參考文獻 |
1. Ms. Yuvika, G., Carbon credit: A step towards green environment. Global Journal of Management and Business Research, 2011, 11(5).
2. Iulianelli, A. and E. Drioli, Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology, 2020, 206.
3. Sholl, D.S. and R.P. Lively, Seven chemical separations to change the world. Nature, 2016, 532(7600).
4. Powell, C.E. and G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1-2).
5. Freeman, B.D., Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2).
6. Comesaña-Gándara, B., J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, and N.B. McKeown, Redefining the robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9).
7. Chawla, M., H. Saulat, M. Masood Khan, M. Mahmood Khan, S. Rafiq, L. Cheng, T. Iqbal, M.I. Rasheed, M.Z. Farooq, M. Saeed, N.M. Ahmad, M.B. Khan Niazi, S. Saqib, F. Jamil, A. Mukhtar, and N. Muhammad, Membranes for CO2/CH4 and CO2/N2 gas separation. Chemical Engineering & Technology, 2019, 43(2).
8. Ju, K.Y., Y. Lee, S. Lee, S.B. Park, and J.K. Lee, Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011, 12(3).
9. Fredi, G., F. Simon, D. Sychev, I. Melnyk, A. Janke, C. Scheffler, and C. Zimmerer, Bioinspired polydopamine coating as an adhesion enhancer between paraffin microcapsules and an epoxy matrix. ACS Omega, 2020, 5(31).
10. Jiang, X., Y. Wang, and M. Li, Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Sci Rep, 2014, 4.
11. You, H., X. Zhang, D.Z. Zhu, C. Yang, P. Chammingkwan, and T. Taniike, Advantages of polydopamine coating in the design of ZIF-8-filled thin-film nanocomposite (TFN) membranes for desalination. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 629.
12. Casadei, R., M. Giacinti Baschetti, M.J. Yoo, H.B. Park, and L. Giorgini, Pebax((r)) 2533/graphene oxide nanocomposite membranes for carbon capture. Membranes (Basel), 2020, 10(8).
13. Wei, J., Y.L. Ma, Z.K. Qin, Z.H. Jin, Y. Jin, L. Yang, L. Yao, W.J. Jiang, Y. Deng, Y. Huang, H.Y. Zhao, J. Dong, L.Y. Deng, and Z.D. Dai, Membrane fabricated via a facile non-solvent induced microstructure re-arrangement with superior CO2 separation performances. Separation and Purification Technology, 2023, 320.
14. Zhao, D., J.F. Kim, G. Ignacz, P. Pogany, Y.M. Lee, and G. Szekely, Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine. ACS Nano, 2019, 13(1).
15. Ruan, X.H., X.F. Zhang, Z.Y. Zhou, X.B. Jiang, Y. Dai, X.M. Yan, and G.H. He, ZIF-8 heterogeneous nucleation and growth mechanism on Zn(II)-doped polydopamine for composite membrane fabrication. Separation and Purification Technology, 2019, 214.
16. Kim, S.D., G.Y. Won, A.A. Shah, A. Park, Y.-I. Park, S.-E. Nam, Y.H. Cho, and H. Park, Reinforcing the polybenzimidazole membrane surface by an ultrathin co-crosslinked polydopamine layer for organic solvent nanofiltration applications. Journal of Membrane Science, 2021, 636.
17. Pullumbi, P., F. Brandani, and S. Brandani, Gas separation by adsorption: Technological drivers and opportunities for improvement. Current Opinion in Chemical Engineering, 2019, 24.
18. Gunawardene, O.H.P., C.A. Gunathilake, K. Vikrant, and S.M. Amaraweera, Carbon dioxide capture through physical and chemical adsorption using porous carbon materials: A review. Atmosphere, 2022, 13(3).
19. Sidhikku Kandath Valappil, R., N. Ghasem, and M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021, 98.
20. Said, R.B., J.M. Kolle, K. Essalah, B. Tangour, and A. Sayari, A unified approach to CO(2)-amine reaction mechanisms. ACS Omega, 2020, 5(40).
21. Shimekit, B. and H. Mukhtar, Natural gas purification technologies-major advances for CO2 separation and future directions. Advances in natural gas technology, 2012, 2012.
22. Wu, Y., J. Xu, K. Mumford, G.W. Stevens, W. Fei, and Y. Wang, Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green Chemical Engineering, 2020, 1(1).
23. Baker, R.W., B. Freeman, J. Kniep, Y.I. Huang, and T.C. Merkel, Co2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57(47).
24. Murali, R.S., T. Sankarshana, and S. Sridhar, Air separation by polymer-based membrane technology. Separation & Purification Reviews, 2013, 42(2).
25. Wijmans, J.G. and R.W. Baker, The solution-diffusion model: A review. Journal of Membrane Science, 1995, 107(1-2).
26. Kamble, A.R., C.M. Patel, and Z.V.P. Murthy, A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews, 2021, 145.
27. Maghami, S., A. Mehrabani-Zeinabad, M. Sadeghi, J. Sánchez-Laínez, B. Zornoza, C. Téllez, and J. Coronas, Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes. Chemical Engineering Science, 2019, 205.
28. Lin, R., L. Ge, H. Diao, V. Rudolph, and Z. Zhu, Ionic liquids as the mofs/polymer interfacial binder for efficient membrane separation. ACS Appl Mater Interfaces, 2016, 8(46).
29. Wu, W., Z. Li, Y. Chen, and W. Li, Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture. Environ Sci Technol, 2019, 53(7).
30. Zheng, W., D. Wang, X. Ruan, Y. Dai, X. Yan, X. Zhang, X. Li, X. Jiang, and G. He, Pore engineering of mofs through in-situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes. Journal of Membrane Science, 2022, 661.
31. Yang, Z., Z. Wu, S.B. Peh, Y. Ying, H. Yang, and D. Zhao, Mixed-matrix membranes containing porous materials for gas separation: From metal–organic frameworks to discrete molecular cages. Engineering, 2023, 23.
32. Koros, W.J. and G.K. Fleming, Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1).
33. Li, C., A. Qi, Y. Ling, Y. Tao, Y.B. Zhang, and T. Li, Establishing gas transport highways in mof-based mixed matrix membranes. Sci Adv, 2023, 9(13).
34. van Essen, M., E. Montree, M. Houben, Z. Borneman, and K. Nijmeijer, Magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 in matrimid mixed matrix membranes for enhanced CO(2) permeability. Membranes (Basel), 2020, 10(7).
35. Della Vecchia, N.F., R. Avolio, M. Alfè, M.E. Errico, A. Napolitano, and M. d′Ischia, Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Advanced Functional Materials, 2013, 23(10).
36. Lyu, Q., N. Hsueh, and C.L.L. Chai, Direct evidence for the critical role of 5,6-dihydroxyindole in polydopamine deposition and aggregation. Langmuir, 2019, 35(15).
37. Hemmatpour, H., O. De Luca, D. Crestani, M.C.A. Stuart, A. Lasorsa, P.C.A. van der Wel, K. Loos, T. Giousis, V. Haddadi-Asl, and P. Rudolf, New insights in polydopamine formation via surface adsorption. Nat Commun, 2023, 14(1).
38. Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine surface chemistry: A decade of discovery. ACS Appl Mater Interfaces, 2018, 10(9).
39. Liu, Y., X. Li, Y. Qin, R. Guo, and J. Zhang, Pebax–polydopamine microsphere mixed‐matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 2016, 134(10).
40. Pirola, A.d.S., P.S. Pacheco, S.F. Zawadski, and D. Eiras, In-situ polymerized pebax®/polydopamine blend membranes with high CO2/N2 selectivity. Polímeros, 2023, 33(4).
41. Wang, T., Y. He, Y.J. Liu, F.J. Guo, X.F. Li, H.B.A. Chen, H.M. Li, and Z.Q. Lin, A zif-triggered rapid polymerization of dopamine renders CO/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy, 2021, 79.
42. Jiang, X., S. He, G. Han, J. Long, S. Li, C.H. Lau, S. Zhang, and L. Shao, Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl Mater Interfaces, 2021, 13(9).
43. Chen, L., X.M. Ren, Y.X. Li, D. Hu, X.D. Feng, and W.L. Li, Enhancing interface compatibility of UiO-66-NH2 and polyamide by incorporating dopamine into thin film nanocomposite membranes. Journal of Membrane Science, 2022, 654.
44. Park, K.S., Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O′Keeffe, and O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006, 103(27).
45. Yang, J., Y.B. Zhang, Q. Liu, C.A. Trickett, E. Gutierrez-Puebla, M.A. Monge, H. Cong, A. Aldossary, H. Deng, and O.M. Yaghi, Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J Am Chem Soc, 2017, 139(18).
46. Pimentel, B.R., A. Parulkar, E.K. Zhou, N.A. Brunelli, and R.P. Lively, Zeolitic imidazolate frameworks: Next-generation materials for energy-efficient gas separations. ChemSusChem, 2014, 7(12).
47. Cuadrado-Collados, C., J. Fernandez-Catala, F. Fauth, Y.Q.Q. Cheng, L.L. Daemen, A.J. Ramirez-Cuesta, and J. Silvestre-Albero, Understanding the breathing phenomena in nano-zif-7 upon gas adsorption. Journal of Materials Chemistry A, 2017, 5(39).
48. Zhao, P., G.I. Lampronti, G.O. Lloyd, M.T. Wharmby, S. Facq, A.K. Cheetham, and S.A. Redfern, Phase transitions in zeolitic imidazolate framework 7: The importance of framework flexibility and guest-induced instability. Chem Mater, 2014, 26(5).
49. Cai, W., T. Lee, M. Lee, W. Cho, D.Y. Han, N. Choi, A.C. Yip, and J. Choi, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7). J Am Chem Soc, 2014, 136(22).
50. Arash Arami-Niya, G.B., Zhonghua Zhu, Thomas E. Rufford, Gate opening effect of zeolitic imidazolate framework zif-7 for adsorption of ch4 and co2 from n2. Journal of Materials Chemistry A, 2017, 5.
51. Zhao, P., H. Fang, S. Mukhopadhyay, A. Li, S. Rudic, I.J. McPherson, C.C. Tang, D. Fairen-Jimenez, S.C.E. Tsang, and S.A.T. Redfern, Structural dynamics of a metal-organic framework induced by co(2) migration in its non-uniform porous structure. Nat Commun, 2019, 10(1).
52. Xiang, L., D. Liu, H. Jin, L.-W. Xu, C. Wang, S. Xu, Y. Pan, and Y. Li, Locking of phase transition in mof zif-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation. Materials Horizons, 2020, 7(1).
53. Zulkifli, M.Y.B., Y. Yao, R. Chen, M. Chai, K. Su, X. Li, Y. Zhou, R. Lin, Z. Zhu, K. Liang, V. Chen, and J. Hou, Phase control of ZIF-7 nanoparticles via mechanochemical synthesis. Chem Commun (Camb), 2022, 58(88).
54. Gao, J., H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, Functionalized ZIF-7/pebax® 2533 mixed matrix membranes for co2/n2 separation. Microporous and Mesoporous Materials, 2020, 297.
55. Maleh, M.S. and A. Raisi, Experimental and modeling study on interfacial morphology of ZIF-67/pebax-2533 mixed matrix membranes for CO2 separation applications. Surfaces and Interfaces, 2023, 38.
56. Mehdinia Lichaei, M., F. Pazani, A. Aroujalian, and D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on pebax and graphene oxide. Process Safety and Environmental Protection, 2022, 163.
57. Grdadolnik, J., Atr-ftir spectroscopy: Its advantages and limitations. Acta Chimica Slovenica, 2002, 49(3).
58. Shindo, D. and T. Oikawa, Energy dispersive x-ray spectroscopy, in Analytical electron microscopy for materials science. 2002, Springer Japan: Tokyo.
59. Şener, T., E. Okumuş, T. Gürkan, and L. Yilmaz, The effect of different solvents on the performance of zeolite-filled composite pervaporation membranes. Desalination, 2010, 261(1-2).
60. Martinez-Izquierdo, L., M. Malankowska, J. Sanchez-Lainez, C. Tellez, and J. Coronas, Poly(ether-block-amide) copolymer membrane for CO(2)/N(2) separation: The influence of the casting solution concentration on its morphology, thermal properties and gas separation performance. R Soc Open Sci, 2019, 6(9).
61. Almuhtaseb, R.M., F.A. Awadallah, S.A. Al-Muhtaseb, and M. Khraisheh, Influence of casting solvents on CO(2)/CH(4) separation using polysulfone membranes. Membranes (Basel), 2021, 11(4).
62. Tan, G.Y.E., P.C. Oh, K.K. Lau, and S.C. Low, Development of mixed matrix membrane comprising titanium (IV) oxide dispersed with octaisobutyl polyhedral oligomeric silsesquioxane. IOP Conference Series: Materials Science and Engineering, 2020, 736(5).
63. Zhu, W., F. Liu, M. Gou, R. Guo, and X. Li, Mixed matrix membrane containing metal oxide nanosheets for efficient CO2 separation. Green Chemical Engineering, 2021, 2(1).
64. Zid, S., P. Alcouffe, M. Zinet, and E. Espuche, Mixed-matrix membranes based on polyetherimide, metal-organic framework and ionic liquid: Influence of the composition and morphology on gas transport properties. Polymers (Basel), 2022, 14(17).
65. Saadatkhah, N., A. Carillo Garcia, S. Ackermann, P. Leclerc, M. Latifi, S. Samih, G.S. Patience, and J. Chaouki, Experimental methods in chemical engineering: Thermogravimetric analysis—tga. The Canadian Journal of Chemical Engineering, 2019, 98(1).
66. Muntha, S.T., M. Siddiq, A. Kausar, and A. Khan, Mixed matrix membranes of polysulfone/polyimide reinforced with modified zeolite based filler: Preparation, properties and application. Chinese Journal of Polymer Science, 2017, 36(1).
67. Marti, A.M., S.R. Venna, E.A. Roth, J.T. Culp, and D.P. Hopkinson, Simple fabrication method for mixed matrix membranes with in situ mof growth for gas separation. ACS Appl Mater Interfaces, 2018, 10(29).
68. Qin, Z., X. Feng, D. Yin, B. Xin, Z. Jin, Y. Deng, L. Yang, L. Yao, W. Jiang, C. Liu, and Z. Dai, Impact of humidity on the co2/n2 separation performance of pebax-mof mixed matrix membranes. Industrial & Engineering Chemistry Research, 2023, 62(35).
69. Huang, H.-D., S.-Y. Zhou, D. Zhou, P.-G. Ren, J.-Z. Xu, X. Ji, and Z.-M. Li, Highly efficient “composite barrier wall” consisting of concentrated graphene oxide nanosheets and impermeable crystalline structure for poly(lactic acid) nanocomposite films. Industrial & Engineering Chemistry Research, 2016, 55(35).
70. D′Aniello, C., L. Guadagno, G. Gorrasi, and V. Vittoria, Influence of the crystallinity on the transport properties of isotactic polypropylene. Polymer, 2000, 41(7).
71. HorvÁTh, G. and K. Kawazoe, Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 1983, 16(6).
72. Walton, J.P.R.B. and N. Quirke, Capillary condensation: A molecular simulation study. Molecular Simulation, 1989, 2(4-6).
73. Saito, A. and H.C. Foley, Curvature and parametric sensitivity in models for adsorption in micropores. AIChE Journal, 2004, 37(3).
74. Jan Roman, P., F. Detlev, K. Thomas, and P. Klaus-Viktor, Gas permeation measurement under defined humidity via constant volume/variable pressure method. Journal of Membrane Science, 2012, 389.
75. Lin, H. and B. Freeman, Permeation and diffusion. 2006, Springer New York. p. 371-87.
76. Cai, Z., Y. Liu, C. Wang, W. Xie, Y. Jiao, L. Shan, P. Gao, H. Wang, and S. Luo, Ladder polymers of intrinsic microporosity from superacid-catalyzed friedel-crafts polymerization for membrane gas separation. Journal of Membrane Science, 2022, 644.
77. Mizrahi Rodriguez, K., W.-N. Wu, T. Alebrahim, Y. Cao, B.D. Freeman, D. Harrigan, M. Jhalaria, A. Kratochvil, S. Kumar, W.H. Lee, Y.M. Lee, H. Lin, J.M. Richardson, Q. Song, B. Sundell, R. Thür, I. Vankelecom, A. Wang, L. Wang, C. Wiscount, and Z.P. Smith, Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices. Journal of Membrane Science, 2022, 659.
78. Du, Y., B. Wooler, M. Nines, P. Kortunov, C.S. Paur, J. Zengel, S.C. Weston, and P.I. Ravikovitch, New high- and low-temperature phase changes of ZIF-7: Elucidation and prediction of the thermodynamics of transitions. J Am Chem Soc, 2015, 137(42).
79. Li, Y.S., H. Bux, A. Feldhoff, G.L. Li, W.S. Yang, and J. Caro, Controllable synthesis of metal-organic frameworks: From mof nanorods to oriented mof membranes. Adv Mater, 2010, 22(30).
80. Sun, Y., Y. Li, and J.C. Tan, Liquid intrusion into zeolitic imidazolate framework-7 nanocrystals: Exposing the roles of phase transition and gate opening to enable energy absorption applications. ACS Appl Mater Interfaces, 2018, 10(48).
81. Martínez-Izquierdo, L., A. Perea-Cachero, M. Malankowska, C. Téllez, and J. Coronas, A comparative study between single gas and mixed gas permeation of polyether-block-amide type copolymer membranes. Journal of Environmental Chemical Engineering, 2022, 10(5).
82. Al-Maythalony, B.A., A.M. Alloush, M. Faizan, H. Dafallah, M.A.A. Elgzoly, A.A.A. Seliman, A. Al-Ahmed, Z.H. Yamani, M.A.M. Habib, K.E. Cordova, and O.M. Yaghi, Tuning the interplay between selectivity and permeability of zif-7 mixed matrix membranes. ACS Appl Mater Interfaces, 2017, 9(39).
83. Azizi, N. and M.R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4. Petroleum Science and Technology, 2018, 36(13).
84. Garcia-Mayorga, J.C., H.C. Rosu, A.B. Jasso-Salcedo, and V.A. Escobar-Barrios, Kinetic study of polydopamine sphere synthesis using tris: Relationship between synthesis conditions and final properties. RSC Adv, 2023, 13(8).
85. Davoodian, N., A. Nakhaei Pour, M. Izadyar, A. Mohammadi, A. Salimi, and S.M. Kamali Shahri, Fischer–tropsch synthesis using zeolitic imidazolate framework (ZIF‐7 and ZIF-8)‐supported cobalt catalysts. Applied Organometallic Chemistry, 2020, 34(9).
86. Zhang, X., L. Tian, K. Wu, Z. Sun, Q. Wu, X. Shan, Y. Zhao, R. Chen, and J. Lu, High sensitivity electrochemiluminescence sensor based on the synergy of ZIF-7 and cdte for determination of glucose. Microchemical Journal, 2022, 177.
87. Hassanzadeh, H., R. Abedini, and M. Ghorbani, CO2 separation over N2 and ch4 light gases in sorbitol-modified poly(ether-block-amide) (Pebax 2533) membrane. Industrial & Engineering Chemistry Research, 2022, 61(36).
88. Tu, M., C. Wiktor, C. Rosler, and R.A. Fischer, Rapid room temperature syntheses of zeolitic-imidazolate framework (ZIF) nanocrystals. Chem Commun (Camb), 2014, 50(87).
89. Luo, H., C. Gu, W. Zheng, F. Dai, X. Wang, and Z. Zheng, Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Advances, 2015, 5(18).
90. Bläker, C., J. Muthmann, C. Pasel, and D. Bathen, Characterization of activated carbon adsorbents – state of the art and novel approaches. ChemBioEng Reviews, 2019, 6(4).
91. Åhlén, M., A. Jaworski, M. Strømme, and O. Cheung, Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: The effect of linker substitution on uptake capacity and kinetics. Chemical Engineering Journal, 2021, 422.
92. Yoon, S.S., H.K. Lee, and S.R. Hong, CO(2)/N(2) gas separation using pebax/zif-7-psf composite membranes. Membranes (Basel), 2021, 11(9).
93. Bai, C., Y. Gao, Z. Zhang, L. Tu, D. Cai, Z. Lv, C. Gao, and L. Xue, Ligand substitution: An effective way for tuning structures of ZIF-7 nanoparticles (nps) and improving energy recovery performance of ZIF/PA TFN membranes. ACS Appl Mater Interfaces, 2023.
94. Wu, J., F. Hillman, C.-Z. Liang, Y. Jia, and S. Zhang, Progressing thin-film membrane designs for post-combustion CO2 capture: Performance or practicality? Journal of Materials Chemistry A, 2023, 11(33).
95. Zhao, H.Y., Q. Xie, X.L. Ding, R.Y. Cai, X.Y. Tan, and Y.Z. Zhang, Advanced mixed matrix membranes of pebax embedded with amino acid
ionic liquids@pim core-shell composite nanoparticles for CO2 separation. Separation and Purification Technology, 2021, 263. |