參考文獻 |
1. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
2. Theis, T.N. and P.M. Solomon, It’s time to reinvent the transistor! Science, 2010. 327(5973): p. 1600-1601.
3. Hoefflinger, B., Irds—international roadmap for devices and systems, rebooting computing, s3s. NANO-CHIPS 2030: On-Chip AI for an Efficient Data-Driven World, 2020: p. 9-17.
4. <science.1102896.pdf>.
5. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-25.
6. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
7. Yoon, Y., K. Ganapathi, and S. Salahuddin, How good can monolayer MoS(2) transistors be? Nano Lett, 2011. 11(9): p. 3768-73.
8. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011. 6(3): p. 147-50.
9. Dong, R. and I. Kuljanishvili, Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. J Vac Sci Technol B Nanotechnol Microelectron, 2017. 35(3): p. 030803.
10. Batmunkh, M., M. Bat?Erdene, and J.G. Shapter, Phosphorene and phosphorene?based materials–prospects for future applications. Advanced Materials, 2016. 28(39): p. 8586-8617.
11. Baugher, B.W., et al., Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013. 13(9): p. 4212-6.
12. <rapid-and-reliable-thickness-identification-of-two-dimensional-nanosheets-using-optical-microscopy.>.
13. Sokolikova, M.S. and C. Mattevi, Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chemical Society Reviews, 2020. 49(12): p. 3952-3980.
14. Gan, X., et al., 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018. 1(9): p. 4754-4765.
15. Zhu, J., et al., Argon Plasma Induced Phase Transition in Monolayer MoS(2). J Am Chem Soc, 2017. 139(30): p. 10216-10219.
16. Lin, Y.C., et al., Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol, 2014. 9(5): p. 391-6.
17. Fiori, G., et al., Electronics based on two-dimensional materials. Nature nanotechnology, 2014. 9(10): p. 768-779.
18. Pospischil, A. and T. Mueller, Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides. Applied Sciences, 2016. 6(3).
19. Lin, Y., et al. Contact engineering for high-performance N-type 2D semiconductor transistors. in 2021 IEEE International Electron Devices Meeting (IEDM). 2021. IEEE.
20. Liu, H., A.T. Neal, and P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS nano, 2012. 6(10): p. 8563-8569.
21. Li, W., et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nature Electronics, 2019. 2(12): p. 563-571.
22. Fontana, M., et al., Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep, 2013. 3: p. 1634.
23. Retamal, J.R.D., et al., Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical science, 2018. 9(40): p. 7727-7745.
24. Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217.
25. Sotthewes, K., et al., Universal Fermi-level pinning in transition-metal dichalcogenides. The Journal of Physical Chemistry C, 2019. 123(9): p. 5411-5420.
26. Liu, X., et al., Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Advanced Materials, 2022. 34(15): p. 2108425.
27. Shao, G., Work function and electron affinity of semiconductors: Doping effect and complication due to fermi level pinning. Energy & Environmental Materials, 2021. 4(3): p. 273-276.
28. Zheng, Y., et al., Ohmic contact engineering for two-dimensional materials. Cell Reports Physical Science, 2021. 2(1).
29. Liu, Y., et al., Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018. 557(7707): p. 696-700.
30. Xu, Y., H. Sun, and Y.-Y. Noh, Schottky barrier in organic transistors. IEEE Transactions on Electron Devices, 2017. 64(5): p. 1932-1943.
31. Bhattacharjee, S., et al., Surface state engineering of metal/MoS 2 contacts using sulfur treatment for reduced contact resistance and variability. IEEE Transactions on Electron Devices, 2016. 63(6): p. 2556-2562.
32. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature materials, 2014. 13(12): p. 1128-1134.
33. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116.
34. Cho, S., et al., Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015. 349(6248): p. 625-628.
35. Xiao, J., et al., Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Research, 2022. 15(1): p. 475-481.
36. Kang, J., et al., Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Physical Review X, 2014. 4(3): p. 031005.
37. Wang, Y., et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019. 568(7750): p. 70-74.
38. Andrews, K., et al., Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer. ACS nano, 2020. 14(5): p. 6232-6241.
39. Liu, L., et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nature Electronics, 2021. 4(5): p. 342-347.
40. Jang, J., et al., Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS applied materials & interfaces, 2019. 12(4): p. 5031-5039.
41. Naveen, K., et al., Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. 2016.
42. Xiao, J., et al., Approaching Ohmic Contacts for Ideal Monolayer MoS2 Transistors Through Sulfur?Vacancy Engineering. Small Methods, 2023. 7(11): p. 2300611.
43. Jiang, J., et al., Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nature Electronics, 2024: p. 1-12.
44. Iqbal, M.W., et al., A review on Raman finger prints of doping and strain effect in TMDCs. Microelectronic Engineering, 2020. 219: p. 111152.
45. Watson, A.J., et al., Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 2021. 8(3): p. 032001.
46. Samadi, M., et al., Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018. 3(2): p. 90-204.
47. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
48. Kumar, V.K., et al., A predictive approach to CVD of crystalline layers of TMDs: the case of MoS 2. Nanoscale, 2015. 7(17): p. 7802-7810.
49. Bissett, M.A., M. Tsuji, and H. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11124-11138.
50. Wang, Y., et al., Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. small, 2013. 9(17): p. 2857-2861.
51. Chakraborty, B., et al., Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor. Physical Review B—Condensed Matter and Materials Physics, 2012. 85(16): p. 161403.
52. Chang, Pang-Chia, Exploring Electron Transport and Memory Effect of Two-Dimensional MoOx/MoS2 Devices .
53. Cheng, Zhihui, et al. "How to report and benchmark emerging field-effect transistors." Nature Electronics 5.7 (2022): 416-423.
54. WAN-CHUI LU, Research on the transfer process of vacuum imprinting on two-dimensional materials .
55. Chen, P.-C., et al., Effective N-methyl-2-pyrrolidone wet cleaning for fabricating high-performance monolayer MoS 2 transistors. Nano Research, 2019. 12: p. 303-308.
56. Jain, A., et al., One-dimensional edge contacts to a monolayer semiconductor. Nano letters, 2019. 19(10): p. 6914-6923. |