博碩士論文 111324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.219.116.93
姓名 歐鎧(Kai Ou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物
(Establishment of Multifunctional Aromatic Disulfide-Crosslinked Acrylic Elastic Polymers)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
★ 高度纏結的雙離子水凝膠★ Lubricant and Anti-fouling Coatings for Silicone Catheter
★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能★ 聚胜肽電解質材料合成及其性質研究分析
★ 建立耐氧光聚合連續流反應器★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 功能材料的進步取決於引入新的合成單元和方法,以賦予其多樣化的特性。多種基於硫的化學因其易於實施、高產率和轉化率、反應速率快等特性,在彈性體合成、金屬離子去除和表面修飾中得到廣泛應用。在這項研究中,我們設計了一種含有芳香族雙硫鍵的丙烯酸酯交聯劑,命名為Bis[4-(acrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide (AIS)。芳香族雙硫鍵交聯劑AIS被用於與丙烯酸丁酯 (Butyl acrylate, BA)單體和丙烯酸羥乙酯 (Hydroxyethyl acrylate, HEA)單體進行自由基光聚合,形成芳香族雙硫鍵交聯的AIS-BA彈性體和AIS-HEA水凝膠,而使用商業用交聯劑聚乙二醇二甲基丙烯酸酯 (Polyethylene glycol dimethacrylate, PEGDMA)所合成的彈性體則作為對照樣品 (即PEGDMA-BA和PEGDMA-HEA)。芳香族雙硫鍵的低解離能使雙硫鍵更容易發生斷裂以生成硫醇,從而進行各種基於硫的化學反應,如硫醇-烯聚合反應、硫醇-邁克爾加成反應和硫-金屬鍵的形成等。透過施加外部力,如壓縮或切割等方式,能誘導結構中相對較弱的芳香族雙硫鍵斷裂,從而生成硫醇基團。第一個功能是基於自由基介導的硫醇-烯聚合反應。可以在彈性體表面塗覆由2-三甲基氨基乙基甲基丙烯酸鹽(2-Trimethylammonioethyl methacrylate chloride, TMAEMA)和磺基甜菜鹼丙烯醯胺 (Sulfobetaine acrylamide, SBAA)組成的單層聚合物。第二個功能基於硫醇-邁克爾加成反應。藉由鹼性催化劑促使SBAA單體對彈性體表面進行改質。此外,也根據機械化學中透過施加外在機械力使水凝膠中的雙硫鍵發生裂解以生成硫醇自由基或遊離硫醇並與螢光分子螢光素-5-馬來酰亞胺進行加成反應。通過X射線光電子能譜 (X-ray Photoelectron Spectroscopy, XPS)和衰減全反射傅立葉變換紅外光譜 (Attenuated Total Reflectance-Fourier-Transform Infrared Sepectroscopy, ATR-FTIR)對表面元素組成進行了表徵分析,通過水接觸角測量評估了修飾表面的濕潤性,通過細菌和蛋白黏附測試評估了修飾彈性體表面的抗沾黏和抗菌性能,使用光學顯微鏡拍攝螢光照片並量化螢光強度。對於第三和第四個功能,我們利用硫基團與金屬之間的相互作用,與金和銀形成Au-S和Ag-S化學吸附。AIS-BA及AIS-HEA分別被用作金基板的黏著劑和抗菌水凝膠。通過剪切測試評估了黏合強度和可重複使用性,並利用XPS和飛行時間二次離子質譜 (Time-of-Flight Secondary Ion Mass Spectrometer, ToF-SIMS)確認了金屬-硫鍵的存在。通過掃描電子顯微鏡(Scanning Electron Microscope, SEM)和能量色散X射線光譜(Energy-dispersive X-ray spectroscopy, EDX)分析了彈性體與基板之間的黏附形貌和化學組成。藉由抑菌圈和液體培養基抑菌測試評估了水凝膠的抗菌效果。雙硫鍵和硫醇在結構中展現了獨特的性質和反應性,使得含硫化學成為一個重要的研究領域,在各種應用中展現出巨大的潛力。
摘要(英) Advancement of functional materials relies on new synthetic building blocks and methods that endow various functionalities. Versatile sulfur-based chemistries have garnered widespread application in elastomer synthesis, metal-ion removal, and surface modification due to their ease of implementation, high yield and conversion, rapid reaction rates. In this study, we designed an acrylic cross-linker containing an aromatic disulfide bond, Bis[4-(acryloyl-2-methyl-isocyanato-isophorone)phenyl] disulfide (AIS). The aromatic disulfide cross-linker, AIS, was employed for radical photopolymerization with butyl acrylate (BA) and hydroxyethyl acrylate (HEA) monomer to form the aromatic disulfide-crosslinked AIS-BA elastomer and AIS-HEA hydrogel, and polyethylene glycol dimethacrylate (PEGDMA) commercial cross-linker as a control sample (i.e. PEGDMA-BA and PEGDMA-HEA). The low dissociation energy of aromatic disulfide bond facilitates thiol generation upon cleavage, enabling various sulfur-based reactions such as thiol-ene polymerization, thiol-Michael addition, and sulfur-metal bond formation. External forces such as compression or cutting were applied to induce the cleavage of relatively weak aromatic disulfide bonds, leading to thiol group generation. The first function base on radical-mediated thiol-ene polymerization. A monolayer of polymer of 2-Trimethylammonioethyl methacrylate chloride (TMAEMA) and sulfobetaine acrylamide (SBAA) can be coated on the surface of the elastomer. The second function base on thiol-ene Michael addition. The surface of the elastomer can be modified with a monolayer of sulfobetaine acrylamide (SBAA) monomer based on a alkaline catalyst and mechanical force mediates the cleavage of disulfide bonds in the hydrogel via mechanochemistry, facilitating addition reactions with thiol radicals or free thiols in the presence of the fluorescent molecule Fluorescein-5-Maleimide. The surface elemental composition was characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), the wetting properties of the modified surface were evaluated through water contact angle measurements, the antifouling and antibacterial properties of the modified elastomers surface were evaluated through bacterial and protein adhesion tests, the fluorescence images were acquired using an optical microscope and the fluorescence intensity was quantified. For the third and fourth functions, we have exploit the interaction between sulfur groups and metals to chemically adsorb onto gold and silver through the formation of Au-S and Ag-S. AIS-BA and AIS-HEA was employed as an adhesive for gold substrates and an antibacterial hydrogel, respectively. The adhesive strength and reusability were evaluated through lap shear test, while the presence of metal-sulfur bond was confirmed using XPS and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The adhesion morphology and chemical composition between the elastomer and substrate were analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial effect of hydrogels was evaluated through zone of inhibition and liquid culture tests. Disulfide bonds and thiols exhibit unique properties and reactivity within structures, establishing sulfur chemistry as a critical field of research, with substantial potential across various applications.
關鍵字(中) ★ 彈性聚合物
★ 硫化學
★ 硫醇-烯聚合反應
★ 硫醇-烯邁克爾加成反應
★ 多功能含雙硫材料
★ 金屬-硫相互作用
關鍵字(英)
論文目次 中文摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XII
產物名詞代稱 XIV
一、文獻回顧 1
1-1 彈性聚合物 1
1-1-1 水凝膠 2
1-1-2 彈性體 3
1-1-3 彈性聚合物面臨的困境 4
1-2 二硫化物材料之發展 6
1-2-1 自然界中的二硫化物材料 7
1-2-2 人工合成的二硫化物材料 8
1-2-3 芳香族雙硫鍵交聯之彈性體 9
1-3 硫化學反應與功能應用 11
1-3-1 二硫化物-二硫化物及二硫化物-硫醇之交換反應 13
1-3-2 硫醇-烯聚合反應 15
1-3-3 硫醇-烯邁克爾加成反應 17
1-3-4 硫-金屬相互作用 19
二、研究目的 21
三、實驗藥品與實驗方法 22
3-1 實驗藥品清單 22
3-2 實驗設備清單 24
3-3 材料製備 25
3-3-1 合成Bis[4-(acrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide, (AIS)芳香族雙硫鍵交聯劑 25
3-3-2 彈性體及水凝膠之製備 26
3-3-3 合成Sulfobetaine acrylamide (SBAA)雙離子單體 27
3-3-4金基板之制備 27
3-3-5 瓊脂平板之制備 28
3-4 實驗方法 29
3-4-1硫醇-烯聚合修飾之彈性體 29
3-4-2 硫醇-烯邁克爾加成修飾之彈性體 29
3-4-3 硫-銀化學修飾之水凝膠 29
3-4-4 衰減全反射式傅立葉轉換紅外線光譜儀分析 (Attenuated Total Reflectance-Fourier-Transform Infrared Sepectroscopy, ATR-FTIR) 30
3-4-5 X射線光電子能譜儀分析 (X-ray Photoelectron Spectroscopy, XPS) 30
3-4-6 水接觸角測量 (Water Contact Angle Measurement) 31
3-4-7 掃描式電子顯微鏡分析 (Scanning Electron Microscope, SEM) 31
3-4-8 飛行時間二次離子質譜儀分析 (Time-of-Flight Secondary Ion Mass Spectrometer, ToF-SIMS) 31
3-4-9 細菌貼附測試 (Bacteria Attachment Test) 32
3-4-10 抗菌活性測試 (Antimicrobial Activity Test) 33
3-4-11 蛋白質貼附測試 (Protein Adsorption Test) 34
3-4-12 搭接剪切強度與循環利用測試 (Lap Shear Strength & Reusability Test) 35
3-4-13 機械化學螢光測試 (Mechanochemical Fluorescence Test) 36
四、結果與討論 37
4-1 硫醇-烯聚合修飾之彈性體 37
4-1-1 彈性體表面官能基分析 37
4-1-2 彈性體表面元素分析 39
4-1-3 彈性體表面親水性分析 43
4-1-4 彈性體表面細菌貼附測試 44
4-1-5 彈性體表面蛋白質貼附測試 48
4-2 硫醇-烯邁克爾加成修飾之彈性體及水凝膠 49
4-2-1 彈性體表面官能基分析 49
4-2-2 彈性體表面元素分析 51
4-2-3 彈性體表面親水性分析 53
4-2-4 彈性體表面細菌貼附測試 54
4-2-5 彈性體表面蛋白質貼附測試 58
4-2-6 水凝膠藉由機械外力觸發熒光測試 59
4-3 用於基板黏合之彈性體黏著劑 61
4-3-1 彈性體黏著劑之黏合強度分析 61
4-3-2 彈性體黏著劑之循環利用分析 64
4-3-3 金基板經黏附剝離後之表面元素分析 65
4-3-4 金基板經黏附剝離後之橫截面與表面形貌及組成分析 68
4-4 硫-銀化學修飾之水凝膠 71
4-4-1 水凝膠抑菌圈測試 71
4-4-2 水凝膠於液體培養基抑菌測試 72
五、結論 74
六、未來展望 75
七、參考文獻 76
參考文獻 1. Chen, S., et al., Biodegradable elastomers and gels for elastic electronics. Advanced Science, 2022. 9(13): p. 2105146.
2. Sienkiewicz, M., et al., Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of cleaner production, 2017. 147: p. 560-571.
3. Pan, X., et al., Bacterial cellulose hydrogel for sensors. Chemical Engineering Journal, 2023. 461: p. 142062.
4. Zhalmuratova, D. and H.-J. Chung, Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020. 2(3): p. 1073-1091.
5. Wichterle, O. and D. Lim, Hydrophilic gels for biological use. Nature, 1960. 185(4706): p. 117-118.
6. Bahram, M., N. Mohseni, and M. Moghtader, An introduction to hydrogels and some recent applications, in Emerging concepts in analysis and applications of hydrogels. 2016, IntechOpen.
7. Yu, Q., et al., A multifunctional chitosan-based hydrogel with self-healing, antibacterial, and immunomodulatory effects as wound dressing. International Journal of Biological Macromolecules, 2023. 231: p. 123149.
8. Sun, Z., et al., Hydrogel-based controlled drug delivery for cancer treatment: a review. Molecular pharmaceutics, 2019. 17(2): p. 373-391.
9. Hameed, H., et al., A comprehensive review of hydrogel-based drug delivery systems: classification, properties, recent trends, and applications. AAPS PharmSciTech, 2024. 25(4): p. 64.
10. Yang, L., Z. Ou, and G. Jiang, Research progress of elastomer materials and application of elastomers in drilling fluid. Polymers, 2023. 15(4): p. 918.
11. Utrera-Barrios, S., et al., Self-Healing Elastomers: A sustainable solution for automotive applications. European Polymer Journal, 2023: p. 112023.
12. Bai, Y., et al., Recyclable Wearable Sensor Based on Tough, Self-Healing, Adhesive Polyurethane Elastomer for Human Motion Monitoring. ACS Applied Polymer Materials, 2023. 5(10): p. 8720-8734.
13. Magaña, I., et al., Bioelastomers: Current state of development. Journal of Materials Chemistry A, 2022. 10(10): p. 5019-5043.
14. Mayer, P.M., et al., Where the rubber meets the road: Emerging environmental impacts of Tire Wear particles and their chemical cocktails. Science of the Total Environment, 2024: p. 171153.
15. Bensalem, K., et al., Lifetime estimation models and degradation mechanisms of elastomeric materials: A critical review. Polymer Degradation and Stability, 2023: p. 110644.
16. Stepulane, A., A.K. Rajasekharan, and M. Andersson, Multifunctional surface modification of PDMS for antibacterial contact killing and drug-delivery of polar, nonpolar, and amphiphilic drugs. ACS Applied Bio Materials, 2022. 5(11): p. 5289-5301.
17. research, g.v. Elastomers Market Size, Share & Trends Analysis Report By Application (Consumer Goods, Medical, Automotive, Industrial), By Type (Thermoplastics, Thermosets), By Region, And Segment Forecasts, 2020 - 2025. Available from: https://www.grandviewresearch.com/industry-analysis/elastomers-market#.
18. research, g.v. Hydrogel Dressing Market Size, Share & Trends Analysis Report By Product (Amorphous Hydrogel, Impregnated Hydrogel), By Application (Acute Wounds, Chronic Wounds), By End-use, By Region, And Segment Forecasts, 2024 - 2030. Available from: https://www.grandviewresearch.com/industry-analysis/hydrogel-dressing-market-report.
19. Fong, C.W., Cystine and glutathione disulfide: dissociative electron transfer and photochemical induced cleavage of the SS bond and relationships with the cysteine/cystine and glutathione/glutathione disulfide redox couples and protein folding and function. 2024, Eigenenergy Adelaide, South Australia, Australia.
20. Westin, J. The Complete MCAT Amino Acids and Proteins Guide. Available from: https://jackwestin.com/resources/mcat-content/complete-mcat-amino-acids-proteins-guide.
21. Beaupre, D.M. and R.G. Weiss, Thiol-and disulfide-based stimulus-responsive soft materials and self-assembling systems. Molecules, 2021. 26(11): p. 3332.
22. Ong, C.L., et al., An Overview of Recent Advances in the Synthesis of Organic Unsymmetrical Disulfides. Helvetica Chimica Acta, 2021. 104(8).
23. Willems, P., et al., Functionally annotating cysteine disulfides and metal binding sites in the plant kingdom using AlphaFold2 predicted structures. Free Radic Biol Med, 2023. 194: p. 220-229.
24. Schindeldecker, M. and B. Moosmann, Cysteine Is the Only Universally Affected and Disfavored Proteomic Amino Acid under Oxidative Conditions in Animals. Antioxidants (Basel), 2024. 13(3).
25. Bechtel, T.J. and E. Weerapana, From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics, 2017. 17(6).
26. Liao, Y., M. Wang, and X. Jiang, Sulfur-containing peptides: Synthesis and application in the discovery of potential drug candidates. Current Opinion in Chemical Biology, 2023. 75: p. 102336.
27. Tyler, T.J., T. Durek, and D.J. Craik, Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules, 2023. 28(7).
28. Wang, M. and X. Jiang, Sulfur-Sulfur Bond Construction. Top Curr Chem (Cham), 2018. 376(2): p. 14.
29. Jin, Y., et al., Recent advances in dynamic covalent chemistry. Chem Soc Rev, 2013. 42(16): p. 6634-54.
30. Jiang, Z. and S. Thayumanavan, Disulfide-containing Macromolecules for Therapeutic Delivery. Isr J Chem, 2020. 60(1-2): p. 132-139.
31. Sáiz, L., et al., Self-healing materials based on disulfide bond-containing acrylate networks. Polymer Testing, 2023. 117: p. 107832.
32. Hong, J.U., et al., Scratch-healable automotive clearcoats based on disulfide polyacrylate urethane networks. Progress in Organic Coatings, 2021. 161.
33. Jiang, Z., et al., Research progresses of nanomaterials as lubricant additives. Friction, 2024.
34. Stephenson, T., et al., Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci., 2014. 7(1): p. 209-231.
35. Tsai, H.-Y., et al., Mechanochromism of dynamic disulfide bonds as a chromophoric indicator of adhesion strength for epoxy adhesive. Materials Advances, 2021. 2(15): p. 5047-5051.
36. Yang, Y.M., et al., Density functional theory calculations on S―S bond dissociation energies of disulfides. Journal of Physical Organic Chemistry, 2016. 29(1): p. 6-13.
37. Lu, L.-H., Multifunctional Acrylic Cross-Linker Based on Dynamic Bonds. 2023, National Central University.
38. Griebel, J.J., et al., Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense. Progress in Polymer Science, 2016. 58: p. 90-125.
39. Boyd, D.A., Sulfur and Its Role In Modern Materials Science. Angew Chem Int Ed Engl, 2016. 55(50): p. 15486-15502.
40. Nguyen, T.B., Recent Advances in Organic Reactions Involving Elemental Sulfur. Advanced Synthesis & Catalysis, 2017. 359(7): p. 1066-1130.
41. Worthington, M.J.H., R.L. Kucera, and J.M. Chalker, Green chemistry and polymers made from sulfur. Green Chemistry, 2017. 19(12): p. 2748-2761.
42. Mutlu, H., et al., Sulfur chemistry in polymer and materials science. Macromolecular rapid communications, 2019. 40(1): p. 1800650.
43. Schilter, D., Thiol oxidation: A slippery slope. Nature Reviews Chemistry, 2017. 1(2): p. 0013.
44. Pięta, M., et al., Disulfide-containing monomers in chain-growth polymerization. Polymer Chemistry, 2023. 14(1): p. 7-31.
45. Renzi, P., et al., Purple‐Light Promoted Thiol‐ene Reaction of Alkenes. Advanced Synthesis & Catalysis, 2023. 365(24): p. 4623-4633.
46. Nador, F., et al., Thiol-yne click reaction: an interesting way to derive thiol-provided catechols. RSC advances, 2021. 11(4): p. 2074-2082.
47. Ahangarpour, M., I. Kavianinia, and M.A. Brimble, Thia-Michael addition: the route to promising opportunities for fast and cysteine-specific modification. Organic & Biomolecular Chemistry, 2023. 21(15): p. 3057-3072.
48. Neves, C.V., et al., Improving the performance of activated carbon towards dibenzothiophene adsorption by functionalization and sulfur-metal interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024: p. 133372.
49. Altinbasak, I., et al., Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polymer Chemistry, 2020. 11(48): p. 7603-7624.
50. Pepels, M., et al., Self-healing systems based on disulfide–thiol exchange reactions. Polymer Chemistry, 2013. 4(18): p. 4955-4965.
51. Hurst, P.J., et al., CryoEM reveals the complex self-assembly of a chemically driven disulfide hydrogel. Chemical Science, 2024. 15(3): p. 1106-1116.
52. Chen, K., H. Xie, and J. Liu, Self-healing and mechanically robust poly (thiourea-disulfide) elastomers based on synergistic tri-dynamic bondings. Polymer Chemistry, 2024.
53. Xia, Z., et al., Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers. Applied Surface Science, 2017. 416: p. 565-573.
54. Dong, X., et al., A responsive disulfide bond switch aptamer prodrug exhibiting enhanced stability and anticancer efficacy. Bioorganic & Medicinal Chemistry Letters, 2024. 104: p. 129729.
55. Luo, J., et al., The novel disulfide-containing diols synthesis and applied in self-healing fluorescent polyurethane elastomers. New Journal of Chemistry, 2024.
56. Zhang, Q., et al., Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. Journal of the American Chemical Society, 2022. 144(5): p. 2022-2033.
57. Huang, S., et al., An overview of dynamic covalent bonds in polymer material and their applications. European Polymer Journal, 2020. 141: p. 110094.
58. Orrillo, A.G. and R.L. Furlan, Sulfur in Dynamic covalent chemistry. Angewandte Chemie, 2022. 134(26): p. e202201168.
59. Nevejans, S., et al., The underlying mechanisms for self-healing of poly (disulfide) s. Physical Chemistry Chemical Physics, 2016. 18(39): p. 27577-27583.
60. Li, L., et al., Recent Progress in Polymers with Dynamic Covalent Bonds. Macromolecular Chemistry and Physics, 2023. 224(20): p. 2300224.
61. Li, Y., et al., Room-temperature self-healing polyurethane elastomers with high strength and superior self-healing efficiency based on aromatic disulfide-induced. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. 681: p. 132829.
62. Azcune, I. and I. Odriozola, Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more. European Polymer Journal, 2016. 84: p. 147-160.
63. László, K., et al., Graph-representation of oxidative folding pathways. 2005.
64. Putzu, M., et al., On the mechanism of spontaneous thiol–disulfide exchange in proteins. Physical Chemistry Chemical Physics, 2018. 20(23): p. 16222-16230.
65. Fu, J., et al., PDI-regulated disulfide bond formation in protein folding and biomolecular assembly. Molecules, 2020. 26(1): p. 171.
66. Yu, H., et al., Injectable self-healing hydrogels formed via thiol/disulfide exchange of thiol functionalized F127 and dithiolane modified PEG. Journal of materials chemistry B, 2017. 5(22): p. 4121-4127.
67. Islam, F. and Q. Zeng, Advances in Organosulfur-Based Polymers for Drug Delivery Systems. Polymers, 2024. 16(9): p. 1207.
68. Wang, L., et al., UV-triggered thiol–disulfide exchange reaction towards tailored biodegradable hydrogels. Polymer Chemistry, 2016. 7(7): p. 1429-1438.
69. Puri, V., et al., Thiolation of biopolymers for developing drug delivery systems with enhanced mechanical and mucoadhesive properties: A review. Polymers, 2020. 12(8): p. 1803.
70. Hoyle, C.E. and C.N. Bowman, Thiol–ene click chemistry. Angewandte Chemie International Edition, 2010. 49(9): p. 1540-1573.
71. Machado, T.O., C. Sayer, and P.H. Araujo, Thiol-ene polymerisation: A promising technique to obtain novel biomaterials. European Polymer Journal, 2017. 86: p. 200-215.
72. Degirmenci, I., Effect of Initiator Structure on Thiol‐Ene Polymerization: A DFT Study. Macromolecular Theory and Simulations, 2022. 31(1): p. 2100040.
73. Magennis, E.P., et al., Making silicone rubber highly resistant to bacterial attachment using thiol-ene grafting. ACS Applied Materials & Interfaces, 2016. 8(45): p. 30780-30787.
74. Yang, W.J., et al., Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polymer Chemistry, 2013. 4(10): p. 3105-3115.
75. Lee, T.-J., L.-K. Chau, and C.-J. Huang, Controlled silanization: high molecular regularity of functional thiol groups on siloxane coatings. Langmuir, 2020. 36(21): p. 5935-5943.
76. Allen, C., J. Fournier, and W. Humphlett, The thermal reversibility of the Michael reaction: IV. thiol adducts. Canadian Journal of Chemistry, 1964. 42(11): p. 2616-2620.
77. Nair, D.P., et al., The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chemistry of Materials, 2014. 26(1): p. 724-744.
78. Long, K.F., et al., Effects of thiol substitution on the kinetics and efficiency of thiol-michael reactions and polymerizations. Macromolecules, 2021. 54(7): p. 3093-3100.
79. Li, P., et al., Catalytic generation of nitric oxide from poly (ε-caprolactone)/phosphobetainized keratin mats for a vascular tissue engineering scaffold. Langmuir, 2020. 36(16): p. 4396-4404.
80. Lee, J., et al., Mechanochemical functionalization of disulfide linked hydrogels. Materials horizons, 2016. 3(5): p. 447-451.
81. Cecil, R. and J. McPhee, Further studies on the reaction of disulphides with silver nitrate. Biochemical Journal, 1957. 66(3): p. 538.
82. Ahsan, M., et al., Sulfur adlayer on gold surface for attaining H2O2 reduction in alkaline medium: Catalysis, kinetics, and sensing activities. Journal of Electroanalytical Chemistry, 2023. 934: p. 117281.
83. Wang, J., et al., Novel Polyaniline–Silver–Sulfur Nanotube Composite as Cathode Material for Lithium–Sulfur Battery. Materials, 2021. 14(21): p. 6440.
84. Lu, J., et al., Application of Copper–Sulfur Compound Electrode Materials in Supercapacitors. Molecules, 2024. 29(5): p. 977.
85. Young, C.G., Facets of early transition metal–sulfur chemistry: Metal–sulfur ligand redox, induced internal electron transfer, and the reactions of metal–sulfur complexes with alkynes. Journal of inorganic biochemistry, 2007. 101(11-12): p. 1562-1585.
86. Guerrero-Almaraz, P., et al., Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study. ACS Organic & Inorganic Au, 2023. 3(6): p. 393-402.
87. Petrov, A.I., Interaction of disulfides with metal ions and spectroscopic identification of the products. Coordination Chemistry Reviews, 2024. 505: p. 215678.
88. Wang, Y., et al., Effect of pressure on elemental diffusion in sulfur–iron reaction. Ceramics International, 2022. 48(9): p. 11962-11970.
89. Zhu, Q., et al., The Synergistic Effect between Metal and Sulfur Vacancy to Boost CO2 Reduction Efficiency: A Study on Descriptor Transferability and Activity Prediction. JACS Au, 2024. 4(1): p. 125-138.
90. Pettazzoni, L., et al., Self-Healing and Reprocessable Oleic Acid-Based Elastomer with Dynamic SS Bonds as Solvent-Free Reusable Adhesive on Copper Surface. Polymers, 2022. 14(22): p. 4919.
91. Chen, R., et al., A chitosan-based antibacterial hydrogel with injectable and self-healing capabilities. Marine Life Science & Technology, 2024. 6(1): p. 115-125.
92. Chen, J.-H., et al., Castor oil derived poly (urethane urea) networks with reprocessibility and enhanced mechanical properties. Polymer, 2018. 143: p. 79-86.
93. Ramin, M.A., et al., Epoxy-terminated self-assembled monolayers containing internal urea or amide groups. Langmuir, 2015. 31(9): p. 2783-2789.
94. Huang, K.T., et al., Zwitterionic Gradient Double‐Network Hydrogel Membranes with Superior Biofouling Resistance for Sustainable Osmotic Energy Harvesting. Advanced Functional Materials, 2023. 33(19): p. 2211316.
95. Mekaru, H., et al., Biodegradability of disulfide-organosilica nanoparticles evaluated by soft X-ray photoelectron spectroscopy: cancer therapy implications. ACS Applied Nano Materials, 2018. 2(1): p. 479-488.
96. Secchi, V., et al., Self-assembling behavior of cysteine-modified oligopeptides: an XPS and NEXAFS study. The Journal of Physical Chemistry C, 2018. 122(11): p. 6236-6239.
97. Liu, C.-Y. and C.-J. Huang, Functionalization of polydopamine via the aza-michael reaction for antimicrobial interfaces. Langmuir, 2016. 32(19): p. 5019-5028.
98. Flamia, R., et al., Conformational study and hydrogen bonds detection on elastin-related polypeptides using X-ray photoelectron spectroscopy. Biomacromolecules, 2005. 6(3): p. 1299-1309.
99. Huang, C.-J., Y.-S. Chen, and Y. Chang, Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes. ACS applied materials & interfaces, 2015. 7(4): p. 2415-2423.
100. Politakos, N., S. Azinas, and S.E. Moya, Responsive Copolymer Brushes of Poly [(2‐(Methacryloyloxy) Ethyl) Trimethylammonium Chloride](PMETAC) and Poly (1H, 1H, 2H, 2H‐Perfluorodecyl acrylate)(PPFDA) to Modulate Surface Wetting Properties. Macromolecular rapid communications, 2016. 37(7): p. 662-667.
101. Bui, H.L. and C.-J. Huang, Tough polyelectrolyte hydrogels with antimicrobial property via incorporation of natural multivalent phytic acid. Polymers, 2019. 11(10): p. 1721.
102. Wei, T., et al., Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS applied materials & interfaces, 2017. 9(43): p. 37511-37523.
103. Nguyen, A.T., et al., Stable protein-repellent zwitterionic polymer brushes grafted from silicon nitride. Langmuir, 2011. 27(6): p. 2587-2594.
104. Zhao, Y.-H., et al., Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. The Journal of Physical Chemistry B, 2010. 114(7): p. 2422-2429.
105. Cho, E.C., et al., Protein adhesion regulated by the nanoscale surface conformation. Soft Matter, 2012. 8(47): p. 11801-11808.
106. Kaupp, G., Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm, 2009. 11(3): p. 388-403.
107. Häkkinen, H., The gold–sulfur interface at the nanoscale. Nature chemistry, 2012. 4(6): p. 443-455.
108. Tang, J., et al., Strong and efficient self-healing adhesives based on dynamic quaternization cross-links. Journal of materials chemistry A, 2017. 5(40): p. 21169-21177.
109. Mikhlin, Y., et al., XAS and XPS examination of the Au–S nanostructures produced via the reduction of aqueous gold (III) by sulfide ions. Journal of Electron Spectroscopy and Related Phenomena, 2010. 177(1): p. 24-29.
110. Bearinger, J., et al., Chemisorbed poly (propylene sulphide)-based copolymers resist biomolecular interactions. Nature Materials, 2003. 2(4): p. 259-264.
111. Killian, M.S., H.M. Krebs, and P. Schmuki, Protein denaturation detected by time-of-flight secondary ion mass spectrometry. Langmuir, 2011. 27(12): p. 7510-7515.
112. Liu, J., et al., Chemical transformations of nanosilver in biological environments. ACS nano, 2012. 6(11): p. 9887-9899.
113. Xu, Z., et al., Release strategies of silver ions from materials for bacterial killing. ACS applied bio materials, 2021. 4(5): p. 3985-3999.
114. Huang, K.-T., et al., Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomaterials science, 2017. 5(6): p. 1072-1081.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明