博碩士論文 111324012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.12.41.139
姓名 劉品榮(Pin-Rong Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 矽烷基偶合劑表面修飾策略以提高聚偏乙烯-六氟丙烯/聚碳酸亞丙酯高分子系統與鋰鑭鋯鋁氧化物無機粉末界面兼容性之鋰金屬電池應用
(Silane coupling agent surface modification strategies to enhance the interfacial compatibility between PVDF-HFP/PPC polymer systems and LLZAO garnet-type inorganic powders for Lithium metal battery applications)
相關論文
★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料★ 固相反應法製備固態電解質Li7La3Zr2O12應用於鋰離子電池
★ Li7La3Zr2O12與多壁奈米碳管填料於聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯之複合型固態電解質應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-20以後開放)
摘要(中) 複合型固態電解質同時具備有機高分子的高機械性能和無機陶瓷粉末的高熱穩定性,因此是應用於鋰金屬電池的理想選擇。然而,複合型固態電解質存在一個嚴重問題,由於有機/無機界面不相容,無機粉末難以均勻分散在有機高分子中,導致團聚現象,從而阻礙鋰離子的傳輸,降低鋰金屬電池的電性能。
在這種情況下,矽烷基偶合劑的加入是一個很好的解決方案。通過矽烷基的親水端與無機粉末(LLZAO)上的-OH鍵結合,以及親油端含氮元素官能基的孤對電子與高分子進行路易斯酸鹼反應,可以改善有機/無機界面。
本實驗選擇了三種含氮官能基的矽烷基偶合劑,分別是3-異氰酸丙基三乙氧基矽烷(IPTS)、3-氨丙基三乙氧基矽烷(KH550)以及3-(2-咪唑啉-1-基)丙基三乙氧基矽烷(ITES)進行比較。
經過3-異氰酸丙基三乙氧基矽烷(IPTS)偶合劑修飾後的複合型固態電解質具有穩定的鋰離子傳輸通道,並展現出較高的離子導電率(在室溫下為8.4 x 10-4 S/cm)。此外,由於無機粉末與有機高分子的界面得到改善,固態電解質本身的拉伸強度達到0.79 MPa。經由組裝NCM811|CSEs|Li固態電池的測試,該電池在室溫充放電速率1.5C下,放電比容量高達125.85 mAh/g,且在0.5C充放電150圈的長循環測試中,比容量保持率高達98.72%。
這種經矽烷偶合劑修飾的複合型固態電解質將會為新一代的全固態鋰金屬電池拓展一條全新的道路。
摘要(英) Composite solid electrolytes (CSEs) possess the high mechanical properties of organic polymers and the high thermal stability of inorganic ceramic powders, making them an ideal choice for use in lithium metal batterie s. However, CSEs face a significant challenge: the incompatibility of organic/inorganic interfaces results in inorganic powders not dispersing uniformly within the organic polymer, leading to agglomeration.This agglomeration obstructs the transport of lithium ions and decreases the electrochemical performance of lithium metal batteries.
In this context, the addition of silane coupling agents presents a promising solution. By forming bonds between the hydrophilic end of the silane and the
-OH groups on the inorganic powder (LLZAO), and through Lewis acid-base reactions between the lone pairs of electrons on the nitrogen-containing functional groups of the hydrophobic end and the polymer, the organic/inorganic interface can be improved.
This study selected three nitrogen-containing silane coupling agents for comparison: 3-Isocyanatopropyltriethoxysilane (IPTS), 3-Aminopropyltriethoxy -silane (KH550), and 3-(2-Imidazolin-1-yl)propyltriethoxysilane ( ITES).
The composite solid electrolyte modified with 3-Isocyanatopropyltriethoxysilane (IPTS) exhibited stable lithium-ion transport channels and a high ionic conductivity of 8.4 x 10-4 S/cm at room temperature. Furthermore, due to the improved interface between the inorganic powder and the organic polymer, the solid electrolyte itself demonstrated a tensile strength of 0.79 MPa, which is better than the tensile strength of the unmodified powder, 0.46 MPa. Testing the NCM811|CSEs|Li solid-state battery configuration revealed a high discharge specific capacity of 125.85 mAh/g at a 1.5C charge-discharge rate at room temperature, with a capacity retention rate of 98.72% after 150 cycles at 0.5C.
This novel design of CSEs with silane coupling agent modification paves the way for a new generation of all-solid-state lithium metal batteries.
關鍵字(中) ★ 鋰金屬半電池
★ 矽烷基偶合劑
★ 複合型固態電解質
★ 鋰鑭鋯鋁氧化物
關鍵字(英) ★ Lithium metal half cell
★ Silane coupling agents
★ Composite solid electrolytes
★ Garnet-type oxide LLZAO
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xvii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 6
2-1 正極活性物質-LiNi0.8Co0.1Mn0.1O2(NCM811)介紹 6
2-2 高分子固態電解質介紹 7
2-3 複合型固態電解質介紹 17
2-4 無機陶瓷粉末介紹 20
2-5 石榴石型(Garnet type)-鋰鑭鋯鋁氧化物(LLZAO)介紹 23
2-5-1 石榴石型無機陶瓷填料-LLZO介紹: 23
2-5-2 Al參雜LLZO介紹: 26
2-6 偶合劑介紹 29
第三章 實驗方法 33
3-1 實驗藥品 33
3-2 實驗設備 34
3-3 實驗步驟 35
3-3-1 高分子固態電解質膜的製備 35
3-3-2 複合型固態電解質膜的製備 35
3-3-3 正極的製備 37
3-3-4 離子液體的製備 38
3-3-5 無機固態粉末修飾 38
3-3-6 鈕扣電池的組裝 39
3-4 材料分析及鑑定 41
3-4-1 粉末X光繞射儀(Powder X-ray diffraction,PXRD) 41
3-4-2 冷場發射掃描式電子顯微鏡(The field-emission scanning electron 41
microscope, FE-SEM) 41
3-4-3 傅立葉轉換紅外光譜(FT-IR) 42
3-4-4 高解析掃描穿透式電子顯微鏡(HR-TEM) 42
3-4-5 機械拉伸強度測試 43
3-5 電化學性質分析及鑑定 43
3-5-1 計時電位法(Chronopotentimetry)量測: 43
3-5-2 循環測試 (Cycling tests): 44
3-5-3 交流阻抗測試 (Electrochemical impedance spectroscopy, EIS): 45
3-6 實驗流程圖 51
第四章 結果與討論 52
4-1 修飾無機粉末LLZAO之材料與電性分析 53
4-1-1 XRD分析 53
4-1-2 FT-IR分析 57
4-1-3 定性分析 62
4-1-4 不同電流密度充放電分析 70
4-1-5 交流阻抗之離子導電率 96
4-1-6 HR-TEM分析 103
4-2 水的添加對於修飾無機粉末LLZAO製程差異 105
4-2-1 定性分析 106
4-2-2 不同電流密度充放電分析 108
4-2-3 交流阻抗之離子導電率 111
4-3 各偶合劑最佳修飾時間材料與電性比較 113
4-3-1 SEM分析 114
4-3-2 機械拉伸強度比較 121
4-3-3 鋰離子遷移率(tLi+)比較 124
4-3-4 循環壽命分析 127
第五章 結論與未來展望 132
第六章 附錄 135
6-1-1 SEM以及定性分析 136
6-1-2 不同電流密度充放電分析 138
6-1-3 交流阻抗之離子導電率 145
6-1-4 鋰離子遷移率(tLi+)比較 147
6-1-5 循環壽命分析 149
參考文獻 153
參考文獻 1. Miao, Y.; P. Hynan; A. von JouanneA. Yokochi, Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies, 2019, 12(6).
2. Wu, W.; Y. Bo; D. Li; Y. Liang; J. Zhang; M. Cao; R. Guo; Z. Zhu; L. CiM. Li, Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Letters, 2022, 14(1), 44.
3. Maurya, D.K.; R. Dhanusuraman; Z. GuoS. Angaiah, Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Advanced Composites and Hybrid Materials, 2022, 5(4), 2651-2674.
4. Sun, Y.-Y.; Q. Zhang; L. Fan; D.-D. Han; L. Li; L. YanP.-Y. Hou, Engineering the interface of organic/inorganic composite solid-state electrolyte by amino effect for all-solid-state lithium batteries. Journal of Colloid and Interface Science, 2022, 628, 877-885.
5. Zhang, Z.; S. Zhang; S. Geng; S. Zhou; Z. HuJ. Luo, Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. Energy Storage Materials, 2022, 51, 19-28.
6. Aziz, T.; A. Ullah; H. Fan; M.I. Jamil; F.U. Khan; R. Ullah; M. Iqbal; A. AliB. Ullah, Recent progress in silane coupling agent with its emerging applications. Journal of Polymers and the Environment, 2021, 1-17.
7. Wu, L.; Y. Wang; M. Tang; Y. Liang; Z. Lin; P. Ding; Z. Zhang; B. Wang; S. LiuL. Li, Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Materials, 2023, 58, 40-47.
8. Xia, W.; B. Xu; H. Duan; X. Tang; Y. Guo; H. Kang; H. LiH. Liu, Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society, 2017, 100(7), 2832-2839.
9. Zhang, T.; T.D. Christopher; S. Huang; Y.g. Liu; W. Gao; T. SӧhnelP. Cao, Pressureless sintering of Al-free Ta-doped lithium garnets Li7-xLa3Zr2-xTaxO12 and the degradation mechanism in humid air. Ceramics International, 2019, 45(16), 20954-20960.
10. Liang, H.; L. Wang; A. Wang; Y. Song; Y. Wu; Y. YangX. He, Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Letters, 2023, 15(1), 42.
11. Arkles, B., Tailoring surfaces with silanes. Chemtech, 1977, 7, 766-778.
12. Julien, C.M.A. Mauger, NCA, NCM811, and the route to Ni-richer lithium-ion batteries. Energies, 2020, 13(23), 6363.
13. Zhang, H.J. Zhang, An overview of modification strategies to improve LiNi0· 8Co0· 1Mn0· 1O2 (NCM811) cathode performance for automotive lithium-ion batteries. ETransportation, 2021, 7, 100105.
14. Reuter, F.; A. Baasner; J. Pampel; M. Piwko; S. Dörfler; H. AlthuesS. Kaskel, Importance of capacity balancing on the electrochemical performance of Li [Ni0. 8Co0. 1Mn0. 1] O2 (NCM811)/silicon full cells. Journal of The Electrochemical Society, 2019, 166(14), A3265.
15. Sun, H.; G. Zhu; Y. Zhu; M.C. Lin; H. Chen; Y.Y. Li; W.H. Hung; B. Zhou; X. WangY. Bai, High‐safety and high‐energy‐density lithium metal batteries in a novel ionic‐liquid electrolyte. Advanced Materials, 2020, 32(26), 2001741.
16. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006, 42(1), 21-42.
17. Vincent, C.A., Ion transport in polymer electrolytes. Electrochimica Acta, 1995, 40(13-14), 2035-2040.
18. Aziz, S.B., Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iranian Polymer Journal, 2013, 22(12), 877-883.
19. Aziz, S.B.; Z.H.Z. AbidinM. Kadir, Innovative method to avoid the reduction of silver ions to silver nanoparticles in silver ion conducting based polymer electrolytes. Physica Scripta, 2015, 90(3), 035808.
20. Aziz, S.B.; Z.H.Z. AbidinA.K. Arof, Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Physica B: Condensed Matter, 2010, 405(21), 4429-4433.
21. Borgohain, M.M.; T. JoykumarS. Bhat, Studies on a nanocomposite solid polymer electrolyte with hydrotalcite as a filler. Solid State Ionics, 2010, 181(21-22), 964-970.
22. Ngai, K.S.; S. Ramesh; K. RameshJ.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016, 22, 1259-1279.
23. Wen, Z.; T. Itoh; Y. Ichikawa; M. KuboO. Yamamoto, Blend-based polymer electrolytes of poly (ethylene oxide) and hyperbranched poly [bis (triethylene glycol) benzoate] with terminal acetyl groups. Solid state ionics, 2000, 134(3-4), 281-289.
24. Itoh, T.; Y. Ichikawa; T. Uno; M. KuboO. Yamamoto, Composite polymer electrolytes based on poly (ethylene oxide), hyperbranched polymer, BaTiO3 and LiN (CF3SO2) 2. Solid State Ionics, 2003, 156(3-4), 393-399.
25. Nicotera, I.; L. Coppola; C. Oliviero; M. CastriotaE. Cazzanelli, Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes. Solid State Ionics, 2006, 177(5-6), 581-588.
26. Ramesh, S.K.N. Bing, Conductivity, mechanical and thermal studies on poly (methyl methacrylate)-based polymer electrolytes complexed with lithium tetraborate and propylene carbonate. Journal of materials engineering and performance, 2012, 21, 89-94.
27. Jacob, M.A. Arof, FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochimica Acta, 2000, 45(10), 1701-1706.
28. Ramesh, S.; T.S. YinC.-W. Liew, Effect of dibutyl phthalate as plasticizer on high-molecular weight poly (vinyl chloride)–lithium tetraborate-based solid polymer electrolytes. Ionics, 2011, 17, 705-713.
29. Luo, S.; X. Liu; L. Gao; N. Deng; X. Sun; Y. Li; Q. Zeng; H. Wang; B. ChengW. Kang, A review on modified polymer composite electrolytes for solid-state lithium batteries. Sustainable Energy & Fuels, 2022, 6(22), 5019-5044.
30. Chiang, C.-Y.; M.J. ReddyP.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics, 2004, 175(1-4), 631-635.
31. Ramesh, S.S. Lu, Enhancement of ionic conductivity and structural properties by BMIMTf ionic liquid in P (VdF-HFP)-based polymer electrolytes. J Appl Polym Sci, 2012, 126, 484-492.
32. Kim, K.M.; K.S. Ryu; S.G. Kang; S.H. ChangI.J. Chung, The Effect of Silica Addition on the Properties of Poly ((vinylidene fluoride)‐co‐hexafluoropropylene)‐Based Polymer Electrolytes. Macromolecular Chemistry and Physics, 2001, 202(6), 866-872.
33. Saikia, D.A. Kumar, Ionic conduction in P (VdF-HFP)/PVdF–(PC+ DEC)–LiClO4 polymer gel electrolytes. Electrochimica acta, 2004, 49(16), 2581-2589.
34. Zhang, J.; J. Yang; T. Dong; M. Zhang; J. Chai; S. Dong; T. Wu; X. ZhouG. Cui, Aliphatic polycarbonate‐based solid‐state polymer electrolytes for advanced lithium batteries: advances and perspective. Small, 2018, 14(36), 1800821.
35. Zhang, J.; J. Zhao; L. Yue; Q. Wang; J. Chai; Z. Liu; X. Zhou; H. Li; Y. GuoG. Cui, Safety‐reinforced poly (propylene carbonate)‐based all‐solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries. Advanced Energy Materials, 2015, 5(24), 1501082.
36. Yu, X.Y.; M. Xiao; S.J. Wang; Q.Q. ZhaoY.Z. Meng, Fabrication and characterization of PEO/PPC polymer electrolyte for lithium‐ion battery. Journal of applied polymer science, 2010, 115(5), 2718-2722.
37. Huang, X.; S. Zeng; J. Liu; T. He; L. Sun; D. Xu; X. Yu; Y. Luo; W. ZhouJ. Wu, High-performance electrospun poly (vinylidene fluoride)/poly (propylene carbonate) gel polymer electrolyte for lithium-ion batteries. The Journal of Physical Chemistry C, 2015, 119(50), 27882-27891.
38. Wang, C.; H. Zhang; J. Li; J. Chai; S. DongG. Cui, The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources, 2018, 397, 157-161.
39. Luo, K.; L. Yi; X. Chen; L. Yang; C. Zou; X. Tao; H. Li; T. WuX. Wang, PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. Journal of Electroanalytical Chemistry, 2021, 895, 115462.
40. Liang, Y.; Y. Xia; S. Zhang; X. Wang; X. Xia; C. Gu; J. WuJ. Tu, A preeminent gel blending polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene)-poly (propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta, 2019, 296, 1064-1069.
41. Mohapatra, S.R.; A.K. ThakurR. Choudhary, Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. Journal of Power Sources, 2009, 191(2), 601-613.
42. Mulmi, S.; C.H. Park; H.K. Kim; C.H. Lee; H.B. ParkY.M. Lee, Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. Journal of Membrane Science, 2009, 344(1-2), 288-296.
43. Li, Z.; H. Zhang; P. Zhang; G. Li; Y. WuX. Zhou, Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. Journal of Membrane Science, 2008, 322(2), 416-422.
44. Kontos, G.; A. Soulintzis; P. Karahaliou; G. Psarras; S. Georga; C. KrontirasM. Pisanias, Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett, 2007, 1(12), 781-789.
45. Yang, Q.; N. Deng; Y. Zhao; L. Gao; B. ChengW. Kang, A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2023, 451, 138532.
46. Feng, J.; L. Wang; Y. Chen; P. Wang; H. ZhangX. He, PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 2021, 8, 1-12.
47. Li, Y.; Z. Wang; C. Li; Y. CaoX. Guo, Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power sources, 2014, 248, 642-646.
48. Liu, H.; J. Xu; B. GuoX. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceramics International, 2014, 40(9), 14105-14110.
49. Polu, A.R.H.-W. Rhee, Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. Journal of Industrial and Engineering Chemistry, 2016, 37, 347-353.
50. Wang, C.; K. Fu; S.P. Kammampata; D.W. McOwen; A.J. Samson; L. Zhang; G.T. Hitz; A.M. Nolan; E.D. WachsmanY. Mo, Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 2020, 120(10), 4257-4300.
51. Bachman, J.C.; S. Muy; A. Grimaud; H.-H. Chang; N. Pour; S.F. Lux; O. Paschos; F. Maglia; S. LupartP. Lamp, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2016, 116(1), 140-162.
52. Sakuda, A.; A. HayashiM. Tatsumisago, Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Scientific reports, 2013, 3(1), 2261.
53. Wu, F.; W. Fitzhugh; L. Ye; J. NingX. Li, Advanced sulfide solid electrolyte by core-shell structural design. Nature communications, 2018, 9(1), 4037.
54. Wu, J.; S. Liu; F. Han; X. YaoC. Wang, Lithium/sulfide all‐solid‐state batteries using sulfide electrolytes. Advanced Materials, 2021, 33(6), 2000751.
55. Tachez, M.; J.-P. Malugani; R. MercierG. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics, 1984, 14(3), 181-185.
56. Kamaya, N.; K. Homma; Y. Yamakawa; M. Hirayama; R. Kanno; M. Yonemura; T. Kamiyama; Y. Kato; S. HamaK. Kawamoto, A lithium superionic conductor. Nature materials, 2011, 10(9), 682-686.
57. Kanno, R.M. Murayama, Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society, 2001, 148(7), A742.
58. Deng, Y.; C. Eames; J.-N. Chotard; F. Lalère; V. Seznec; S. Emge; O. Pecher; C.P. Grey; C. MasquelierM.S. Islam, Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. Journal of the American Chemical Society, 2015, 137(28), 9136-9145.
59. Murayama, M.; R. Kanno; M. Irie; S. Ito; T. Hata; N. SonoyamaY. Kawamoto, Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. Journal of Solid State Chemistry, 2002, 168(1), 140-148.
60. Itoh, M.; Y. Inaguma; W.-H. Jung; L. ChenT. Nakamura, High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm). Solid State Ionics, 1994, 70, 203-207.
61. Inaguma, Y.; C. Liquan; M. Itoh; T. Nakamura; T. Uchida; H. IkutaM. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993, 86(10), 689-693.
62. Thangadurai, V.; A. ShuklaJ. Gopalakrishnan, LiSr1. 650.35 B1. 3B ‘1.7 O9 (B= Ti, Zr; B ‘= Nb, Ta): New lithium ion conductors based on the perovskite structure. Chemistry of materials, 1999, 11(3), 835-839.
63. Morata-Orrantia, A.; S. García-Martín; E. MoránM.Á. Alario-Franco, A New La2/3Li x Ti1-x Al x O3 Solid Solution: Structure, Microstructure, and Li+ Conductivity. Chemistry of materials, 2002, 14(7), 2871-2875.
64. Gao, Y.; X. Wang; W. WangQ. Fang, Sol–gel synthesis and electrical properties of Li5La3Ta2O12 lithium ionic conductors. Solid State Ionics, 2010, 181(1-2), 33-36.
65. Buschmann, H.; J. Dölle; S. Berendts; A. Kuhn; P. Bottke; M. Wilkening; P. Heitjans; A. Senyshyn; H. EhrenbergA. Lotnyk, Structure and dynamics of the fast lithium ion conductor “Li 7 La 3 Zr 2 O 12”. Physical Chemistry Chemical Physics, 2011, 13(43), 19378-19392.
66. Peng, H.; Q. WuL. Xiao, Low temperature synthesis of Li 5 La 3 Nb 2 O 12 with cubic garnet-type structure by sol–gel process. Journal of sol-gel science and technology, 2013, 66, 175-179.
67. Bernuy-Lopez, C.; W. Manalastas Jr; J.M. Lopez del Amo; A. Aguadero; F. AguesseJ.A. Kilner, Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chemistry of materials, 2014, 26(12), 3610-3617.
68. Thangadurai, V.W. Weppner, Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet‐like oxides for fast lithium ion conduction. Advanced Functional Materials, 2005, 15(1), 107-112.
69. Gonzalez Puente, P.; S. Song; S. Cao; L.Z. Rannalter; Z. Pan; X. Xiang; Q. ShenF. Chen, Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. Journal of Advanced Ceramics, 2021, 1-40.
70. Awaka, J.; N. Kijima; H. HayakawaJ. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry, 2009, 182(8), 2046-2052.
71. Ramaswamy, M.W. Werner, Solid Electrolytes for Advanced Applications. 2019, Springer Nature Switzerland.
72. Kobi, S.A. Mukhopadhyay, Structural (in) stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere. Journal of the European Ceramic Society, 2018, 38(14), 4707-4718.
73. Hu, Z.; H. Liu; H. Ruan; R. Hu; Y. SuL. Zhang, High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceramics International, 2016, 42(10), 12156-12160.
74. El-Shinawi, H.; G.W. Paterson; D.A. MacLaren; E.J. CussenS.A. Corr, Low-temperature densification of Al-doped Li₇La₃Zr₂O₁₂: a reliable and controllable synthesis of fast-ion conducting garnets. Journal of materials chemistry A, 2016, 5(1).
75. Djenadic, R.; M. Botros; C. Benel; O. Clemens; S. Indris; A. Choudhary; T. BergfeldtH. Hahn, Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications. Solid State Ionics, 2014, 263, 49-56.
76. Wu, M.; J. Song; X. Zhu; H. Zhan; T. Tian; R. Wang; J. LeiH. Tang, Three-dimensional hierarchical composite polymer electrolyte with enhanced interfacial compatibility for all-solid-state lithium metal batteries. Science China Materials, 2023, 66(2), 522-530.
77. Wang, H.; X. Liu; S. Yu; T. ShiS. Jiang, Preparation of P (AN‐MMA)/SiO2 hybrid solid electrolytes. Journal of applied polymer science, 2009, 114(3), 1365-1369.
78. Fan, L.; C.-W. NanS. Zhao, Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics, 2003, 164(1-2), 81-86.
79. Chai, J.; J. Zhang; P. Hu; J. Ma; H. Du; L. Yue; J. Zhao; H. Wen; Z. LiuG. Cui, A high-voltage poly (methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of materials chemistry A, 2016, 4(14), 5191-5197.
80. Xie, Y.; L. HuangY. Chen, A porous garnet Li7La3Zr2O12 scaffold with interfacial modification for enhancing ionic conductivity in PEO-based composite electrolyte. Journal of Membrane Science, 2023, 683, 121784.
81. Wang, T.; X. Liu; L. Xie; Y. He; H. Ji; L. Wang; X. NiuJ. Gao, 3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6. 4La3Zr1. 4Ta0. 6O12 reinforced poly (ethylene oxide)-based composite solid electrolyte for lithium batteries. Journal of Alloys and Compounds, 2023, 945, 168877.
82. Liew, C.-W.; S. RameshR. Durairaj, Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. Journal of Materials Research, 2012, 27(23), 2996-3004.
83. Khurana, R.; J.L. Schaefer; L.A. ArcherG.W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society, 2014, 136(20), 7395-7402.
84. An, S.J.; J. Li; C. Daniel; H.M. Meyer III; S.E. Trask; B.J. PolzinD.L. Wood III, Electrolyte volume effects on electrochemical performance and solid electrolyte interphase in Si-graphite/NMC lithium-ion pouch cells. ACS applied materials & interfaces, 2017, 9(22), 18799-18808.
85. Zugmann, S.; M. Fleischmann; M. Amereller; R.M. Gschwind; H.D. WiemhöferH.J. Gores, Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 2011, 56(11), 3926-3933.
86. Bruce, P.G.C.A. Vincent, Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 225(1-2), 1-17.
87. Guo, S.; Y. SunA. Cao, Garnet-type solid-state electrolyte Li7La3Zr2O12: crystal structure, element doping and interface strategies for solid-state lithium batteries. Chemical Research in Chinese Universities, 2020, 36(3), 329-342.
88. Zhang, X.; T. Liu; S. Zhang; X. Huang; B. Xu; Y. Lin; B. Xu; L. Li; C.-W. NanY. Shen, Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139(39), 13779-13785.
89. Yan, C.; P. Zhu; H. Jia; Z. Du; J. Zhu; R. Orenstein; H. Cheng; N. Wu; M. DiricanX. Zhang, Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26, 448-456.
90. Zhao, L.; X. Yu; J. Jiao; X. Song; X. Cheng; M. Liu; L.-l. Wang; J. Zheng; W. LvG. Zhong, Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte. Cell Reports Physical Science, 2023, 4(5).
91. Zhu, J.; M.S.D. Darma; M. Knapp; D.R. Sørensen; M. Heere; Q. Fang; X. Wang; H. Dai; L. MereacreA. Senyshyn, Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. Journal of Power Sources, 2020, 448, 227575.
92. Zhang, J.; N. Zhao; M. Zhang; Y. Li; P.K. Chu; X. Guo; Z. Di; X. WangH. Li, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28, 447-454.
指導教授 李岱洲 張仍奎(Tai-Chou Lee Jeng-kuei Chang) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明