博碩士論文 111324040 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.226.104.41
姓名 陳哲偉(Jhe-Wei Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Establishing a Closed-Loop System in Mitsunobu Reaction: Recycling of TPPO, Calcium Bromide and Water)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 光延反應是由日本的化學家Oyo Mitsunobu於1967年發表,有機合成化學中常用於形成碳-碳 (C-C) 和碳-雜原子 (C-X) 鍵,也可使一個帶羥基的手性碳原子發生構型翻轉。因其溫和的反應條件,而且可以置換多種的官能基,在現在的有機合成中是很常見的反應。先前的文獻多注重於底物的選擇以藉由光延反應合成出新分子,但考慮到新型工業化的其中一個最重要的元素,是協助產業從源頭減少污染,更可節能降耗,為企業帶來經濟效益。尤其光延反應的副產物更是含有磷元素,這代表有必要將其回收,因為若是隨意丟棄可能會造成水質優養化,此外,地球上的磷資源有限,如果不加以利用將會加快磷資源的枯竭。因此,本研究主要為探討光延反應後副產物的回收及反應物的再利用。一開始我們將反應中所有的成分進行初步的檢驗,發現三苯基氧化磷的新多晶型,接著在本研究中我們根據先前的研究使用鹵化鹽(溴化鈣)來沉澱副產物三苯基氧化磷,將原本實驗室規模的製程移至0.5公升玻璃攪拌槽中進行了製程放大,同時將原本18小時的製程縮短至3小時,並且透過液相層析法從中監控反應物、產物、副產物的濃度變化再加以轉換為重量以確認質量平衡。我們還將沉澱出來的化合物透過水來拆解以回收三苯基氧化磷,反應時間只需要2小時且產率高達95.7 ± 11.8%,再通過減壓蒸餾來回收水及溴化鈣。總體來說,本研究具有改良製程以應用於大規模製造及在製程中縮短反應時間、節約能源和回收副產物和反應物等特點。
摘要(英) The Mitsunobu reaction was published by Japanese chemist Oyo Mitsunobu in 1967, is frequently employed in organic synthesis for forming carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds. It can also invert the configuration of a chiral carbon atom with a hydroxyl group. Due to its mild reaction conditions and ability to replace various functional groups, the Mitsunobu reaction is widely used in modern organic synthesis. Previous literature has often focused on the selection of substrates to synthesize new molecules via the Mitsunobu reaction. However, considering one of the most critical elements of new industrial processes is to help industries reduce pollution at the source, save energy, and lower consumption, thereby bringing economic benefits to enterprises. The by-product of the Mitsunobu reaction contains phosphorus and needs to be recycled. Discarding these by-products indiscriminately can lead to water eutrophication. Additionally, since phosphorus resources on Earth are limited, failing to utilize them will accelerate the depletion of those resources. Initially, we conducted a use test of all the components in the reaction and discovered a new polymorph of triphenylphosphine oxide. Therefore, this study primarily explores the recovery of by-products and the reuse of reactants from the Mitsunobu reaction. We utilized halide salts (calcium bromide) based on previous research to precipitate by-product triphenylphosphine oxide (TPPO), scaling up the process from laboratory scale to a 0.5 liter common stirred tank. The original 18 h process was reduced to 3 h, and concentrations of reactants, products, and by-products were monitored using liquid chromatography, which were then converted to weights to ensure mass balance. Furthermore, the precipitated compounds were cracked with water to recover triphenylphosphine oxide, achieving a 95.7 ± 11.8% yield in just 2 h. The water and calcium bromide were then recovered through vacuum distillation. Overall, this study demonstrates improved processes for large-scale manufacturing, shortened reaction times, energy savings, and the recovery of by-products and reactants.
關鍵字(中) ★ 漿料結晶
★ 多晶型
★ 芐基苯基醚
★ 烷基化肼衍生物
★ 三苯基膦
關鍵字(英) ★ Slurry crystallization
★ Polymorph
★ Benzyl phenyl ether
★ Alkylated hydrazine derivative
★ Triphenylphosphine
論文目次 摘要 i
Abstract ii
Acknowledgment iv
Table of Contents vi
List of Figures ix
List of Tables xi
List of Schemes xii
Chapter 1 Introduction 1
1.1 The Importance of Recycling TPPO 1
1.2 Mitsunobu Reaction 3
1.3 Removal of TPPO 6
1.4 Conceptual Framework 8
Chapter 2 Experimental Methods 10
2.1 Materials 10
2.1.1 Chemicals 10
2.1.2 Solvents 11
2.2 Experimental Methods 13
2.2.1 Initial Solvent Screening 13
2.2.2 Mitsunobu Reaction of Benzyl Phenyl Ether 14
2.2.3 Solubility Measurements of TPPO and BPE in THF 16
2.2.4 Small-Scale Preparation of CaBr2-TPPO 17
2.2.5 Complexation of CaBr2-TPPO 18
2.2.6 Recovery of TPPO from CaBr2-TPPO Complex 20
2.2.7 Recovery of CaBr2 and Water 21
2.3 Analytical Instruments 22
2.3.1 Optical Microscopy (OM) 22
2.3.2 Fourier Transform Infrared Spectroscopy (FT-IR) 22
2.3.3 Thermogravimetric Analysis (TGA) 23
2.3.4 Differential Scanning Calorimetry (DSC) 23
2.3.5 Powder X-ray Diffraction (PXRD) 24
2.3.6 High-Temperature X-ray Diffractometer (HT-PXRD) 24
2.3.7 High Performance Liquid Chromatography (HPLC) 25
2.3.8 Solution Nuclear Magnetic Resonance (NMR) 26
2.3.9 Digital Refractometry 26
Chapter 3 Results and Discussion 27
3.1 Analysis and Characterization for Use Test 27
3.1.1 Use Test of TPPO 28
3.2 The Establishment of HPLC Calibration Line 33
3.3 Small-Scale Preparation of CaBr2-TPPO 36
3.4 Mitsunobu Reaction of Benzyl Phenyl Ether 37
3.5 Complexation of CaBr2-TPPO 42
3.6 Recovery of TPPO from CaBr2-TPPO Complex 48
3.7 Recovery of CaBr2 and Water 51
Chapter 4 Conclusions and Future Works 52
4.1 Conclusions 52
4.2 Future Works 53
Appendices 54
References 74
參考文獻 (1) Bonrath, W.; Gao, B.; Houston, P.; McClymont, T.; Müller, M.-A.; Schäfer, C.; Schweiggert, C.; Schütz, J.; Medlock, J. A. 75 Years of Vitamin A Production: A Historical and Scientific Overview of the Development of New Methodologies in Chemistry, Formulation, and Biotechnology. OPR&D 2023, 27 (9), 1557-1584.

(2) Krachko, T.; Lyaskovskyy, V.; Lutz, M.; Lammertsma, K.; Slootweg, J. C. rønsted Acid Promoted Reduction of Tertiary Phosphine Oxides. ZAAC 2017, 643 (14), 916-921.

(3) Emery, R. J.; Papadaki, M.; Dos Santos, L. M. F.; Mantzavinos, D. Extent of Sonochemical Degradation and Change of Toxicity of a Pharmaceutical Precursor (Triphenylphosphine oxide) in Water as a Function of Treatment Conditions. Environ. Int. 2005, 31 (2), 207-211.

(4) Lai, N. L.; Kwok, K. Y.; Wang, X.-h.; Yamashita, N.; Liu, G.; Leung, K. M.; Lam, P. K.; Lam, J. C. Assessment of Organophosphorus Flame Retardants and Plasticizers in Aquatic Environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). J. Hazard. Mater. 2019, 371, 288-294.

(5) Bollmann, U. E.; Möller, A.; Xie, Z.; Ebinghaus, R.; Einax, J. W. Occurrence and Fate of Organophosphorus Flame Retardants and Plasticizers in Coastal and Marine Surface Waters. Water Res. 2012, 46 (2), 531-538.

(6) Anderson, D. M.; Hoagland, P.; Kaoru, Y.; White, A. W. Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States. 2000.

(7) Conley, D. J.; Paerl, H. W.; Howarth, R. W.; Boesch, D. F.; Seitzinger, S. P.; Havens, K. E.; Lancelot, C.; Likens, G. E. Controlling Eutrophication: Nitrogen and Phosphorus. AAAS: 2009; Vol. 323, pp 1014-1015.

(8) Schindler, D. W.; Hecky, R. E.; Findlay, D.; Stainton, M.; Parker, B.; Paterson, M.; Beaty, K.; Lyng, M.; Kasian, S. Eutrophication of Lakes cannot be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. PNAS 2008, 105 (32), 11254-11258.

(9) Elias, J. S.; Costentin, C.; Nocera, D. G. Direct Electrochemical P (V) to P (III) Reduction of Phosphine Oxide Facilitated by Triaryl Borates. J. Am. Chem. Soc. 2018, 140 (42), 13711-13718.

(10) van Kalkeren, H. A.; van Delft, F. L.; Rutjes, F. P. Organophosphorus Catalysis to Bypass Phosphine Oxide Waste. ChemSusChem 2013, 6 (9), 1615-1624.

(11) Kepp, K. P. A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg. Chem. 2016, 55 (18), 9461-9470.

(12) Zhang, J.-Q.; Han, L.-B. Beyond Triphenylphosphine: Advances on the Utilization of Triphenylphosphine Oxide. J. Org. Chem. 2024.

(13) Berezin, A. Birefringence and Polarized Luminescence of a Manganese (ii) Chloride–Triphenylphosphine Oxide Compound: Application in LEDs and Photolithography. Mater. Chem. Front. 2023, 7 (12), 2475-2483.

(14) Mitsunobu, O.; Yamada, M. Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. BCSJ 1967, 40 (10), 2380-2382.

(15) Mitsunobu, O.; Eguchi, M. Preparation of Carboxylic Esters and Phosphoric Esters by The Activation of Alcohols. BCSJ 1971, 44 (12), 3427-3430.

(16) Mitsunobu, O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synth. 1981, 1981 (01), 1-28.

(17) Hughes, D. L. Progress in the Mitsunobu Reaction. A Review. OPPI 1996, 28 (2), 127-164.

(18) Hughes, D.; Reamer, R.; Bergan, J.; Grabowski, E. A Mechanistic Study of the Mitsunobu Esterification Reaction. J. Am. Chem. Soc. 1988, 110 (19), 6487-6491.

(19) Hughes, D. L. The Mitsunobu Reaction. Org. react. 2004, 42, 335-656.

(20) von Itzstein, M.; Jenkins, I. D. The Mechanism of the Mitsunobu Reaction. II. Dialkoxytriphenylphosphoranes. Aust. J. Chem. 1983, 36 (3), 557-563.

(21) Harvey, P. J.; von Itzstein, M.; Jenkins, I. D. The Formation of Anhydrides in the Mitsunobu Reaction. Tetrahedron 1997, 53 (11), 3933-3942.

(22) Watanabe, T.; Gridnev, I. D.; Imamoto, T. Synthesis of a New Enantiomerically Pure P‐Chiral Phosphine and Its Use in Probing the Mechanism of the Mitsunobu Reaction. Chirality 2000, 12 (5‐6), 346-351.

(23) McNulty, J.; Capretta, A.; Laritchev, V.; Dyck, J.; Robertson, A. J. DimethylmalonyltrialkylphosphOranes: New General Reagents for Esterification Reactions Allowing Controlled Inversion or Retention of Configuration on Chiral Alcohols. J. Org. Chem. 2003, 68 (4), 1597-1600.

(24) Castro, B. R. Replacement of Alcoholic Hydroxyl Groups by Halogens and Other Nucleophiles via Oxyphosphonium Intermediates. Org. React. 2004, 29, 1-162.

(25) Nune, S. K. Mitsunobu Reagent [Triphenyl-Phosphine (TPP) and Diethyl Azodi-Carboxylate (DEAD)/Diisopropyl Azodicarboxylate (DIAD)]. Synlett 2003, 2003 (08), 1221-1222.

(26) Dandapani, S.; Curran, D. P. Separation‐Friendly Mitsunobu Reactions: A Microcosm of Recent Developments in Separation Strategies. Chem. Eur. J. 2004, 10 (13), 3130-3138.

(27) Dembinski, R. Recent Advances in the Mitsunobu Reaction: Modified Reagents and the Quest for Chromatography‐Free Separation. EurJOC 2004, 2004 (13), 2763-2772.

(28) Wiśniewski, K.; Kołdziejczyk, A. S.; Falkiewicz, B. Applications of the Mitsunobu Reaction in Peptide Chemistry. PSC 1998, 4 (1), 1-14.

(29) Parenty, A.; Moreau, X.; Campagne, J.-M. Macrolactonizations in the Total Synthesis of Natural Products. Chem. Rev. 2006, 106 (3), 911-939.

(30) Ahn, C.; Correia, R.; DeShong, P. Mechanistic Study of the Mitsunobu Reaction. J. Org. Chem. 2002, 67 (6), 1751-1753.

(31) Guanti, G.; Banfi, L.; Basso, A.; Bevilacqua, E.; Bondanza, L.; Riva, R. Efficient Chemoenzymatic Enantioselective Synthesis of Diacylglycerols (DAG). Tetrahedron: Asymmetry 2004, 15 (18), 2889-2892.

(32) Shi, Y.-J.; Hughes, D. L.; McNamara, J. M. Stereospecific Synthesis of Chiral Tertiary Alkyl-Aryl Ethers via Mitsunobu Reaction with Complete Inversion of Configuration. Tetrahedron lett. 2003, 44 (18), 3609-3611.

(33) Schenk, S.; Weston, J.; Anders, E. Density Functional Investigation of the Mitsunobu Reaction. J. Am. Chem. Soc. 2005, 127 (36), 12566-12576.

(34) Fitzjarrald, V. P.; Pongdee, R. A Convenient Procedure for the Esterification of Benzoic Acids with Phenols: a New Application for the Mitsunobu Reaction. Tetrahedron lett. 2007, 48 (20), 3553-3557.

(35) Dodge, J. A.; Trujillo, J. I.; Presnell, M. Effect of the Acidic Component on the Mitsunobu Inversion of A Sterically Hindered Alcohol. J. Org. Chem. 1994, 59 (1), 234-236.

(36) But, T. Y. S.; Toy, P. H. The Mitsunobu Reaction: Origin, Mechanism, Improvements, and Applications. Chem. Asian J. 2007, 2 (11), 1340-1355.

(37) Swamy, K. K.; Kumar, N. B.; Balaraman, E.; Kumar, K. P. Mitsunobu and Related Reactions: Advances and Applications. Chemical reviews 2009, 109 (6), 2551-2651.

(38) Wittig, G.; Geissler, G. Zur Reaktionsweise des Pentaphenyl‐phosphors und einiger Derivate. Justus Liebigs Ann. Chem. 1953, 580 (1), 44-57.

(39) Staudinger, H.; Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta 1919, 2, 635-646.

(40) Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage. Angew. Chem., Int. Ed. Engl. 1975, 14 (12), 801-811.

(41) Corey, E.; Fuchs, P. A Synthetic Method for Formyl→ Ethynyl Conversion. Tetrahedron Lett. 1972, 13 (36), 3769-3772.

(42) Fletcher, S. The Mitsunobu Reaction in the 21 st Century. Org. Chem. Front. 2015, 2 (6), 739-752.

(43) Beddoe, R. H.; Sneddon, H. F.; Denton, R. M. The Catalytic Mitsunobu Reaction: a Critical Analysis of the Turrent State-of-the-Art. OBC 2018, 16 (42), 7774-7781.

(44) Tamboli, Y.; Kashid, B. B.; Yadav, R. P.; Rafeeq, M.; Yeole, R.; Merwade, A. Y. Triphenylphosphine Oxide Removal from Reactions: The Role of Solvent and Temperature. ACS Omega 2021, 6 (21), 13940-13945.

(45) Hergueta, A. R. Easy Removal of Triphenylphosphine Oxide from Reaction Mixtures by Precipitation with CaBr2. OPR&D 2022, 26 (6), 1845-1853.

(46) Lee, T.; Kuo, C.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. Int. 2006, 30 (10).

(47) Grosse Daldrup, J.-B.; Held, C.; Ruether, F.; Schembecker, G.; Sadowski, G. Measurement and Modeling Solubility of Aqueous Multisolute Amino-Acid Solutions. Ind. Eng. Chem. Res. 2010, 49 (3), 1395-1401.

(48) Gimeno, P.; Bousquet, C.; Lassu, N.; Maggio, A.-F.; Civade, C.; Brenier, C.; Lempereur, L. High-Performance Liquid Chromatography Method for the Determination of Hydrogen Peroxide Present or Released in Teeth Bleaching Kits and Hair Cosmetic Products. JPBA 2015, 107, 386-393.

(49) Deacon, G.; Green, J. Vibrational Spectra of Ligands and Complexes—II Infra-Red Spectra (3650–375 cm− 1 of Triphenyl-Phosphine, Triphenylphosphine Oxide, and Their Complexes. SAA 1968, 24 (7), 845-852.

(50) Hu, F.-H.; Wang, L.-S.; Cai, S.-F. Solubilities of Triphenylphosphine Oxide in Selected Solvents. JCED 2009, 54 (4), 1382-1384.

(51) Horrocks, A.; Davies, P.; Kandola, B. K.; Alderson, A. The Potential for Volatile Phosphorus-Containing Flame Retardants in Textile Back-Coatings. J. Fire Sci. 2007, 25 (6), 523-540.

(52) Xu, S.; Wang, H. A New Entrainer for Separation of Tetrahydrofuran–Water Azeotropic Mixture by Extractive Distillation. Chem. Eng. Process. 2006, 45 (11), 954-958.

(53) Tsunoda, T.; Kaku, H.; Itô, S. New Mitsunobu Reagents. Tcimail: 2004.

(54) Lee, T.; Lin, M. S. Sublimation Point Depression of Tris (8-hydroxyquinoline) Aluminum (III)(Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7 (9), 1803-1810.
指導教授 李度(Tu Lee) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明