3, pp. 627-628, 2005.
[88] I. Saxena and K. F. Ehmann, "Multimaterial capability of laser induced plasma micromachining," Journal of Micro-and Nano-Manufacturing, vol. 2, no. 3, p. 031005, 2014.
[89] D. J. Stolarski et al., "Integrated light spectroscopy of laser-induced breakdown in aqueous media," in Laser-Tissue Interaction VI, 1995, vol. 2391: SPIE, pp. 100-109.
[90] X. Huang, "Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire," Guangdong University of Technology, Guangzhou, 2015.
[91] J. Long, J. Li, M. Li, and X. Xie, "Fabrication of robust metallic micropatterns on glass surfaces by selective metallization in laser-induced porous surface structures," Surface and Coatings Technology, vol. 374, pp. 338-344, 2019.
[92] J. Long, C. Zhou, Z. Cao, X. Xie, and W. Hu, "Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers," Optics & Laser Technology, vol. 109, pp. 61-70, 2019.
[93] Z. Huang, M. Hong, T. Do, and Q. Lin, "Laser etching of glass substrates by 1064 nm laser irradiation," Applied Physics A, vol. 93, pp. 159-163, 2008.
[94] J. Bonse, J. Wrobel, J. Krüger, and W. Kautek, "Ultrashort-pulse laser ablation of indium phosphide in air," Applied Physics A, vol. 72, pp. 89-94, 2001.
[95] E. Stava, M. Yu, H. C. Shin, H. Shin, D. J. Kreft, and R. H. Blick, "Rapid fabrication and piezoelectric tuning of micro-and nanopores in single crystal quartz," Lab on a Chip, vol. 13, no. 1, pp. 156-160, 2013.
[96] 李韋廷, "超快雷射薄石英晶圓微鑽孔研究," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2023. [Online]. Available: https://hdl.handle.net/11296/xeekap
[97] G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Optics communications, vol. 163, no. 1-3, pp. 95-102, 1999.
[98] L. A. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, and R. Brydson, "Bonding in alpha-quartz (SiO2): A view of the unoccupied states," American Mineralogist, vol. 85, no. 5-6, pp. 732-738, 2000.
[99] K. Corp. "3D Laser Scanning Confocal Microscopy." https://www.keyence.com.tw/ (accessed 2024).
[100] W.-N. Jane. "認識電子顯微鏡(二)、超微結構-原理篇." Academia Sinica. https://lsl.sinica.edu.tw/Blog/2023/03/20-2/ (accessed 3/20, 2023).
[101] S. Yao, H. Li, S. Pang, B. Zhu, X. Zhang, and S. Fatikow, "A review of computer microvision-based precision motion measurement: Principles, characteristics, and applications," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-28, 2021.
[102] R.-M. H. Wen-Hsien Tseng, An-Chung Su. (2007) Transmission Electron Microscopic Analysis of Nanostructures in Polymeric/Soft Materials. 科儀新知. p52-60.
[103] A. Trukhin, "Luminescence of localized states in silicon dioxide glass. A short review," Journal of non-crystalline solids, vol. 357, no. 8-9, pp. 1931-1940, 2011.
[104] F. M. Sogandares and E. S. Fry, "Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements," Applied Optics, vol. 36, no. 33, pp. 8699-8709, 1997.
[105] R. Deng, Y. He, Y. Qin, Q. Chen, and L. Chen, "Measuring pure water absorption coefficient in the near-infrared spectrum(900--2500 nm)," Yaogan Xuebao- Journal of Remote Sensing, vol. 16, no. 1, pp. 192-206, 2012.
[106] C. Press, "CRC Handbook of Chemistry and Physics, Robert C. Weast," Ph. D., editor, 1978-1979.
[107] D. R. Lide, CRC handbook of chemistry and physics. CRC press, 2004. |