博碩士論文 111324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.12.147.12
姓名 蔡俊吉(TSAI-CHUN GI)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 透過優化核糖磷酸化反應提高一鍋法合成NMN 產率
(Enhancing one-pot NMN synthesis yield by optimizing ribose phosphorylation reaction)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-11以後開放)
摘要(中) 隨著人們對健康的關注和健康意識的提高,保健食品市場不斷增長,已成為人們
日常生活中的重要組成部分,廣泛應用於增強免疫力、促進新陳代謝、改善睡眠和延
緩衰老等方面。在這個背景下,煙酰胺單核苷酸(NMN)作為一種潛在的保健成分引
起了廣泛關注。NMN 作為煙酰胺(維生素 B3)的前體,在細胞代謝和能量生產中發
揮著重要作用,是合成煙酰胺腺嘌呤二核苷酸(NAD+)的重要生物合成途徑之一。研
究表明,NMN 的補充可以增加 NAD+水平,從而促進細胞活力、改善代謝健康、延緩
衰老和提高運動耐力等,因此被認為是一種具有潛力的保健食品成分。本研究旨在優
化核糖磷酸化反應步驟,以實現高效、經濟的NMN生產。首先使用核糖激酶將核糖與
三磷酸腺苷 (ATP) 反應生成核糖-5-磷酸 (ribose-5-phosphate) 與雙磷酸腺苷 (ADP) ,然
後再使用聚磷酸激酶 II(polyphosphatekinase, PPK2),將核糖磷酸化反應的副產物
ADP 與長鏈聚磷酸鹽(polyphosphate, polyP)反應,生成還原為 ATP,將上述兩個反
應偶聯,建立一種簡單高效的多酶組合催化體系,本研究藉由優化此反應的溫度、 pH
值、buffer 等條件來建立起一鍋法合成 NMN的基本反應條件,然後在合成 NMN中,
透過改變受質濃度、酵素濃度、離子強度等來增加NMN的產量,通過系統性的實驗設
計和數據分析,成功地優化了核糖磷酸化反應條件,實現了NMN的高效生產。
摘要(英) As people become more concerned about health and their health awareness increases, the
health food market continues to grow, becoming an important part of daily life. It is widely
used to boost immunity, promote metabolism, improve sleep, and delay aging. Against this
backdrop, nicotinamide mononucleotide (NMN) has attracted widespread attention as a
potential health supplement. NMN, a precursor of nicotinamide (vitamin B3), plays a crucial
role in cellular metabolism and energy production and is a key biosynthetic pathway for the
synthesis of nicotinamide adenine dinucleotide (NAD+). Research has shown that NMN
supplementation can increase NAD+ levels, thereby enhancing cellular vitality, improving
metabolic health, delaying aging, and increasing exercise endurance. Consequently, it is
considered a promising health food ingredient. This study aims to optimize the ribose
phosphorylation reaction steps to achieve efficient and economical NMN production. Initially,
ribokinase is used to react ribose with adenosine triphosphate (ATP) to generate ribose-5
phosphate and adenosine diphosphate (ADP). Subsequently, polyphosphate kinase II (PPK2)
is employed to react the by-product ADP from the ribose phosphorylation reaction with long
chain polyphosphate (polyP) to regenerate ATP. By coupling these two reactions, a simple and
efficient multi-enzyme catalytic system is established. This research optimizes the reaction
conditions such as temperature, pH, and buffer to establish a one-pot synthesis of NMN.
Additionally, in the synthesis of NMN, varying the substrate concentration, enzyme
concentration, and ionic strength increases the NMN yield. Through systematic experimental
design and data analysis, the conditions for the ribose phosphorylation reaction were
successfully optimized, achieving efficient NMN production.
關鍵字(中) ★ 煙酰胺單核苷酸
★ 核糖磷酸化
★ 核糖-5-磷酸
★ 保健食品
★ 一鍋法
★ 聚磷酸激酶II
★ 核糖激酶
關鍵字(英) ★ Nicotinamide Mononucleotide (NMN)
★ ribosylation
★ ribose-5-phosphate
★ health supplements
★ one-pot synthesis
★ polyphosphate kinase II
★ adenosine triphosphate (ATP)
論文目次 摘要 ..................................................................................................................................... i
Abstract ............................................................................................................................... ii
致謝 ................................................................................................................................... iv
目錄 ................................................................................................................................... vi
圖目錄 ............................................................................................................................... ix
表目錄 .............................................................................................................................. xii
第一章、序論 .................................................................................................................... 1
1-1 研究動機 .............................................................................................................. 1
1-2 研究目的 .............................................................................................................. 3
第二章、文獻回顧 ............................................................................................................ 4
2-1 酵素 ...................................................................................................................... 4
2-1-1 酵素動力學 .............................................................................................. 5
2-1-2 溫度對酵素活性的影響 .......................................................................... 8
2-1-3 pH值對酵素活性的影響 ....................................................................... 11
2-1-4 輔助因子對酵素活性的影響 ................................................................ 12
2-1-5 酵素的實際應用 .................................................................................... 14
2-1-6 Ribokinase (RbsK) .................................................................................. 15
2-1-7 Polyphosphate kinase ll(PPK2) ......................................................... 17
2-2 反應受質介紹 .................................................................................................... 18
2-2-1 D-核糖 (D-ribose) ................................................................................... 18
2-2-2 三磷酸腺苷 (ATP) .................................................................................. 19
2-2-3 聚磷酸鹽(Polyphosphate, polyP ) ..................................................... 20
2-3 反應產物介紹 .................................................................................................... 21

2-3-1 核糖-5-磷酸 (Ribose-5-phosphate) ...................................................... 21
2-3-2 雙磷酸腺苷 (ADP) ................................................................................. 23
2-4 煙醯胺單核苷酸 ( Nicotinamide mononucleotide ) .......................................... 25
2-4-1煙醯胺單核苷酸的基本介紹 ................................................................. 25
2-4-2煙醯胺單核苷酸在生物體的作用機制 ................................................. 28
2-4-3煙醯胺單核苷酸的應用 ......................................................................... 29
第三章、實驗方法 .......................................................................................................... 31
3-1實驗架構 ............................................................................................................ 31
3-2實驗設備與材料 ................................................................................................ 32
3-2-1實驗藥品 ................................................................................................. 32
3-2-2實驗設備 ................................................................................................. 33
3-3質體轉化 ............................................................................................................ 34
3-4含有目標蛋白質菌種保存與培養 .................................................................... 34
3-4-1 培養基配置 ............................................................................................ 34
3-4-2 含有目標蛋白質之菌種保存 ................................................................ 34
3-4-3 含有目標蛋白質之菌種培養 ................................................................ 35
3-5 目標蛋白質實驗分析 ........................................................................................ 35
3-5-1 目標蛋白質之表達 ................................................................................ 36
3-5-2 目標蛋白質之提取與純化 .................................................................... 37
3-5-3 目標蛋白質SDS分析 ........................................................................... 39
3-5-4 目標蛋白質之定量 ................................................................................ 40
3-6 利用酵素合成R-5-P ......................................................................................... 40
3-7 利用酵素一鍋法合成NMN.............................................................................. 41
3-8 高效液相層析(High performance liquid chromatography, HPLC) ............. 42
第四章、結果與討論 ...................................................................................................... 43

4-1 反應熱力學模擬 ................................................................................................ 43
4-2 核糖磷酸化反應合成R-5-P ............................................................................. 44
4-2-1 合成R-5-P (Rbsk酵素動態分析) ......................................................... 44
4-2-2 RbsK在不同緩衝溶液之下的反應活性 ............................................... 45
4-2-3 RbsK在不同溫度之下的反應活性 ....................................................... 46
4-2-4 RbsK在不同pH值下的反應活性 ........................................................ 49
4-3一鍋法合成NMN .............................................................................................. 52
4-3-1 不同RbsK酵素濃度對NMN生產產量的影響 .................................. 54
4-3-2 輔助因子對NMN生產產量的影響 ..................................................... 55
4-3-3 不同受質濃度對NMN生產產量的影響 ............................................. 57
第五章、結論 .................................................................................................................. 58
5-1 結論 .................................................................................................................... 58
5-2 未來建議 ............................................................................................................ 58
參考文獻 .......................................................................................................................... 59
參考文獻 Ahern, K., & Rajagopal, I. (2013). Biochemistry free & easy.
2. Ahn, K., & Kornberg, A. (1990). Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. Journal of Biological Chemistry, 265(20), 11734-11739.
3. Ault-Riché, D., Fraley, C. D., Tzeng, C.-M., & Kornberg, A. (1998). Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. Journal of bacteriology, 180(7), 1841-1847.
4. Banfalvi, G. (2021). Prebiotic pathway from ribose to RNA formation. International journal of molecular sciences, 22(8), 3857.
5. Bonora, M., Patergnani, S., Rimessi, A., De Marchi, E., Suski, J. M., Bononi, A., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., Wieckowski, M. R., & Pinton, P. (2012). ATP synthesis and storage. Purinergic Signalling, 8(3), 343-357.
6. Boyer, P. D. (1998). Energy, life, and ATP (Nobel lecture). Angewandte Chemie International Edition, 37(17), 2296-2307.
7. Cammarota, M., Teixeira, G., & Freire, D. (2001). Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high fat contents. Biotechnology Letters, 23, 1591-1595.
8. Cecerska-Heryć, E., Surowska, O., Heryć, R., Serwin, N., Napiontek-Balińska, S., & Dołęgowska, B. (2021). Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients–a review. Clinical Biochemistry, 93, 1-8.
9. Chang. (2005). Map: Physical Chemistry for the Biosciences.
10. Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385–391. In.
11. Cooke, R., & Pate, E. (1985). The effects of ADP and phosphate on the contraction of muscle fibers. Biophysical journal, 48(5), 789-798.
12. Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290-306.
13. Das, A., Sinclair, D., Bonkowski, M., Johnston, I., & Wu, L. (2017). Extension of physical endurance and protection against physical, chemical and radiological trauma by NAD+ precursors. Journal of Science and Medicine in Sport, 20, S165-S166.
14. Fox, P., & Stepaniak, L. (1993). Enzymes in cheese technology. International Dairy Journal, 3(4-6), 509-530.
15. Froesch, E. R., Renold, A. E., & McWilliams, B. (1956). Specific enzymatic determination of glucose in blood and urine using glucose oxidase. Diabetes, 5(1), 1-6.
16. Fukamizu, Y., Uchida, Y., Shigekawa, A., Sato, T., Kosaka, H., & Sakurai, T. (2022). Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women. Scientific Reports, 12(1), 14442.
17. Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., & Tong, X. (2020). The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology, 11, 507678.
18. Ghosh, B. C., Prasad, L., & Saha, N. (2017). Enzymatic hydrolysis of whey and its analysis. Journal of food science and technology, 54, 1476-1483.
19. Grahame, D. A. S., Bryksa, B. C., & Yada, R. Y. (2015). 2 - Factors affecting enzyme activity. In R. Y. Yada (Ed.), Improving and Tailoring Enzymes for Food Quality and Functionality (pp. 11-55). Woodhead Publishing.
20. Gross, A., Abril, O., Lewis, J. M., Geresh, S., & Whitesides, G. M. (1983). Practical synthesis of 5-phospho-D-ribosyl. alpha.-1-pyrophosphate (PRPP): enzymatic routes from ribose 5-phosphate or ribose. Journal of the American Chemical Society, 105(25), 7428-7435.
21. Gunjal, A., Waghmode, M., Patil, N., & Nawani, N. (2019). Significance of soil enzymes in agriculture. In Smart bioremediation technologies (pp. 159-168). Elsevier.
22. Hildenbrand, J. C., Teleki, A., & Jendrossek, D. (2020). A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate. Applied microbiology and biotechnology, 104, 6659-6667.
23. Hirakawa, Y., Kakegawa, T., & Furukawa, Y. (2022). Borate-guided ribose phosphorylation for prebiotic nucleotide synthesis. Scientific Reports, 12(1), 11828.
24. Hope, J. N., Bell, A. W., Hermodson, M. A., & Groarke, J. M. (1986). Ribokinase from Escherichia coli K12. Nucleotide sequence and overexpression of the rbsK gene and purification of ribokinase. Journal of Biological Chemistry, 261(17), 7663-7668.
25. Igarashi, M., & Yamauchi, T. (2023). Insight into the application of nicotinamide mononucleotide (NMN) to age-related disorders. Journal of Cellular and Molecular, 2(1), 9-13.
26. Khakh, B. S., & Burnstock, G. (2009). The double life of ATP. Scientific American, 301(6), 84.
27. Kiss, T., Nyúl-Tóth, Á., Balasubramanian, P., Tarantini, S., Ahire, C., Yabluchanskiy, A., Csipo, T., Farkas, E., Wren, J. D., & Garman, L. (2020). Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience, 42, 527-546.
28. Law, B., & Goodenough, P. (1995). Enzymes in milk and cheese production. In Enzymes in food processing (pp. 114-143). Springer.
29. Lehninger, A. (1950). Role of metal ions in enzyme systems. Physiological reviews, 30(3), 393-429.
30. Li, J., King, N. C., & Sinoway, L. I. (2003). ATP concentrations and muscle tension increase linearly with muscle contraction. Journal of Applied Physiology, 95(2), 577-583.
31. Liao, B., Zhao, Y., Wang, D., Zhang, X., Hao, X., & Hu, M. (2021). Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. Journal of the International Society of Sports Nutrition, 18, 1-9.
32. Lin, Y.-H., Nishikawa, S., Jia, T. Z., Yeh, F.-I., Khusnutdinova, A., Yakunin, A. F., Fujishima, K., & Wang, P.-H. (2023). One-pot chemo-enzymatic synthesis and one-step recovery of length-variable long-chain polyphosphates from microalgal biomass. Green Chemistry, 25(23), 9896-9907.
33. Maharjan, A., Singhvi, M., & Kim, B. S. (2021). Biosynthesis of a Therapeutically Important Nicotinamide Mononucleotide through a Phosphoribosyl Pyrophosphate Synthetase 1 and 2 Engineered Strain of Escherichia coli. ACS Synthetic Biology, 10(11), 3055-3065.
34. Mahoney, D. E., Hiebert, J. B., Thimmesch, A., Pierce, J. T., Vacek, J. L., Clancy, R. L., Sauer, A. J., & Pierce, J. D. (2018). Understanding D-ribose and mitochondrial function. Advances in bioscience and clinical medicine, 6(1), 1.
35. Marini, M., Zunica, G., & Franceschi, C. (1985). Inhibition of cell proliferation by D-ribose and deoxy-D-ribose. Proceedings of the Society for Experimental Biology and Medicine, 180(2), 246-257.
36. McCall, K. A., Huang, C.-c., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of nutrition, 130(5), 1437S-1446S.
37. Ming, W., Hu, S., Liu, Y., Li, Q.-A.-W., Zhu, Y.-Y., & Gu, S.-X. (2022). Recent Advances in the Chemical Synthesis of β-Nicotinamide Mononucleotide. Current Organic Chemistry, 26(24), 2151-2159.
38. Motomura, K., Hirota, R., Okada, M., Ikeda, T., Ishida, T., & Kuroda, A. (2014). A New Subfamily of Polyphosphate Kinase 2 (Class III PPK2) Catalyzes both Nucleoside Monophosphate Phosphorylation and Nucleoside Diphosphate Phosphorylation. Applied and Environmental Microbiology, 80(8), 2602-2608.
39. Murugappa, S., & Kunapuli, S. P. (2006). The role of ADP receptors in platelet function. Front Biosci, 11(1), 1977.
40. Nadeeshani, H., Li, J., Ying, T., Zhang, B., & Lu, J. (2022). Nicotinamide mononucleotide (NMN) as an anti-aging health product–promises and safety concerns. Journal of advanced research, 37, 267-278.
41. Neville, N., Roberge, N., & Jia, Z. (2022). Polyphosphate kinase 2 (PPK2) enzymes: structure, function, and roles in bacterial physiology and virulence. International journal of molecular sciences, 23(2), 670.
42. Nocek, B., Khusnutdinova, A., Ruszkowski, M., Flick, R., Burda, M., Batyrova, K., Brown, G., Mucha, A., Joachimiak, A., & Berlicki, Ł. (2018). Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catal 8: 10746–10760. In.
43. Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M., & Ezawa, T. (2004). Quantification of polyphosphate: different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Analytical biochemistry, 328(2), 139-146.
44. Park, J., & Gupta, R. S. (2008). Adenosine kinase and ribokinase – the RK family of proteins. Cellular and Molecular Life Sciences, 65(18), 2875-2896.
45. Parnell, A. E., Mordhorst, S., Kemper, F., Giurrandino, M., Prince, J. P., Schwarzer, N. J., Hofer, A., Wohlwend, D., Jessen, H. J., & Gerhardt, S. (2018). Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proceedings of the National Academy of Sciences, 115(13), 3350-3355.
46. Plácido, J., & Capareda, S. (2015). Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocessing, 2, 1-12.
47. Poddar, S. K., Sifat, A. E., Haque, S., Nahid, N. A., Chowdhury, S., & Mehedi, I. (2019). Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules, 9(1), 34.
48. Preiss, J., & Handler, P. (1957). Enzymatic synthesis of nicotinamide mononucleotide. Journal of Biological Chemistry, 225(2), 759-770.
49. Ray, K., & Mukherjee, C. (2015). An improved method for extraction and quantification of polyphosphate granules from microbial cells.
50. Riordan, J. (1977). The role of metals in enzyme activity. Annals of Clinical & Laboratory Science, 7(2), 119-129.
51. SDGs, U. (2015). https://www.un.org/sustainabledevelopment/
52. Sigrell, J. A., Cameron, A. D., Jones, T. A., & Mowbray, S. L. (1998). Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 Å resolution: insights into a new family of kinase structures. Structure, 6(2), 183-193.
53. Sigrell, J. A., Cameron, A. D., & Mowbray, S. L. (1999). Induced fit on sugar binding activates ribokinase11Edited by A. R. Fersht. Journal of Molecular Biology, 290(5), 1009-1018.
54. Soma, M., & Lalam, S. K. (2022). The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Molecular Biology Reports, 49(10), 9737-9748.
55. Tai, Y., Zhang, Z., Liu, Z., Li, X., Yang, Z., Wang, Z., An, L., Ma, Q., & Su, Y. (2024). D-ribose metabolic disorder and diabetes mellitus. Molecular Biology Reports, 51(1), 220.
56. Torres, E., Bustos-Jaimes, I., & Le Borgne, S. (2003). Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B: Environmental, 46(1), 1-15.
57. Tumlirsch, T., Sznajder, A., & Jendrossek, D. (2015). Formation of polyphosphate by polyphosphate kinases and its relationship to poly (3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16. Applied and Environmental Microbiology, 81(24), 8277-8293.
58. Uddin, G. M., Youngson, N. A., Sinclair, D. A., & Morris, M. J. (2016). Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Frontiers in pharmacology, 7, 208755.
59. UNDESA. (2019). World Population Ageing. chrome-extension://bocbaocobfecmglnmeaeppambideimao/pdf/viewer.html?file=https%3A%2F%2F
60. Wadkins, C. L., & Lehninger, A. L. (1958). The Adenosine Triphosphate-Adenosine Diphosphate Exchange Reaction of Oxidative Phosphorylation. Journal of Biological Chemistry, 233(6), 1589-1597.
61. Wang, P.-H., Fujishima, K., Berhanu, S., Kuruma, Y., Jia, T. Z., Khusnutdinova, A. N., Yakunin, A. F., & McGlynn, S. E. (2019). A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synthetic Biology, 9(1), 36-42.
62. Wei, Y., Han, C. S., Zhou, J., Liu, Y., Chen, L., & He, R. Q. (2012). D-ribose in glycation and protein aggregation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(4), 488-494.
63. Wu, W., Yuan, S., Tang, Y., Meng, X., Peng, M., Hu, Z., & Liu, W. (2023). Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer’s Disease. Nutrients, 15(13), 2851.
64. Zavilopulo, A., Shpenik, O., Mylymko, A., & Shpenik, V. Y. (2019). Mass spectrometry of d-ribose molecules. International Journal of Mass Spectrometry, 441, 1-7.
65. Zhang, N., & Sauve, A. A. (2018). Regulatory effects of NAD+ metabolic pathways on sirtuin activity. Progress in molecular biology and translational science, 154, 71-104.
66. Zhang, R., Shen, Y., Zhou, L., Sangwung, P., Fujioka, H., Zhang, L., & Liao, X. (2017). Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. Journal of molecular and cellular cardiology, 112, 64-73.
67. Zhang, Y., Zhu, W., Wang, M., Xi, P., Wang, H., & Tian, D. (2023). Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high‐fat diet. IUBMB life, 75(6), 548-562.
指導教授 徐敬衡(CHIN-HANG SHU) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明