博碩士論文 111323157 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.15.234.89
姓名 廖人逵(Ren-Kuei Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬電極-二維半導體介面改質於提升雙層二硫化鉬電晶體的電傳輸特性之研究
(Study on Metal Interface Modification to Enhance the Electrical Transport Properties of Bilayer Molybdenum Disulfide Transistors)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 為延續摩爾定律,矽基半導體近年不斷朝向尺寸微縮的方向發展,雖然達到效果,但隨之而來的便是尺寸微縮所帶來的短通道效應、穿隧效應、靜電效應、高接觸阻抗等問題。在這樣的條件下,二維材料便成為了理想的選擇,因為其具有表面沒有懸鍵、厚度僅有數個原子層、載子遷移率不隨厚度變化等優勢,可有效因應目前的困境,因此二維材料也被視為下世代的電子元件材料,而在眾多二維材料中又以過渡金屬硫化物最受矚目,其中二硫化鉬更因可調節能隙及良好的傳輸特性備受關注。
在電晶體應用上由於金屬與半導體材料接觸時會產生費米能階釘扎效應(Fermi-level pinning effect, FLP);在電子穿隧時會產生蕭特基能障(Schottky barrier),為了改善這些因不同材料接觸所帶來的接觸阻抗問題,於是便衍生了相位工程(Phase engineering)、邊角接觸(Edge contact)、凡德瓦接觸(Van der Waals)、嵌入緩衝層(Inserting buffer layer)、間隙狀態飽和(Gap-state saturation, GSS)、分子或化學摻雜(Molecular/chemical doping) 等諸多研究方向。
本研究將分成兩部分對雙層硫化鉬進行探討,第一部分針對雙層元件製備的轉印製程進行探討,會分為乾轉印雙層薄膜以及濕轉印雙層單晶兩種不同轉印製程,接著透過拉曼(Raman)、光致發光(Photoluminescene, PL)光譜進行分析,並製作元件探討轉印製程對電性的影響;第二部分則聚焦於氫電漿對二硫化鉬的改質,利用氫電漿對雙層二硫化鉬進行低損傷轟擊,透過氫原子與硫原子的鍵結將上層表面的硫原子剝除,使上層的鉬原子裸露出來,接著用蒸鍍製程沉積金屬電極,使金屬與鉬原子直接接觸,達成金屬-金屬的接觸,藉此降低接觸阻抗達到提升元件性能的目的,透過後續的穿透式電子顯微鏡(Transmission electron microscope, TEM)、原子力顯微鏡(Atomic Force Microscope, AFM)等材料分析方法確認是否成功達成選擇性的硫剝除,並確認鉬原子是否受到損傷,最後進行電漿改質對雙層元件電性表現影響的探討。
經過真空電性量測證明電漿處理後導通電流較處理前提升5倍,由0.137μA/μm升至0.682μA/μm,開關比也提升約0.5個數量級,載子遷移率提升約6.95倍,次臨界擺幅也下降63.16%,足可以證明此項製程對雙層元件電性的有效提升。
摘要(英) To continue Moore′s Law, silicon-based semiconductors have increasingly focused on size reduction in recent years. Although this approach has yielded considerable results, it has also introduced problems such as short channel effects, tunneling effects, electrostatic effects, and high contact resistance. Under these conditions, two-dimensional (2D) materials have emerged as an ideal choice due to their advantages, including the absence of dangling bonds on the surface, a thickness of only a few atomic layers, and carrier mobility that does not vary with thickness. These properties make 2D materials effective in addressing current challenges, and they are thus considered the next-generation electronic component materials. Among the many 2D materials, transition metal dichalcogenides (TMDs) are particularly noteworthy, with molybdenum disulfide (MoS2) receiving significant attention due to its tunable bandgap and excellent transport properties.
In transistor applications, the Fermi-level pinning effect (FLP) occurs when metals contact semiconductor materials, and Schottky barriers form during electron tunneling. To address the contact resistance issues arising from different material contacts, several research directions have emerged, including phase engineering, edge contact, Van der Waals contact, inserting buffer layers, gap-state saturation (GSS), and molecular/chemical doping.
This study investigates bilayer MoS2 in two parts. The first part examines the transfer process for fabricating bilayer devices, comparing dry transfer of bilayer films and wet transfer of bilayer single crystals. Raman spectroscopy and photoluminescence (PL) spectroscopy are used for analysis, and devices are fabricated to study the impact of the transfer process on electrical properties. The second part focuses on modifying MoS2 with hydrogen plasma, using low-damage bombardment to remove sulfur atoms from the surface of the upper layer by bonding hydrogen atoms with sulfur atoms. This exposes molybdenum atoms, allowing direct contact with metal electrodes via evaporation, achieving metal-metal contact to reduce contact resistance and enhance device performance. Subsequent materials analysis methods, including transmission electron microscopy (TEM) and atomic force microscopy (AFM), confirm the selective removal of sulfur and assess any damage to molybdenum atoms. Finally, the study evaluates the impact of plasma modification on the electrical performance of bilayer devices.
Vacuum electrical measurements demonstrate that after plasma treatment, the on-state current increases fivefold from 0.137 μA/μm to 0.682 μA/μm, the on/off ratio improves by about 0.5 orders of magnitude, carrier mobility increases by approximately 6.95 times, and the subthreshold swing decreases by 63.16%, proving the effectiveness of this process in enhancing the electrical performance of bilayer devices.
關鍵字(中) ★ 二硫化鉬
★ 電漿改質
關鍵字(英)
論文目次 學位論文授權書 i
學位論文延後公開申請書 ii
指導教授推薦 iii
中文摘要 v
Abstract vii
致謝 ix
目錄 x
圖目錄 xiii
表目錄 xvi
第一章 緒論 1
第二章 文獻回顧與研究動機 3
2-1 二維材料的發展與應用 3
2-1-1 過渡金屬硫屬化合物 4
2-2 二硫化鉬之特性簡介 6
2-2-1 二硫化鉬簡介 7
2-2-2 晶格結構 9
2-2-3 可控能隙 9
2-3 電晶體效能提升方法 11
2-3-1 通道尺寸(Channel) 11
2-3-2 介電層(Gate dielectric) 11
2-3-3 基板(Substrate) 12
2-3-4 金屬接觸(Metal Contact) 12
2-4 接觸阻抗目前困境 13
2-4-1 費米能階釘扎效應(Fermi-level pinning effect, FLP) 13
2-4-2 蕭特基能障(Schottky barrier) 15
2-5 費米能階去釘扎方法(Fermi-level depinning) 16
2-5-1 相位工程(Phase engineering) 16
2-5-2 邊角接觸(Edge contact) 18
2-5-3 凡德瓦接觸(van der Waals contacts) 19
2-5-4 嵌入緩衝層(Inserting buffer layer) 19
2-6 研究動機 22
2-6-1 不同轉印方法於雙層二硫化鉬之影響 22
2-6-2 電漿處理對金屬接面改質於電傳輸特性提升 22
第三章 研究架構與流程 25
3-1 研究架構與實驗方法 25
3-2 實驗藥品及儀器 25
3-2-1 實驗用品 25
3-2-2 實驗設備及原理 26
3-2-3 分析設備 27
3-3 材料分析方法 28
3-4 電子元件分析 30
3-4-1 電子遷移率 31
3-4-2 次臨界擺幅 32
3-4-3 載子濃度 32
3-4-4 臨界電壓(Threshold voltage, Vth) 32
3-5 轉印流程 33
3-5-1 乾式轉印 33
3-5-2 濕式轉印 34
3-6 元件製作流程 34
3-6-1 對位基板製作 35
3-4-2 LED曝光 35
3-4-3 電子束微影製程(E-beam lithography ) 36
3-5 二硫化鉬之電漿處理設備與製程 36
第四章 結果與討論 38
4-1 乾轉印雙層二硫化鉬薄膜特性討論 38
4-1-1 乾轉印雙層二硫化鉬材料分析 38
4-1-2 乾轉印雙層二硫化鉬電性分析 39
4-2 濕轉印雙層二硫化鉬特性討論 40
4-2-1 濕轉印雙層二硫化鉬材料分析 40
4-2-2 雙層二硫化鉬電性分析 40
4-3 低損傷電漿於雙層二硫化鉬改質之討論 43
4-3-1 電漿改質二硫化鉬之元件電性分析 43
第五章 結論 54
第六章 未來工作 55
參考文獻 56
參考文獻 1. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
2. Theis, T.N. and P.M. Solomon, It’s time to reinvent the transistor! Science, 2010. 327(5973): p. 1600-1601.
3. Hoefflinger, B., Irds—international roadmap for devices and systems, rebooting computing, s3s. NANO-CHIPS 2030: On-Chip AI for an Efficient Data-Driven World, 2020: p. 9-17.
4. <science.1102896.pdf>.
5. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-25.
6. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
7. Yoon, Y., K. Ganapathi, and S. Salahuddin, How good can monolayer MoS(2) transistors be? Nano Lett, 2011. 11(9): p. 3768-73.
8. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011. 6(3): p. 147-50.
9. Dong, R. and I. Kuljanishvili, Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. J Vac Sci Technol B Nanotechnol Microelectron, 2017. 35(3): p. 030803.
10. Batmunkh, M., M. Bat?Erdene, and J.G. Shapter, Phosphorene and phosphorene?based materials–prospects for future applications. Advanced Materials, 2016. 28(39): p. 8586-8617.
11. Baugher, B.W., et al., Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013. 13(9): p. 4212-6.
12. <rapid-and-reliable-thickness-identification-of-two-dimensional-nanosheets-using-optical-microscopy.>.
13. Sokolikova, M.S. and C. Mattevi, Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chemical Society Reviews, 2020. 49(12): p. 3952-3980.
14. Gan, X., et al., 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018. 1(9): p. 4754-4765.
15. Zhu, J., et al., Argon Plasma Induced Phase Transition in Monolayer MoS(2). J Am Chem Soc, 2017. 139(30): p. 10216-10219.
16. Lin, Y.C., et al., Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol, 2014. 9(5): p. 391-6.
17. Fiori, G., et al., Electronics based on two-dimensional materials. Nature nanotechnology, 2014. 9(10): p. 768-779.
18. Pospischil, A. and T. Mueller, Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides. Applied Sciences, 2016. 6(3).
19. Lin, Y., et al. Contact engineering for high-performance N-type 2D semiconductor transistors. in 2021 IEEE International Electron Devices Meeting (IEDM). 2021. IEEE.
20. Liu, H., A.T. Neal, and P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS nano, 2012. 6(10): p. 8563-8569.
21. Li, W., et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nature Electronics, 2019. 2(12): p. 563-571.
22. Fontana, M., et al., Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep, 2013. 3: p. 1634.
23. Retamal, J.R.D., et al., Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical science, 2018. 9(40): p. 7727-7745.
24. Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217.
25. Sotthewes, K., et al., Universal Fermi-level pinning in transition-metal dichalcogenides. The Journal of Physical Chemistry C, 2019. 123(9): p. 5411-5420.
26. Liu, X., et al., Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Advanced Materials, 2022. 34(15): p. 2108425.
27. Shao, G., Work function and electron affinity of semiconductors: Doping effect and complication due to fermi level pinning. Energy & Environmental Materials, 2021. 4(3): p. 273-276.
28. Zheng, Y., et al., Ohmic contact engineering for two-dimensional materials. Cell Reports Physical Science, 2021. 2(1).
29. Liu, Y., et al., Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018. 557(7707): p. 696-700.
30. Xu, Y., H. Sun, and Y.-Y. Noh, Schottky barrier in organic transistors. IEEE Transactions on Electron Devices, 2017. 64(5): p. 1932-1943.
31. Bhattacharjee, S., et al., Surface state engineering of metal/MoS 2 contacts using sulfur treatment for reduced contact resistance and variability. IEEE Transactions on Electron Devices, 2016. 63(6): p. 2556-2562.
32. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature materials, 2014. 13(12): p. 1128-1134.
33. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116.
34. Cho, S., et al., Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015. 349(6248): p. 625-628.
35. Xiao, J., et al., Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Research, 2022. 15(1): p. 475-481.
36. Kang, J., et al., Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Physical Review X, 2014. 4(3): p. 031005.
37. Wang, Y., et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019. 568(7750): p. 70-74.
38. Andrews, K., et al., Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer. ACS nano, 2020. 14(5): p. 6232-6241.
39. Liu, L., et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nature Electronics, 2021. 4(5): p. 342-347.
40. Jang, J., et al., Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS applied materials & interfaces, 2019. 12(4): p. 5031-5039.
41. Naveen, K., et al., Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. 2016.
42. Xiao, J., et al., Approaching Ohmic Contacts for Ideal Monolayer MoS2 Transistors Through Sulfur?Vacancy Engineering. Small Methods, 2023. 7(11): p. 2300611.
43. Jiang, J., et al., Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nature Electronics, 2024: p. 1-12.
44. Iqbal, M.W., et al., A review on Raman finger prints of doping and strain effect in TMDCs. Microelectronic Engineering, 2020. 219: p. 111152.
45. Watson, A.J., et al., Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 2021. 8(3): p. 032001.
46. Samadi, M., et al., Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018. 3(2): p. 90-204.
47. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
48. Kumar, V.K., et al., A predictive approach to CVD of crystalline layers of TMDs: the case of MoS 2. Nanoscale, 2015. 7(17): p. 7802-7810.
49. Bissett, M.A., M. Tsuji, and H. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11124-11138.
50. Wang, Y., et al., Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. small, 2013. 9(17): p. 2857-2861.
51. Chakraborty, B., et al., Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor. Physical Review B—Condensed Matter and Materials Physics, 2012. 85(16): p. 161403.
52. Chang, Pang-Chia, Exploring Electron Transport and Memory Effect of Two-Dimensional MoOx/MoS2 Devices .
53. Cheng, Zhihui, et al. "How to report and benchmark emerging field-effect transistors." Nature Electronics 5.7 (2022): 416-423.
54. WAN-CHUI LU, Research on the transfer process of vacuum imprinting on two-dimensional materials .
55. Chen, P.-C., et al., Effective N-methyl-2-pyrrolidone wet cleaning for fabricating high-performance monolayer MoS 2 transistors. Nano Research, 2019. 12: p. 303-308.
56. Jain, A., et al., One-dimensional edge contacts to a monolayer semiconductor. Nano letters, 2019. 19(10): p. 6914-6923.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2024-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明