博碩士論文 111324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.22.217.176
姓名 蘇翊碩(Yi-Shuo SU)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用膜過濾法分離卵巢癌細胞建立癌幹細胞系
(Isolation of Ovarian Cancer Cells to Establish Cancer Stem Cells Using Membrane Filtration Method)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-20以後開放)
摘要(中) 卵巢癌是女性生殖系統中最致命的惡性腫瘤之一,其發病率和死亡率一直引起全球範圍內的關注。其中,癌症幹細胞是一種在腫瘤中具有幹細胞特性的細胞,它們具有自我更新和分化成多種細胞型的能力。這些幹細胞被認為在癌症的發展和轉移過程中扮演著關鍵角色。 因此,針對癌症幹細胞的治療策略可能有助於阻止腫瘤的再生和轉移,從而提高治療效果和預後。
在這樣的背景下,本研究開發了一種膜過濾法。ES-2細胞株透過此方法,使用了不同的薄膜,分別是耐倫薄膜、聚乳酸-聚乙二醇酸薄膜和使用聚-L-賴氨酸與PVA-IA改質表面特性的的聚乳酸-聚乙二醇酸薄膜,透過改變薄膜的孔隙度度、厚度與表面性質達到純化CSCs的目的。純化效率將通過不同的檢測方式(1)流式細胞儀檢測CD44 & CD133的表達(2) 集落形成單位試驗。最後可以發現,在不同檢測方式的驗證下,透過與回收液和滲透液中的細胞相比,CSCs在遷移的細胞中具有更高的純度。
接下來,為了測試膜過濾法將癌細胞從腫瘤細胞群分離的可行性,我們將卵巢癌細胞ES-2與人類成纖維細胞 CG1639共培養進行模擬。分別使用紅色與藍色的細胞追蹤劑染色來進行標記,以便利用流式細胞儀及螢光顯微鏡進行鑑定。結果顯示,在使用癌症幹細胞純化效率最高的10%聚乳酸-聚乙二醇酸薄膜時,膜遷移的ES-2細胞的純度有明顯的提升,表明薄膜上有更高比例的癌細胞殘留。
這項技術顯示了作為分離癌症幹細胞(CSC)的可行策略的潛力,在即將到來的研究努力中具有精確醫學篩查的潛在應用。
摘要(英) Ovarian cancer is one of the most malignant tumors in the female reproductive system, and its incidence and mortality rate have been a global concern. Cancer stem cells (CSCs) are a type of cells in tumors that possess stem cell characteristics, with the ability to self-renew and generate tumors in organs or tissues in different sites. These stem cells are believed to play a crucial role in the development and metastasis of cancer. Therefore, treatment strategies targeting cancer stem cells may help preventing tumor regeneration and metastasis, thereby improving treatment outcomes and prognosis. A membrane filtration method was used to purify cancer stem cells using ovarian cancer cells in this study. ES-2 ovarian cancer cell line was used to be purified by membrane filtration method via several membranes including Nylon 11 membranes, poly(lactide-co-glycolic acid)/silk screen (PLGA/SK) membranes, and PLGA/SK membranes modified with poly-L-lysine or polyvinylalcohol-co-itaconic acid (PVA-IA) to achieve purification of CSCs by changing the porosity, thickness, and surface charges of the membranes. The purification efficiency was assessed using the following methods: (1) flow cytometry to detect the expression of CD44 & CD133 (CSC markers), and (2) colony-forming unit assay. The migrating cells after permeation through the membranes were found to have higher purity of CSCs compared to the cells in the recovery and permeate solutions. In order to evaluate the feasibility of separation of cancer cells from a tumor cell population using membrane filtration, ovarian cancer cells ES-2 were mixed with human fibroblast cells CG1639 to generate the simulated solution of primary tumor cell solution. The cell staining with Cell Tracker Red and Blue were used to identify ovarian cancer cells and fibroblasts, respectively using flow cytometry assay and fluorescence microscopy evaluation. The results showed that the purity of migrated ES-2 cells from 10% PLGA/SK membranes was the highest, indicating a high proportion of cancer cells remained on the membranes after the permeation of mixed solution of ovarian cancer cells and fibroblasts.
關鍵字(中) ★ 卵巢癌
★ 癌症幹細胞
★ 尼龍膜
★ 膜過濾法
★ 聚乳酸-羥基乙酸共聚物/絲網
★ 膜改質
關鍵字(英) ★ Ovarian carcinoma
★ cancer stem cells
★ nylon membrane
★ membrane filtration method
★ poly(lactide-co-glycolic acid)/silk screen.
★ membrane modification
論文目次 Abstract I
摘要 III
Index of content V
Index of Figures VIII
Index of Tables XII
Introduction 1
1-1 Stem cells and cancer stem cells 1
1-1-1 Stem cells 1
1-1-1-1 Totipotent stem cells 2
1-1-1-2 Pluripotent stem cells 2
1-1-1-3 Multipotent stem cells 3
1-1-1-4 Unipotent stem cells 4
1-1-2 Cancer stem cells 5
1-2 Interaction of cancer cells with the microenvironment 6
1-2-1 Cancer-associated fibroblasts (CAFs) 6
1-2-2 Extracellular matrix (ECM) 8
1-2-3 Tumor-associated macrophages (TAMs) 9
1-3 Isolation process of cancer cells 11
1-3-1 Fluorescence-activated cell sorting (FACS) 11
1-3-2 Density gradient centrifugation 12
1-3-3 Cell surface marker-based separation (CSMBS) 13
1-3-4 Membrane filtration method 14
1-4 Identification of cancer stem cells 16
1-4-1 Expression of surface markers on cancer stem cells 16
1-4-2 Identification of carcinoembryonic antigen (CEA) through enzyme-linked immunosorbent assay (ELISA) technique 17
1-4-3 Colony formation assay (CFA) 19
1-4-4 Immunofluorescence staining (IF) 20
1-5 Goal of this study 22
Chapter 2 Materials and methods 23
2-1 Experimental materials 23
2-1-1 Cell sources 23
2-1-2 Membranes 23
2-1-3 Cell cultivation dishes 25
2-1-4 Phosphate buffered saline solution (PBS) 25
2-1-5 Cell culture medium 25
2-1-6 Evaluation of cancer stem cells 25
2-1-7CellTracker staining 26
2-2 Cell culture methods 26
2-2-1 Preparation of cell culture medium 26
2-2-2 Preparation of other experimental solutions 27
2-2-3 Cell cultivation 28
2-2-4 Passage of cell lines 28
2-2-5 Cell density measurement 29
2-2-6 Coculture method of cells and CellTracker staining of the cells 30
2-2-7 Preparation of PLGA-silk screen (PLGA/SK) membranes 32
2-2-8 Surface electrical modification of PLGA-silk screen membranes 33
2-3 Cell sorting method 34
2-4 Identification of cancer stem cells 36
2-4-1 Surface marker analysis of cancer stem cells 36
2-4-2 Soft agar colony formation assay 37
2-5 Characterization of membranes and cells 39
2-5-1 Scanning Electron Microscope (SEM) measurements 39
2-5-2 Contact angle 40
2-5-3 Zeta potential measurements 40
2-5-4 Dynamic light scattering ___DLS 40
Chapter 3 Results and discussion 42
3-1 Characterization of membranes 42
3-1-1 Scanning Electron Microscope (SEM) measurements 43
Unmodified membranes (PLGA/SK : silk 170 mesh size) 45
3-1-2 Porosity measurements 47
3-1-3 Zeta potential measurements 48
3-1-4 Contact angle measurements 51
3-2Characterization of ovarian cancer cell lines 53
3-2-1 Morphology 53
3-2-2 Dynamic Light Scattering 54
3-3 Membrane filtration method through PLGA/SK membranes prepared with different concentration of PLGA 57
3-3-1 The distribution of the ES-2 cells after membrane filtration 57
3-3-2 Surface marker analysis of cancer stem cells by flow cytometry 60
3-3-3 Soft agar colony formation assay of cancer stem cells 65
3-3-4 Isolation of ovarian cancer cells through membranes from different ratio of mixed cell solution by membrane filtration method 67
3-4 Cells isolated through PLGA/SK membranes modified with PVA-IA or PLL 78
3-4-1The distribution of the ES-2 cells after membrane filtration of the cells 78
3-4-2 Surface marker analysis of cancer stem cells by flow cytometry 80
3-4-3 Soft agar colony formation assay of cancer cells 86
3-4-4 Isolation of ovarian cancer cells from different ratio of mixed cell solution by membrane filtration method 89
Chapter 4 Conclusion 99
Reference 102
參考文獻 [1]Ramalho-Santos, M. and H. Willenbring (2007). "On the origin of the term “stem cell”." Cell stem cell 1(1): 35-38.

[2]Chagastelles, P. C. and N. B. Nardi (2011). "Biology of stem cells: an overview." Kidney international supplements 1(3): 63-67.

[3]Cai, J., et al. (2022). "Research Progress of Totipotent Stem Cells." Stem Cells and Development 31(13-14): 335-345.

[4]Malik, V. and J. Wang (2022). "Pursuing totipotency: authentic totipotent stem cells in culture." Trends in Genetics.

[5]Shen, H., et al. (2021). "Mouse totipotent stem cells captured and maintained through spliceosomal repression." Cell 184(11): 2843-2859. e2820.

[6]Hu, Y., et al. (2023). "Induction of mouse totipotent stem cells by a defined chemical cocktail." Nature 617(7962): 792-797.

[7]Xu, Y., et al. (2022). "Derivation of totipotent-like stem cells with blastocyst-like structure forming potential." Cell Research 32(6): 513-529.

[8]Smith, A. (2010). "Pluripotent stem cells: private obsession and public expectation." EMBO Molecular Medicine 2(4): 113-116.

[9]de Figueiredo Pessôa, L. V., et al. (2019). "Induced pluripotent stem cells throughout the animal kingdom: availability and applications." World Journal of Stem Cells 11(8): 491.

[10]Evans, M. J. and M. H. Kaufman (1981). "Establishment in culture of pluripotential cells from mouse embryos." Nature 292(5819): 154-156.

[11]Thomson, J. A., et al. (1998). "Embryonic stem cell lines derived from human blastocysts." science 282(5391): 1145-1147.

[12]Nichols, J., et al. (1998). "Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4." Cell 95(3): 379-391.

[13]Takahashi, K., et al. (2007). "Induction of pluripotent stem cells from adult human fibroblasts by defined factors." Cell 131(5): 861-872.

[14]Takahashi, K. and S. Yamanaka (2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors." Cell 126(4): 663-676.

[15]Yu, J., et al. (2007). "Induced pluripotent stem cell lines derived from human somatic cells." science 318(5858): 1917-1920.

[16]Nakagawa, M., et al. (2008). "Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts." Nature biotechnology 26(1): 101-106.

[17]Konstantinov, I. E. (2000). "In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis." Perspectives in biology and medicine 43(2): 269-276.

[18]Till, J. E., et al. (1964). "A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells." Proceedings of the National Academy of Sciences 51(1): 29-36.

[19]Lilja, A. M., et al. (2018). "Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland." Nature cell biology 20(6): 677-687.

[20]Estrada-Meza, C., et al. (2022). "Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations." 3 Biotech 12(10): 270.

[21]Zhou, J. N., et al. (2022). "A Functional Screening Identifies a New Organic Selenium Compound Targeting Cancer Stem Cells: Role of c‐Myc Transcription Activity Inhibition in Liver Cancer." Advanced Science 9(22): 2201166.

[22]Koury, J., et al. (2017). "Targeting signaling pathways in cancer stem cells for cancer treatment." Stem cells international 2017.

[23]Cho, D.-Y., et al. (2013). "Targeting cancer stem cells for treatment of glioblastoma multiforme." Cell transplantation 22(4): 731-739.

[24]Zhou, H.-M., et al. (2021). "Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents." Signal transduction and targeted therapy 6(1): 62.

[25]Abubaker, K., et al. (2013). "Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden." Molecular cancer 12: 1-15.

[26]López de Andrés, J., et al. (2020). "Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment." Journal of hematology & oncology 13(1): 136.

[27]Zhou, Y., et al. (2023). "The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer." Frontiers in Bioengineering and Biotechnology 11.

[28]Sarkar, M., et al. (2023). "Cancer-associated fibroblasts: The chief architect in the tumor microenvironment." Frontiers in Cell and Developmental Biology 11: 1089068.

[29]Wright, K., et al. (2023). "Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers." Cancers 15(6): 1899.

[30]Luo, H., et al. (2022). "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment." Nature Communications 13(1): 6619.

[31]Peng, Z., et al. (2022). "Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer." Journal of Translational Medicine 20(1): 302.

[32]Mao, X., et al. (2021). "Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives." Molecular cancer 20(1): 1-30.

[33]Brassart-Pasco, S., et al. (2020). "Tumor microenvironment: extracellular matrix alterations influence tumor progression." Frontiers in oncology 10: 397.

[34]Henke, E., et al. (2020). "Extracellular matrix in the tumor microenvironment and its impact on cancer therapy." Frontiers in molecular biosciences 6: 160.

[35]Popova, N. V. and M. Jücker (2022). "The functional role of extracellular matrix proteins in cancer." Cancers 14(1): 238.

[36]Winkler, J., et al. (2020). "Concepts of extracellular matrix remodelling in tumour progression and metastasis." Nature Communications 11(1): 5120.

[37]Yuan, Z., et al. (2023). "Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments." Molecular cancer 22(1): 48.

[38]Yang, Q., et al. (2020). "The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy." Acta Pharmaceutica Sinica B 10(11): 2156-2170.

[39]Chen, Y., et al. (2019). "Tumor-associated macrophages: an accomplice in solid tumor progression." Journal of biomedical science 26(1): 1-13.

[40]Yang, L., et al. (2020). "Targeting cancer stem cell pathways for cancer therapy." Signal transduction and targeted therapy 5(1): 8.

[41]Li, Y.-R., et al. (2022). "An ex vivo 3D tumor microenvironment-mimicry culture to study TAM modulation of cancer immunotherapy." Cells 11(9): 1583.

[42]Wang, J., et al. (2019). "Crosstalk between cancer and immune cells: Role of tumor‐associated macrophages in the tumor microenvironment." Cancer medicine 8(10): 4709-4721.

[43]Rahma, O. E. and F. S. Hodi (2019). "The intersection between tumor angiogenesis and immune suppression." Clinical Cancer Research 25(18): 5449-5457.

[44]Fong, C. Y., et al. (2009). "Separation of SSEA-4 and TRA-1–60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS)." Stem Cell Reviews and Reports 5: 72-80.

[45]Manoli, M. and W. Driever (2012). "Fluorescence-activated cell sorting (FACS) of fluorescently tagged cells from zebrafish larvae for RNA isolation." Cold Spring Harbor Protocols 2012(8): pdb. prot069633.

[46]Sharon, Y., et al. (2013). "Isolation of normal and cancer-associated fibroblasts from fresh tissues by Fluorescence Activated Cell Sorting (FACS)." JoVE (Journal of Visualized Experiments)(71): e4425.

[47]Baker, M. K., et al. (2003). "Molecular detection of breast cancer cells in the peripheral blood of advanced-stage breast cancer patients using multimarker real-time reverse transcription-polymerase chain reaction and a novel porous barrier density gradient centrifugation technology." Clinical Cancer Research 9(13): 4865-4871.

[48]Liu, W.-h., et al. (2012). "Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method." PloS one 7(4): e35720.

[49]Grunt, T. W., et al. (1991). "Separation of clonogenic and differentiated cell phenotypes of ovarian cancer cells (HOC-7) by discontinuous density gradient centrifugation." Cancer letters 58(1-2): 7-16.

[50]Baday, M., et al. (2019). "Density based characterization of mechanical cues on cancer cells using magnetic levitation." Advanced healthcare materials 8(10): 1801517.

[51]Lin, Z., et al. (2020). "Rapid assessment of surface markers on cancer cells using immuno-magnetic separation and multi-frequency impedance cytometry for targeted therapy." Scientific reports 10(1): 3015.

[52]Bankó, P., et al. (2019). "Technologies for circulating tumor cell separation from whole blood." Journal of hematology & oncology 12: 1-20.

[53]Seal, S. (1964). "A sieve for the isolation of cancer cells and other large cells from the blood." Cancer 17(5): 637-642.

[54]Higuchi, A., et al. (2006). "Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes." Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 78(3): 491-499.

[55]Higuchi, A., et al. (2008). "Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes." Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 85(4): 853-861.

[56]Chen, D.-C., et al. (2014). "Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes." Biomaterials 35(14): 4278-4287.

[57]Wu, C.-H., et al. (2012). "The isolation and differentiation of human adipose-derived stem cells using membrane filtration." Biomaterials 33(33): 8228-8239.

[58]Sung, T.-C., et al. (2020). "Enrichment of cancer-initiating cells from colon cancer cells through porous polymeric membranes by a membrane filtration method." Journal of Materials Chemistry B 8(46): 10577-10585.

[59]Kim, W.-T. and C. J. Ryu (2017). "Cancer stem cell surface markers on normal stem cells." BMB reports 50(6): 285.

[60]Xia, P. (2014). "Surface markers of cancer stem cells in solid tumors." Current stem cell research & therapy 9(2): 102-111.

[61]Walcher, L., et al. (2020). "Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies." Frontiers in immunology 11: 539291.

[62]Woodward, W. A. and E. P. Sulman (2008). "Cancer stem cells: markers or biomarkers?" Cancer and metastasis reviews 27: 459-470.

[63]Leon, G., et al. (2016). "Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways." Pharmacology & therapeutics 158: 71-90.

[64]Tang, K. H., et al. (2012). "CD133+ liver tumor‐initiating cells promote tumor angiogenesis, growth, and self‐renewal through neurotensin/interleukin‐8/CXCL1 signaling." Hepatology 55(3): 807-820.

[65]Yang, Z. F., et al. (2008). "Significance of CD90+ cancer stem cells in human liver cancer." Cancer cell 13(2): 153-166.

[66]Yamashita, T., et al. (2009). "EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features." Gastroenterology 136(3): 1012-1024. e1014.

[67]Hermann, P. C., et al. (2007). "Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer." Cell stem cell 1(3): 313-323.

[68]Skoda, J., et al. (2016). "Co-expression of cancer stem cell markers corresponds to a pro-tumorigenic expression profile in pancreatic adenocarcinoma." PloS one 11(7): e0159255.

[69]Durko, L., et al. (2017). "Expression and clinical significance of cancer stem cell markers CD24, CD44, and CD133 in pancreatic ductal adenocarcinoma and chronic pancreatitis." Disease markers 2017.

[70]Wang, L., et al. (2023). "Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge." Frontiers in oncology 13.

[71]Wu, Q., et al. (2019). "Cancer stem cells in esophageal squamous cell cancer." Oncology letters 18(5): 5022-5032.

[72]Zhang, X., et al. (2016). "Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer." Oncotarget 7(9): 9815.

[73]Nishikawa, S., et al. (2015). "Surgically resected human tumors reveal the biological significance of the gastric cancer stem cell markers CD44 and CD26." Oncology letters 9(5): 2361-2367.

[74]Huang, J. L., et al. (2021). "Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer." American Journal of Cancer Research 11(10): 5141.

[75]Andrews, T. E., et al. (2013). "Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery." Drug delivery and translational research 3: 121-142.

[76]Calaf, G. M., et al. (2018). "Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer." Oncology Reports 39(6): 2741-2748.

[77]Barsky, S. H., et al. (2009). "CD133, a stem cell surface marker in inflammatory breast cancer, functions in tumor cell survival." The FASEB Journal 23: 363.367-363.367.

[78]Shigdar, S., et al. (2011). "RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule." Cancer science 102(5): 991-998.

[79]Klemba, A., et al. (2018). "Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance." Contemporary Oncology/Współczesna Onkologia 2018(1): 48-55.

[80]Muñoz-Galván, S. and A. Carnero (2020). "Targeting cancer stem cells to overcome therapy resistance in ovarian cancer." Cells 9(6): 1402.

[81]Singh, S. K., et al. (2003). "Identification of a cancer stem cell in human brain tumors." Cancer research 63(18): 5821-5828.

[82]Tang, D. G. (2022). Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in cancer biology, Elsevier.

[83]Culen, M., et al. (2019). "Multicolor Immunophenotyping of Candidate Leukemic Stem Cell Markers in CD34+ CD38-Chronic Myeloid Leukemia Stem Cells." Blood 134: 2922.

[84]Goeminne, J.-C., et al. (1999). "Unreliability of carcinoembryonic antigen (CEA) reverse transcriptase-polymerase chain reaction (RT-PCR) in detecting contaminating breast cancer cells in peripheral blood stem cells due to induction of CEA by growth factors." Bone marrow transplantation 24(7): 769-775.

[85]Shah, K. and P. Maghsoudlou (2016). "Enzyme-linked immunosorbent assay (ELISA): the basics." British journal of hospital medicine 77(7): C98-C101.

[86]Lázaro-Gorines, R., et al. (2019). "A novel carcinoembryonic antigen (CEA)-targeted trimeric immunotoxin shows significantly enhanced antitumor activity in human colorectal cancer xenografts." Scientific reports 9(1): 11680.

[87]Sandberg, M. L., et al. (2022). "A carcinoembryonic antigen-specific cell therapy selectively targets tumor cells with HLA loss of heterozygosity in vitro and in vivo." Science Translational Medicine 14(634): eabm0306.

[88]Das, A., et al. (2014). "A monoclonal antibody against neem leaf glycoprotein recognizes carcinoembryonic antigen (CEA) and restricts CEA expressing tumor growth." Journal of Immunotherapy 37(8): 394-406.

[89]Lin, A. V. (2015). "Direct Elisa." ELISA: methods and protocols: 61-67.

[90]Lin, A. V. (2015). "Indirect elisa." ELISA: methods and protocols: 51-59.

[91]Abd Temur, A. and F. A. Rashid (2021). "Irisin and carcinoembryonic antigen (CEA) as potential diagnostic biomarkers in gastric and colorectal cancers." Reports of Biochemistry & Molecular Biology 10(3): 488.

[92]Franken, N. A., et al. (2006). "Clonogenic assay of cells in vitro." Nature protocols 1(5): 2315-2319.

[93]Nakamura, D. (2023). "The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction." Scientific reports 13(1): 5405.

[94]Gordon, J. L., et al. (2018). "Cell-based methods for determination of efficacy for candidate therapeutics in the clinical management of cancer." Diseases 6(4): 85.

[95]Vargas, J., et al. (2018). "Sequential multiplex immunofluorescence technology (SMIFT): A new staining strategy for immunotherapy." Cancer research 78(13_Supplement): 3965-3965.

[96]Gillespie, J. L., et al. (2016). "A versatile method for immunofluorescent staining of cells cultured on permeable membrane inserts." Medical Science Monitor Basic Research 22: 91.

[97]Zaqout, S., et al. (2020). "Immunofluorescence staining of paraffin sections step by step." Frontiers in neuroanatomy 14: 582218.

[98]Im, K., et al. (2019). "An introduction to performing immunofluorescence staining." Biobanking: methods and protocols: 299-311.

[99]Taube, J. M., et al. (2020). "The Society for Immunotherapy in Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation." Journal for immunotherapy of cancer 8(1).
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明