博碩士論文 111324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:3.133.134.153
姓名 陳胤霖(Yin-Lin Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
(Study on the preparation of thermal-induced blended polypropylene films containing zwitterionic copolymers and investigation of their anti-fouling properties)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 隨著科技的發展和進步,人們對健康的意識也增強了,伴隨著醫療設備的迅速進步。在其中,帶有雙離子結構的系統因其出色的生物相容性而被廣泛研究和應用,這是生物惰性材料的關鍵。此外,在過去,製備生物防污膜需要使用有機溶劑,這會導致環境污染,加上政府倡導與綠色過程相關的政策。因此,本研究採用無溶劑膜處理方法。通過自由基聚合反應合成了三種不同比例的苯乙烯-馬來酸酐共聚物(Styrene-co-Maleic Anhydride, SMA),分別命名為S25MA25、S50MA50和S70MA30。隨後,通過兩種不同的方法將SMA共聚物與聚丙烯(PP)物理混合,並加入雙螺桿微複合機,在雙螺桿的剪切力下將SMA和PP均勻混合,然後使用熱壓成膜。此外,合成了含有胺端的雙離子單體磺化3-二甲胺丙胺(DMAPAPS),並溶解於甲醇中製備修飾溶液,然後用於浸漬膜進行開環反應以獲得表面雙離子膜。本研究對SMA共聚物進行物化分析,接著檢測雙離子單體的物化性質,以及薄膜表面改質的物理與化學性質分析,最後對混摻膜進行生物惰性檢測,在相對於PS標準片的結果顯示下,於直接混練法中,發現添加共聚物濃度條件為10 PHR的薄膜具有95.33%的抗沾黏能力;而在表面塗層混練法中,發現添加S50MA50共聚物之薄膜具有89.57%的抗沾黏能力。
摘要(英) With the development and advancement of technology, people′s awareness of health has increased, accompanied by rapid progress in medical equipment. Among these advancements, systems with zwitterionic structures have been extensively researched and applied due to their excellent biocompatibility, which is crucial for bioinert materials. In the past, the preparation of biofouling-resistant membranes required the use of organic solvents, leading to environmental pollution. In addition, government policies advocate for processes related to green initiatives. Therefore, this study adopts a solvent-free membrane treatment method. Through free radical polymerization, three different ratios of Styrene-co-Maleic Anhydride (SMA) copolymers were synthesized, named S25MA25, S50MA50, and S70MA30, respectively. Subsequently, the SMA copolymers were physically mixed with polypropylene (PP) using two different methods, and then uniformly mixed under the shearing force of a twin-screw extruder, followed by hot pressing to form membranes. Additionally, a zwitterionic monomer with an amine end, sulfobetaine 3-dimethylaminopropylamine (DMAPAPS), was synthesized and dissolved in methanol to prepare a modification solution, which was then used to dip the membranes for a ring-opening reaction to obtain surface zwitterionic membranes. This study conducted physicochemical analyses of the SMA copolymers, followed by testing the zwitterionic monomer′s physicochemical properties and analyzing the surface-modified membranes′ physical and chemical properties. Finally, bioinertness tests were performed on the blended membranes. Compared to the PS standard film results, it was found that in the direct blending method, the membranes with a copolymer concentration of 10 PHR exhibited 95.33% anti-fouling ability; in the surface coating blending method, the membranes with the addition of the S50MA50 copolymer exhibited 89.57% anti-fouling ability.
關鍵字(中) ★ 苯乙烯-馬來酸酐共聚物
★ 雙離子材料
★ 雙螺桿微型混鍊機
★ 無溶劑薄膜製程
關鍵字(英) ★ Styrene-Maleic Anhydride Copolymer
★ Zwitterionic
★ Twin-Screw Microcompounder
★ Solvent-Free Membrane Fabrication Process
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
化學品名詞代稱 xi
產物名詞代稱 xii
一、文獻回顧 1
1-1 生醫材料 1
1-1-1 生醫材料介紹 1
1-1-2 生醫材料的種類 3
1-2 生物惰性材料 5
1-2-1 生物惰性材料發展歷程 5
1-2-2 雙離子系統 8
1-3 薄膜改質技術 10
1-3-1 薄膜高分子設計 10
1-3-2 薄膜表面改質方法 12
1-4 熔融混練技術 14
1-4-1 微型混練機介紹 14
1-4-2 螺桿旋轉方向的影響 17
1-5 馬來酸酐類材料 18
1-5-1 馬來酸酐介紹 18
1-5-2 聚(苯乙烯-馬來酸酐)共聚物 21
二、研究目的 22
三、實驗藥品、儀器與實驗方法 23
3-1 實驗藥品 23
3-1-1 一般藥品 23
3-1-2 菌種培養 30
3-2 實驗設備與儀器 31
3-2-1 實驗設備 31
3-2-2 實驗儀器 33
3-3 實驗材料製備 34
3-3-1 共聚物合成方法 34
3-3-2 雙離子單體製備方法 36
3-3-3 熱混合聚丙烯薄膜製備方法 37
3-3-4 薄膜表面改質方法 39
3-4 實驗方法 40
3-4-1 共聚物鑑定與檢測 40
3-4-2 雙離子單體鑑定與檢測 42
3-4-3 薄膜物化性質檢測 43
3-4-4 細菌貼附測試 46
四、實驗結果與討論 48
4-1 共聚物合成結果鑑定 48
4-1-1 共聚物定量分析 48
4-1-2共聚物定性分析 52
4-1-3 熱穩定性檢測 53
4-2 雙離子單體合成結果鑑定 55
4-2-1 雙離子單體定量分析 55
4-2-2 雙離子單體定性分析 57
4-3 薄膜形貌 58
4-3-1 直接混練法(系統一) 58
4-3-2 表面塗層混練法(系統二) 60
4-4 改質膜表面物理化學分析 61
4-4-1 薄膜表面親水性 61
4-4-2 薄膜表面元素分析 63
4-4-3 薄膜表面粗糙度 69
4-5 薄膜生物惰性測試 72
4-5-1 直接混練法(系統一) 72
4-5-1 表面塗層混練法(系統二) 74
五、結論 76
六、參考文獻 77
參考文獻 [1] Biomaterials Market Size, Share, & Growth Analysis Report By Product (Metallic, Ceramics, Natural, and Polymers) By Application (Ophthalmology, Cardiovascular, Dental, Wound Healing, Orthopedic, Plastic Surgery, Tissue Engineering, Neurology, and Others) - Global Industry Analysis, Trends, Regional Outlook and Forecasts 2023 - 2032.
[2] C.a. ein, 生物醫用材料, 2021 (accessed 0417 2024).
[3] D.F. Williams, Definitions In Biomaterials: Proceedings Of A Consensus Conference Of The European Society For Biomaterials, Chester, England, March 3-5, 1986, (1987).
[4] L. Ghasemi-Mobarakeh, D. Kolahreez, S. Ramakrishna, D. Williams, Key Terminology In Biomaterials And Biocompatibility, Current Opinion In Biomedical Engineering 10 (2019) 45-50.
[5] E. Marin, F. Boschetto, G. Pezzotti, Biomaterials And Biocompatibility: An Historical Overview, Journal Of Biomedical Materials Research Part A 108(8) (2020) 1617-1633.
[6] 許元銘, 生醫材料:導言, 2014 (accessed 0505 2024).
[7] 黃世偉, 石化與生活:高分子材料與醫療器材, 2000 (accessed 0506 2024).
[8] Y.-C. Chiang, Y. Chang, A. Higuchi, W.-Y. Chen, R.-C. Ruaan, Sulfobetaine-Grafted Poly(Vinylidene Fluoride) Ultrafiltration Membranes Exhibit Excellent Antifouling Property, Journal Of Membrane Science 339(1) (2009) 151-159.
[9] D.J. Apple, J. Sims, Harold Ridley And The Invention Of The Intraocular Lens, Survey Of Ophthalmology 40(4) (1996) 279-292.
[10] E.A. Vogler, Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science 74(1) (1998) 69-117.
[11] M.C. Sin, S.H. Chen, Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes, Polymer Journal 46(8) (2014) 436-443.
[12] J.P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethyl Methacrylate (HEMA) - Chemical-Properties And Applications In Biomedical Fields, J. Macromol. Sci.-Rev. Macromol. Chem. Phys. C32(1) (1992) 1-34.
[13] J. Song, E. Saiz, C.R. Bertozzi, A New Approach To Mineralization Of Biocompatible Hydrogel Scaffolds: An Efficient Process Toward 3-Dimensional Bonelike Composites, J. Am. Chem. Soc. 125(5) (2003) 1236-1243.
[14] A. Kidane, J.M. Szabocsik, K. Park, Accelerated Study On Lysozyme Deposition On poly(HEMA) Contact Lenses, Biomaterials 19(22) (1998) 2051-2055.
[15] C.S. Brazel, N.A. Peppas, Mechanisms Of Solute And Drug Transport In Relaxing, Swellable, Hydrophilic Glassy Polymers, Polymer 40(12) (1999) 3383-3398.
[16] N.A. Peppas, Hydrogels And Drug Delivery, Current Opinion In Colloid & Interface Science 2(5) (1997) 531-537.
[17] B. Mrabet, M.N. Nguyen, A. Majbri, S. Mahouche, M. Turmine, A. Bakhrouf, M.M. Chehimi, Anti-Fouling Poly(2-Hydoxyethyl Methacrylate) Surface Coatings With Specific Bacteria Recognition Capabilities, Surface Science 603(16) (2009) 2422-2429.
[18] C. Yoshikawa, A. Goto, Y. Tsujii, T. Fukuda, T. Kimura, K. Yamamoto, A. Kishida, Protein Repellency Of Well-Defined, Concentrated Poly(2-Hydroxyethyl Methacrylate) Brushes By The Size-Exclusion Effect, Macromolecules 39(6) (2006) 2284-2290.
[19] H. Ma, J. Hyun, P. Stiller, A. Chilkoti, “Non-Fouling” Oligo(Ethylene Glycol)- Functionalized Polymer Brushes Synthesized By Surface-Initiated Atom Transfer Radical Polymerization, Advanced Materials 16(4) (2004) 338-341.
[20] J. Zheng, L. Li, H.-K. Tsao, Y.-J. Sheng, S. Chen, S. Jiang, Strong Repulsive Forces Between Protein And Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study, Biophysical Journal 89(1) (2005) 158-166.
[21] Z. Zhang, M. Zhang, S. Chen, T.A. Horbett, B.D. Ratner, S. Jiang, Blood Compatibility Of Surfaces With Superlow Protein Adsorption, Biomaterials 29(32) (2008) 4285-4291.
[22] J. Zheng, L.Y. Li, S.F. Chen, S.Y. Jiang, Molecular Simulation Study Of Water Interactions With Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers, Langmuir 20(20) (2004) 8931-8938.
[23] Y.Y. Luk, M. Kato, M. Mrksich, Self-Assembled Monolayers Of Alkanethiolates Presenting Mannitol Groups Are Inert To Protein Adsorption And Cell Attachment, Langmuir 16(24) (2000) 9604-9608.
[24] M.C. Shen, L. Martinson, M.S. Wagner, D.G. Castner, B.D. Ratner, T.A. Horbett, Peo-Like Plasma Polymerized Tetraglyme Surface Interactions With Leukocytes And Proteins: In Vitro And In Vivo Studies, J. Biomater. Sci.-Polym. Ed. 13(4) (2002) 367-390.
[25] E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A Survey Of Structure-Property Relationships Of Surfaces That Resist The Adsorption Of Protein, Langmuir 17(18) (2001) 5605-5620.
[26] E.J. Campbell, V. O′byrne, P.W. Stratford, I. Quirk, T.A. Vick, M.C. Wiles, Y.P. Yianni, Biocompatible Surfaces Using Methacryloylphosphorylcholine Laurylmethacrylate Copolymer, Asaio J 40(3) (1994) M853-7.
[27] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Why Do Phospholipid Polymers Reduce Protein Adsorption?, J Biomed Mater Res 39(2) (1998) 323-30.
[28] A.L. Lewis, Phosphorylcholine-Based Polymers And Their Use In The Prevention Of Biofouling, Colloid Surf. B-Biointerfaces 18(3-4) (2000) 261-275.
[29] Y. Kadoma, N. Nakabayashi, E. Masuhara, J. Yamauchi, Synthesis And Hemolysis Test Of The Polymer Containing Phosphorylcholine Groups, Kobunshi Ronbunshu 35 (1978) 423-427.
[30] K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, N. Nakabayashi, Reduced Thrombogenicity Of Polymers Having Phospholipid Polar Groups, J Biomed Mater Res 24(8) (1990) 1069-77.
[31] K. Ishihara, T. Ueda, N. Nakabayashi, Preparation Of Phospholipid Polymers And Their Properties As Polymer Hydrogel Membranes, Polymer Journal 22(5) (1990) 355-360.
[32] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, N. Nakabayashi, Hemocompatibility Of Human Whole Blood On Polymers With A Phospholipid Polar Group And Its Mechanism, J Biomed Mater Res 26(12) (1992) 1543-52.
[33] J. Yu, N.M.K. Lamba, J.M. Courtney, T.L. Whateley, J.D.S. Gaylor, G.D.O. Lowe, K. Ishihara, N. Nakabayashi, Polymeric Biomaterials: Influence Of Phosphorylcholine Polar Groups On Protein Adsorption And Complement Activation, The International Journal Of Artificial Organs 17(9) (1994) 499-504.
[34] A.L. Lewis, P.D. Hughes, L.C. Kirkwood, S.W. Leppard, R.P. Redman, L.A. Tolhurst, P.W. Stratford, Synthesis And Characterisation Of Phosphorylcholine-Based Polymers Useful For Coating Blood Filtration Devices, Biomaterials 21(18) (2000) 1847-59.
[35] Y. Chang, S.F. Chen, Z. Zhang, S.Y. Jiang, Highly Protein-Resistant Coatings From Well-Defined Diblock Copolymers Containing Sulfobetaines, Langmuir 22(5) (2006) 2222-2226.
[36] Z. Zhang, S.F. Chen, Y. Chang, S.Y. Jiang, Surface Grafted Sulfobetaine Polymers Via Atom Transfer Radical Polymerization As Superlow Fouling Coatings, J. Phys. Chem. B 110(22) (2006) 10799-10804.
[37] J. Ladd, Z. Zhang, S. Chen, J.C. Hower, S. Jiang, Zwitterionic Polymers Exhibiting High Resistance To Nonspecific Protein Adsorption From Human Serum And Plasma, Biomacromolecules 9(5) (2008) 1357-1361.
[38] H. Vaisocherová, W. Yang, Z. Zhang, Z.Q. Cao, G. Cheng, M. Piliarik, J. Homola, S.Y. Jiang, Ultralow Fouling And Functionalizable Surface Chemistry Based On A Zwitterionic Polymer Enabling Sensitive And Specific Protein Detection In Undiluted Blood Plasma, Anal. Chem. 80(20) (2008) 7894-7901.
[39] G. Cheng, G.Z. Li, H. Xue, S.F. Chen, J.D. Bryers, S.Y. Jiang, Zwitterionic Carboxybetaine Polymer Surfaces And Their Resistance To Long-Term Biofilm Formation, Biomaterials 30(28) (2009) 5234-5240.
[40] W.F. Lin, G.L. Ma, J. Wu, S.F. Chen, Different In Vitro And In Vivo Behaviors Between Poly(Carboxybetaine Methacrylate) And Poly(Sulfobetaine Methacrylate), Colloid Surf. B-Biointerfaces 146 (2016) 888-894.
[41] C.Y. Chiu, Y. Chang, T.H. Liu, Y.N. Chou, T.J. Yen, Convergent Charge Interval Spacing Of Zwitterionic 4-Vinylpyridine Carboxybetaine Structures For Superior Blood-Inert Regulation In Amphiphilic Phases, J. Mat. Chem. B 9(40) (2021) 8437-8450.
[42] Y. Chang, Designs Of Zwitterionic Polymers, J. Polym. Res. 29(7) (2022) 19.
[43] R.G. Chapman, E. Ostuni, S. Takayama, R.E. Holmlin, L. Yan, G.M. Whitesides, Surveying For Surfaces That Resist The Adsorption Of Proteins, J. Am. Chem. Soc. 122(34) (2000) 8303-8304.
[44] H. Srivastava, H. Lade, D. Paul, G. Arthanareeswaran, J.H. Kweon, Styrene-Based Copolymer For Polymer Membrane Modifications, Appl. Sci.-Basel 6(6) (2016) 12.
[45] H.J. Shao, F.J. Wei, D.J. Luo, K.Z. Zhang, S.M. Liang, Q. Tian, S.H. Qin, J. Yu, Improving The Antifouling Property Of Polypropylene Hollow Fiber Membranes By In Situ Ultrasonic Wave-Assisted Polymerization Of Styrene And Maleic Anhydride, Polym. Eng. Sci. 59 (2019) E51-E58.
[46] W.-H. Lin, C.-Y. Lin, C.-C. Tsai, J. Yu, W.-B. Tsai, Spheroid Formation Of Human Adipose-Derived Stem Cells On Environmentally Friendly BMA/SBMA/HEMA Copolymers-Coated Anti-Adhesive Surface, Bulletin Of The Chemical Society Of Japan 91 (2018).
[47] H.N. Aini, I. Maggay, Y. Chang, A. Venault, A Green Stable Antifouling Pegylated Pvdf Membrane Prepared By Vapor-Induced Phase Separation, Membranes 12(12) (2022) 19.
[48] A. Venault, R.J. Zhou, T.A. Galeta, Y. Chang, Engineering Sterilization-Resistant And Fouling-Resistant Porous Membranes By The Vapor-Induced Phase Separation Process Using A Sulfobetaine Methacrylamide Amphiphilic Derivative, Journal Of Membrane Science 658 (2022) 16.
[49] G.V. Dizon, Y.S. Lee, A. Venault, I.V. Maggay, Y. Chang, Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process, Journal of Membrane Science 618 (2021) 15.
[50] A. Venault, Y. Chang, Designs of Zwitterionic Interfaces and Membranes, Langmuir 35(5) (2019) 1714-1726.
[51] G.V. Dizon, P.M.T. Fowler, A. Venault, C.C. Yeh, L.L. Tayo, A.R. Caparanga, P. Aimar, Y. Chang, Dopamine-Induced Surface Zwitterionization Of Expanded Poly(Tetrafluoroethylene) For Constructing Thermostable Bioinert Materials, ACS Biomater. Sci. Eng. 8(4) (2022) 1532-1543.
[52] D.W. Ma, J.M. Zhou, Z.G. Wang, Y. Wang, Block Copolymer Ultrafiltration Membranes By Spray Coating Coupled With Selective Swelling, Journal Of Membrane Science 598 (2020) 7.
[53] D.J. Miller, D.R. Dreyer, C.W. Bielawski, D.R. Paul, B.D. Freeman, Surface Modification Of Water Purification Membranes, Angew. Chem.-Int. Edit. 56(17) (2017) 4662-4711.
[54] A.L. Ahmad, A.A. Abdulkarim, B.S. Ooi, S. Ismail, Recent Development In Additives Modifications Of Polyethersulfone Membrane For Flux Enhancement, Chem. Eng. J. 223 (2013) 246-267.
[55] Y. Oshiba, Y. Harada, T. Yamaguchi, Precise Surface Modification Of Porous Membranes With Well-Defined Zwitterionic Polymer For Antifouling Applications, Journal Of Membrane Science 619 (2021) 10.
[56] W. Ma, M.S. Rahaman, H. Therien-Aubin, Controlling Biofouling Of Reverse Osmosis Membranes Through Surface Modification Via Grafting Patterned Polymer Brushes, J. Water Reuse Desalin. 5(3) (2015) 326-334.
[57] Q.F. Zhang, S.B. Zhang, L. Dai, X.S. Chen, Novel Zwitterionic Poly(Arylene Ether Sulfone)S As Antifouling Membrane Material, Journal Of Membrane Science 349(1-2) (2010) 217-224.
[58] W. Khongnakorn, W. Bootluck, P. Jutaporn, Surface Modification Of Fo Membrane By Plasma-Grafting Polymerization To Minimize Protein Fouling, J. Water Process. Eng. 38 (2020) 11.
[59] S.H. Chen, Y. Chang, K.R. Lee, T.C. Wei, A. Higuchi, F.M. Ho, C.C. Tsou, H.T. Ho, J.Y. Lai, Hemocompatible Control Of Sulfobetaine-Grafted Polypropylene Fibrous Membranes In Human Whole Blood Via Plasma-Induced Surface Zwitterionization, Langmuir 28(51) (2012) 17733-17742.
[60] Y. Chang, W.J. Chang, Y.J. Shih, T.C. Wei, G.H. Hsiue, Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization, ACS Appl. Mater. Interfaces 3(4) (2011) 1228-1237.
[61] Y.J. Shih, Y. Chang, D. Quemener, H.S. Yang, J.F. Jhong, F.M. Ho, A. Higuchi, Y. Chang, Hemocompatibility of Polyampholyte Copolymers with Well-Defined Charge Bias in Human Blood, Langmuir 30(22) (2014) 6489-6496.
[62] A. Venault, C.S. Liou, L.C. Yeh, J.F. Jhong, J. Huang, Y. Chang, Turning Expanded Poly(Tetrafluoroethylene) Membranes Into Potential Skin Wound Dressings By Grafting A Bioinert Epoxylated PEGMA Copolymer, ACS Biomater. Sci. Eng. 3(12) (2017) 3338-3350.
[63] C.J. Huang, Y.C. Chang, In Situ Surface Tailoring With Zwitterionic Carboxybetaine Moieties On Self-Assembled Thin Film For Antifouling Biointerfaces, Materials 7(1) (2014) 130-142.
[64] M.C. Sin, P.T. Lou, C.H. Cho, A. Chinnathambi, S.A. Alharbi, Y. Chang, An Intuitive Thermal-Induced Surface Zwitterionization For Versatile, Well-Controlled Haemocompatible Organic And Inorganic Materials, Colloid Surf. B-Biointerfaces 127 (2015) 54-64.
[65] R. Lalani, L.Y. Liu, Synthesis, Characterization, And Electrospinning Of Zwitterionic Poly(Sulfobetaine Methacrylate), Polymer 52(23) (2011) 5344-5354.
[66] J.A. Covas, P. Costa, A Miniature Extrusion Line For Small Scale Processing Studies, Polym. Test 23(7) (2004) 763-773.
[67] D.A. Zumbrunnen, C. Chhibber, Morphology Development In Polymer Blends Produced By Chaotic Mixing At Various Compositions, Polymer 43(11) (2002) 3267-3277.
[68] Y. Son, Development Of A Novel Microcompounder For Polymer Blends And Nanocomposite, J. Appl. Polym. Sci. 112(2) (2009) 609-619.
[69] A.M. Blackwood, J. Inoue, G.A. Sagnella, M.A. Miller, N.D. Markandu, G.A. Macgregor, Are The Changes In Urinary Kallikrein Excretion On Altering Sodium-Intake An Index Of Salt Sensitivity, J. Hum. Hypertens. 8(8) (1994) 619-621.
[70] C.E. Scott, C.W. Macosko, The Recirculating Screw Mixer - A New Small-Volume Mixer For The Polymer Laboratory, Polym. Eng. Sci. 33(16) (1993) 1065-1078.
[71] D. Van Zuilichem, W. Stolp, L. Janssen, Engineering Aspects Of Single-And Twin-Screw Extrusion-Cooking Of Biopolymers, Journal Of Food Engineering 2(3) (1983) 157-175.
[72] R. Chokshi, H. Zia, Hot-Melt Extrusion Technique: A Review, Iranian Journal Of Pharmaceutical Research 3(1) (2004) 3-16.
[73] S. Bonham, M. Misra, A.K. Mohanty, Effect of Co-Rotation and Counter-Rotation Extrusion Processing on the Thermal and Mechanical Properties, and Morphology of Plasticized Soy Protein Isolate and Poly(butylene succinate) Blends, Macromol. Mater. Eng. 296(9) (2011) 788-801.
[74] C. Martin, Twin Screw Extruders As Continuous Mixers For Thermal Processing: A Technical And Historical Perspective, Aaps Pharmscitech 17(1) (2016) 3-19.
[75] W.R. Fittig, Studies On Some Nitrogen-Containing Organic Compounds, Berichte Der Deutschen Chemischen Gesellschaft 2(1) (1869) 53-55.
[76] T.R. Felthouse, J.C. Burnett, B. Horrell, M.J. Mummey, Y.J. Kuo, Maleic Anhydride, Maleic Acid, And Fumaric Acid, Kirk‐Othmer Encyclopedia Of Chemical Technology (2000).
[77] O.M. Musa, Handbook Of Maleic Anhydride Based Materials, Springer 10 (2016) 978-3.
[78] A.U. Birnin-Yauri, N.A. Ibrahim, N. Zainuddin, K. Abdan, Y.Y. Then, B.W. Chieng, Effect Of Maleic Anhydride-Modified Poly (Lactic Acid) On The Properties Of Its Hybrid Fiber Biocomposites, Polymers 9(5) (2017) 165.
[79] M.P. Bernardo, B.C. Rodrigues, A. Sechi, L.H. Mattoso, Grafting Of Maleic Anhydride On Poly (Lactic Acid)/Hydroxyapatite Composites Augments Their Ability To Support Osteogenic Differentiation Of Human Mesenchymal Stem Cells, Journal Of Biomaterials Applications 37(7) (2023) 1286-1299.
[80] H. Nitz, H. Semke, R. Landers, R. Mülhaupt, Reactive Extrusion Of Polycaprolactone Compounds Containing Wood Flour And Lignin, J. Appl. Polym. Sci. 81(8) (2001) 1972-1984.
[81] T. Heinze, T. Liebert, Unconventional Methods In Cellulose Functionalization, Progress In Polymer Science 26(9) (2001) 1689-1762.
[82] G. Ye, Z. Li, B. Chen, X. Bai, X. Chen, Y. Hu, Performance Of Polylactic Acid/Polycaprolactone/Microcrystalline Cellulose Biocomposites With Different Filler Contents And Maleic Anhydride Compatibilization, Polymer Composites 43(8) (2022) 5179-5188.
[83] G. Singh, S. Singh, C. Prakash, R. Kumar, R. Kumar, S. Ramakrishna, Characterization Of Three‐Dimensional Printed Thermal‐Stimulus Polylactic Acid‐Hydroxyapatite‐Based Shape Memory Scaffolds, Polymer Composites 41(9) (2020) 3871-3891.
[84] S.M. Henry, M.E. El-Sayed, C.M. Pirie, A.S. Hoffman, P.S. Stayton, Ph-Responsive Poly (Styrene-Alt-Maleic Anhydride) Alkylamide Copolymers For Intracellular Drug Delivery, Biomacromolecules 7(8) (2006) 2407-2414.
[85] A. Setiawan, F. Aulia, Blending Of Low-Density Polyethylene And Poly-Lactic Acid With Maleic Anhydride As A Compatibilizer For Better Environmentally Food-Packaging Material, Iop Conference Series: Materials Science And Engineering, Iop Publishing, 2017, P. 012087.
[86] A. Venault, W.Y. Huang, S.W. Hsiao, A. Chinnathambi, S.A. Alharbi, H. Chen, J. Zheng, Y. Chang, Zwitterionic Modifications For Enhancing The Antifouling Properties Of Poly(Vinylidene Fluoride) Membranes, Langmuir 32(16) (2016) 4113-4124.
[87] C.C. Lien, L.C. Yeh, A. Venault, S.C. Tsai, C.H. Hsu, G.V. Dizon, Y.T. Huang, A. Higuchi, Y. Chang, Controlling The Zwitterionization Degree Of Alternate Copolymers For Minimizing Biofouling On Pvdf Membranes, Journal Of Membrane Science 565 (2018) 119-130.
[88] C.H. Hsu, A. Venault, Y. Chang, Facile Zwitterionization Of Polyvinylidene Fluoride Microfiltration Membranes For Biofouling Mitigation, Journal Of Membrane Science 648 (2022) 15.
[89] S. Bag, S. Ghosh, S. Paul, M.E.H. Khan, P.Y. De, Styrene-Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances And Future Perspectives, Macromol. Rapid Commun. 42(23) (2021) 26.
[90] E.R. Moore, PROPERTIES OF STYRENE MALEIC-ANHYDRIDE COPOLYMERS, Industrial & Engineering Chemistry Product Research And Development 25(2) (1986) 315-321.
[91] T. Otsu, A. Matsumoto, T. Kubota, Increase In Thermal-Stability Of Vinyl-Polymers Through Radical Copolymerization With N-Cyclohexylmaleimide, Polym. Int. 25(3) (1991) 179-184.
[92] M. Bezdek, F. Hrabak, N-(Monohalogenphenyl) Maleimides And Their Copolymers With Styrene And Butadiene, J. Polym. Sci. Pol. Chem. 17(9) (1979) 2857-2864.
[93] W.Y. Chiang, J.Y. Lu, Preparation And Properties Of New Photo-Functional Polymers .1. N-Substituted Maleimide Styrene Copolymers Containing Pendant Para-Nitrobenzyl Groups, Macromol. Chem. Phys. 195(2) (1994) 591-600.
[94] T. Oishi, Y. Otsubo, M. Fujimoto, Synthesis And Polymerization Of N-(Cholesteroxycarbonylmethyl)Maleimide, Polymer Journal 24(6) (1992) 527-537.
[95] X.C. Yin, H.D.H. Stöver, Thermosensitive And pH-Sensitive Polymers Based On Maleic Anhydride Copolymers, Macromolecules 35(27) (2002) 10178-10181.
[96] J. Lu, S.G. Kim, S. Lee, I.K. Oh, A Biomimetic Actuator Based On An Ionic Networking Membrane Of Poly(Styrene-Alt-Maleimide)-Incorporated Poly(Vinylidene Fluoride), Adv. Funct. Mater. 18(8) (2008) 1290-1298.
[97] W.J. Fang, Y.J. Cai, X.P. Chen, R.M. Su, T. Chen, N.S. Xia, L. Li, Q.L. Yang, J.H. Han, S.F. Han, Poly(Styrene-Alt-Maleic Anhydride) Derivatives As Potent Anti-HIV Microbicide Candidates, Bioorg. Med. Chem. Lett. 19(7) (2009) 1903-1907.
[98] M.P. Baranello, L. Bauer, D.S.W. Benoit, Poly(Styrene-Alt-Maleic Anhydride)-Based Diblock Copolymer Micelles Exhibit Versatile Hydrophobic Drug Loading, Drug-Dependent Release, And Internalization By Multidrug Resistant Ovarian Cancer Cells, Biomacromolecules 15(7) (2014) 2629-2641.
[99] X.M. Zhang, H.Z. Li, M.L. Cao, L. Shi, C.Y. Chen, Adsorption Of Basic Dyes On Β-Cyclodextrin Functionalized Poly (Styrene-Alt-Maleic Anhydride), Sep. Sci. Technol. 50(7) (2015) 947-957.
[100] R. Hasanzadeh, P.N. Moghadam, N. Samadi, Synthesis And Application Of Modified Poly (Styrene-Alt-Maleic Anhydride) Networks As A Nano Chelating Resin For Uptake Of Heavy Metal Ions, Polym. Adv. Technol. 24(1) (2013) 34-41.
[101] B. Saha, K. Bauri, A. Bag, P.K. Ghorai, P. De, Conventional Fluorophore-Free Dual pH- And Thermo-Responsive Luminescent Alternating Copolymer, Polym. Chem. 7(45) (2016) 6895-6900.
[102] K. Bauri, B. Saha, J. Mahanti, P. De, A Nonconjugated Macromolecular Luminogen For Speedy, Selective And Sensitive Detection Of Picric Acid In Water, Polym. Chem. 8(46) (2017) 7180-7187.
[103] C. Malardier-Jugroot, T.G.M. De Ven, M.A. Whitehead, Study Of The Water Conformation Around Hydrophilic And Hydrophobic Parts Of Styrene-Maleic Anhydride, Theochem-J. Mol. Struct. 679(3) (2004) 171-177.
[104] G.H. Hu, J.T. Lindt, Amidification Of Poly(Styrene-Co-Maleic Anhydride) With Amines In Tetrahydrofuran Solution - A Kinetic-Study, Polym. Bull. 29(3-4) (1992) 357-363.
[105] H.Y. Liu, K. Cao, Y. Huang, Z. Yao, B.G. Li, G.H. Hu, Kinetics And Simulation Of The Imidization Of Poly(Styrene-Co-Maleic Anhydride) With Amines, J. Appl. Polym. Sci. 100(4) (2006) 2744-2749.
[106] K. Cheng, N. Zhang, N. Yang, S. Hou, J.H. Ma, L.H. Zhang, Y.L. Sun, B. Jiang, Rapid And Robust Modification Of Pvdf Ultrafiltration Membranes With Enhanced Permselectivity, Antifouling And Antibacterial Performance, Sep. Purif. Technol. 262 (2021) 10.
[107] R.A. Vora, H.C. Trivedi, C.P. Patel, D.H. Garg, M.C. Trivedi, Synthesis And Characterization Of Styrene-Maleic Anhydride Copolymers, J. Polym. Mater. 12(2) (1995) 111-120.
[108] 何春菊., 邱明., 一种抗污染亲水性正渗透膜的制备方法, in: 中华人民共和国国家知识产权局 (Ed.) Patent, china, 2017.
[109] 生物膜:可以通過內建抗菌劑預防嗎?. (accessed 0514 2024).
[110] G. Schoukens, J. Martins, P. Samyn, Insights In The Molecular Structure Of Low- And High-Molecular Weight Poly(Styrene-Maleic Anhydride) From Vibrational And Resonance Spectroscopy, Polymer 54(1) (2013) 349-362.
[111] M.S. Ayyagari, K.A. Marx, S.K. Tripathy, J.A. Akkara, D.L. Kaplan, Controlled Free-Radical Polymerization Of Phenol Derivatives By Enzyme-Catalyzed Reactions In Organic Solvents, Macromolecules 28(15) (1995) 5192-5197.
[112] Q. Ma, K.L. Wooley, The Preparation Of T‐Butyl Acrylate, Methyl Acrylate, And Styrene Block Copolymers By Atom Transfer Radical Polymerization: Precursors To Amphiphilic And Hydrophilic Block Copolymers And Conversion To Complex Nanostructured Materials, Journal Of Polymer Science Part A: Polymer Chemistry 38(S1) (2000) 4805-4820.
[113] T. Xiang, M. Tang, Y.Q. Liu, H.J. Li, L.L. Li, W.Y. Cao, S.D. Sun, C.S. Zhao, Preparation And Characterization Of Modified Polyethersulfone Hollow Fiber Membranes By Blending Poly (Styrene-Alt-Maleic Anhydride), Desalination 295 (2012) 26-34.
[114] M. Cioffi, A.C. Hoffmann, L. Janssen, Reducing The Gel Effect In Free Radical Polymerization, Chem. Eng. Sci. 56(3) (2001) 911-915.
[115] A.A. Bhutto, D. Vesely, B.J. Gabrys, Miscibility And Interactions In Polystyrene And Sodium Sulfonated Polystyrene With Poly(Vinyl Methyl Ether) PVME Blends. Part II. FTIR, Polymer 44(21) (2003) 6627-6631.
[116] H. Kaczmarek, A. Felczak, A. Szalla, Studies Of Photochemical Transformations In Polystyrene And Styrene-Maleic Anhydride Copolymer, Polym. Degrad. Stabil. 93(7) (2008) 1259-1266.
[117] P.A. Woodfield, Y.C. Zhu, Y.W. Pei, P.J. Roth, Hydrophobically Modified Sulfobetaine Copolymers With Tunable Aqueous UCST Through Postpolymerization Modification Of Poly(Pentafluorophenyl Acrylate), Macromolecules 47(2) (2014) 750-762.
[118] M. Ji, A. Jagodar, E. Kovacevic, L. Benyahia, F. Poncin-Epaillard, Characterization Of Functionalized Coatings Prepared From Pulsed Plasma Polymerization, Mater. Chem. Phys. 267 (2021) 11.
[119] R. Morent, N. De Geyter, C. Leys, L. Gengernbre, E. Payen, Comparison Between XPS- And FTIR-Analysis Of Plasma-Treated Polypropylene Film Surfaces, Surf. Interface Anal. 40(3-4) (2008) 597-600.
[120] D.H. Zhang, X.H. Zhang, C. Luan, B. Tang, Z.Y. Zhang, N.W. Pu, K.Y. Zhang, J.G. Liu, C.W. Yan, Zwitterionic Interface Engineering Enables Ultrathin Composite Membrane For High-Rate Vanadium Flow Battery, Energy Storage Mater. 49 (2022) 471-480.
[121] Y. Chang, T.Y. Cheng, Y.J. Shih, K.R. Lee, J.Y. Lai, Biofouling-Resistance Expanded Poly(Tetrafluoroethylene) Membrane With A Hydrogel-Like Layer Of Surface-Immobilized Poly(Ethylene Glycol) Methacrylate For Human Plasma Protein Repulsions, Journal Of Membrane Science 323(1) (2008) 77-84.
指導教授 黃俊仁 張雍(Chun-Jen Huang Yung Chang) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明