博碩士論文 111324043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.138.124.167
姓名 江瑞恆(Jui-Heng Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 深共熔溶劑L-精氨酸鹽酸鹽/甘油之二氧化碳溶解度量測
(Measurement of Carbon Dioxide Solubility in Deep Eutectic Solvent L-Arginine Hydrochloride/Glycerol)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-10-16以後開放)
摘要(中) 二氧化碳是一種對環境有害的溫室氣體,是全球變暖的主要因素。因此從工業源點去除二氧化碳至關重要。胺類溶劑為工業上廣泛應用於從煙氣中去除二氧化碳的吸收劑,然而這些溶劑存在著缺點,胺類溶劑具有腐蝕性、揮發性、生物降解性低以及溶劑再生的高耗能等特性。深共熔溶劑近年被視為二氧化碳捕捉中有前途的替代吸收劑。深共熔溶劑是由兩種或多種純化合物組成,包括氫鍵受體和氫鍵供體,其共熔點溫度低於理想液態混合物的溫度。這類溶劑具有可忽略的蒸氣壓、高熱穩定性、低成本、良好可再生性、低毒性、且具有調節性,可以透過調整陰陽離子的比例改變物化性質。此外,它們製備過程相對簡單。
L-精氨酸是一種無毒、生物可降解且環保的天然產品,部分文獻中報導到精氨酸對二氧化碳捕捉有顯著的效果;而甘油在石油工業中被視為廢物,其產量超過需求量,利用甘油是一種環保的甘油回收方式。本研究選擇L-精氨酸鹽酸鹽/甘油作為目標DES,對比文獻,觀察氫鍵受體的改變對吸收量以及基本物理性質的影響,調查L-精氨酸鹽酸鹽/甘油的物理性質,包括凝固點、密度、黏度等特性。同時,量測了在不同莫耳比、不同溫度、不同含水量L-精氨酸鹽酸和甘油對二氧化碳的吸收情況。根據量測結果,莫耳比1:9 (L-ArgHCl:Gly) 在70°C的環境下能得到最大的吸收量,其溶解度為0.754 mol_(CO_2 )/mol_DES。此外,也進行了DES的再生實驗。透過傅立葉變換紅外光譜、核磁共振(氫譜、碳譜),研究了DES與二氧化碳的相互作用機制。
摘要(英) Carbon dioxide (CO2) is a harmful greenhouse gas and a major contributor to global warming. Therefore, removing CO2 from industrial point sources is crucial. Amine solvents are widely used in industry for CO2 removal from flue gas; however, these solvents have significant drawbacks, including corrosiveness, volatility, low biodegradability, and high energy consumption for regeneration. In recent years, deep eutectic solvents (DES) have emerged as promising alternative absorbents for CO2 capture. DESs are composed of two or more purified compounds, including hydrogen-bond acceptors (HBA) and hydrogen-bond donors (HBD), with a eutectic point temperature lower than that of an ideal liquid mixture. These solvents exhibit negligible vapor pressure, high thermal stability, low cost, good regenerability, low toxicity, and tunable properties, which can be adjusted by varying the ratio of the ions. Additionally, they are relatively simple to prepare.
L-arginine is a natural, non-toxic, biodegradable, and environmentally friendly product, with several studies reporting its significant effectiveness in CO2 capture. Glycerol, often considered waste in the petroleum industry due to its surplus, presents an eco-friendly option for recovery. This study selected L-arginine hydrochloride/glycerol as the target deep eutectic solvent (DES) and, by comparing it with the literature, aimed to observe how changes in the hydrogen bond acceptor affect absorption capacity and basic physical properties. The physical properties of L-arginine hydrochloride/glycerol, including freezing point, density, and viscosity, were thoroughly examined. CO2 absorption was measured under varying molar ratios, temperatures, and water contents. The 1:9 DES at 70°C exhibited the highest solubility, reaching 0.754 mol_CO2/mol_DES. Additionally, regeneration experiments were performed on the DES. The interaction mechanism between DES and CO2 was explored using FTIR, 1H NMR, and 13C NMR.
關鍵字(中) ★ 深共熔溶劑
★ 二氧化碳捕捉
★ 二氧化碳溶解度
★ L-精氨酸鹽酸鹽
★ 甘油
關鍵字(英) ★ Deep Eutectic Solvent
★ Carbon Capture
★ Carbon Dioxide Solubility
★ L-Arginine Hydrochloride
★ Glycerol
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章、序論 1
1-1 氣候變遷的原因與二氧化碳捕獲與封存的重要性 1
1-2 二氧化碳捕獲技術 3
1-3 工業上二氧化碳分離技術 8
1-3-1. 吸收(Absorption): 8
1-3-2. 薄膜(Membranes): 10
1-3-3. 吸附(Adsorption): 11
1-3-4. 低溫二氧化碳分離法(Cryogenic Method): 12
1-3-5. 化學鏈燃燒法(Chemical Looping Combustion Method): 12
1-3-6. 鈣循環 (Calcium Looping): 13
1-4 深共熔溶劑(Deep Eutectic Solvents, DES) 15
1-4-1 深共熔溶劑種類 16
1-4-2 目前深共熔溶劑實際應用範圍 17
1-4-3 深共熔溶劑合成方式 20
1-4-4 深共熔溶劑之特性 20
1-4-5 常見之二氧化碳捕獲實驗裝置 25
1-5 研究動機 30
第二章、實驗方法 32
2-1 實驗藥品 32
2-2 實驗裝置 35
2-3 實驗步驟 37
2-3-1. 深共熔溶劑的製備: 37
2-3-2. 量測DES之吸收量: 38
2-3-3. 二氧化碳吸收與脫除循環/DES再生: 38
2-3-4. 深共熔溶劑之物理分析、吸收機制 39
2-4實驗分析儀器 40
2-4-1. 庫倫式水分儀 40
2-4-2. 熱重分析儀 40
2-4-3. 差式掃描量熱分析儀 41
2-4-5. 落球式黏度計 41
2-4-6. 傅立葉紅外先光譜儀 42
2-4-7. 核磁共振光譜儀 42
第三章、結果與討論 44
3-1 物理性質分析 44
3-1-1. 相圖 46
3-1-2. 密度 48
3-1-3. 黏度 51
3-2 深共熔溶劑之吸收實驗數據 54
3-2-1. 不同莫耳比、不同溫度對吸收的影響 54
3-2-2. 不同氫鍵受體的影響 57
3-2-3. 不同含水量對吸收的影響 58
3-2-4. 高溫下深共熔溶劑的揮發性 59
3-2-5. 吸收脫除實驗-深共熔溶劑再生 60
3-3 深共熔溶劑吸收機制 61
3-3-1. 深共熔溶劑吸收二氧化碳前後之FTIR分析結果 61
3-3-2. 深共熔溶劑吸收二氧化碳前後之1H NMR分析結果 62
3-3-3. 深共熔溶劑吸收二氧化碳前後之13C NMR分析結果 63
第四章、結論與未來展望 64
4-1 結論 64
4-2 未來展望 65
附錄一 67
附錄二 69
附錄三 70
參考文獻 73
?
參考文獻 [1] Shadfar Davoodi, Mohammed Al-Shargabi, David A. Wood, Valeriy S. Rukavishnikov,Konstantin M. Minaev, Review of Technological Progress in Carbon Dioxide Capture, Storage, and Utilization. Gas Science and Engineering 2023: 205070-205098.
[2] Ahmed I. Osman, Mahmoud Hefny, M. I. A. Abdel Maksoud, Ahmed M. Elgarahy,David W. Rooney, Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environmental Chemistry Letters 2021; 19: 797–849.
[3] Bartosz Dziejarski, Renata Krzyzy˙ nska,Klas Andersson, Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment. Fuel 2023; 342: 127776-127814.
[4] Abhishek Krishnan, Kannappan Panchamoorthy Gopinath, Dai?Viet N. Vo, Rajagopal Malolan, Vikas Madhav Nagarajan,J Arun, Ionic Liquids, Deep Eutectic Solvents and Liquid Polymers as Green Solvents in Carbon Capture Technologies: A Review. Environmental Chemistry Letters 2020; 18: 2031-2054.
[5] Aseem Dubey,A Arora, Advancements in Carbon Capture Technologies: A Review. Journal of Cleaner Production 2022; 373: 133932-133950.
[6] Esmeralda Portillo, Bernabe Alonso-Farinas, Fernando Vega, Mercedes Cano,Benito Navarrete, Alternatives for Oxygen-selective Membrane Systems and their Integration into the Oxy-fuel Combustion Process: A Review. Separation and Purification Technology 2019; 229: 115708-115722.
[7] S Rackley, Carbon Capture and Storage, Published, Butterworth-Heinemann Press, 2017.
[8] Helene Lepaumier, Sandrine Martin, Dominique Picq, Bruno Delfort,P-L Carrette, New Amines for CO2 Capture. III. Effect of Alkyl Chain Length between AmineFunctions on Polyamines Degradation. Industrial & Engineering Chemistry Research 2010; 49: 4553-4560.
[9] Anindo Dey,Adisorn Aroonwilas, CO2 Absorption into MEA-AMP Blend: Mass Transfer and Absorber Height index. Energy Procedia 2009; 1: 211-215.
[10] Yiyi Li, Xuelei Duan, Weiguo Song, Linge Maa,Jinder Jow, Reaction Mechanisms of Carbon Dioxide Capture by Amino Acid Salt and Desorption by Heat or Mineralization. Chemical Engineering Journal 2021; 405: 126938-126951.
[11] M. Wang, A. Lawal, P. Stephenson, J. Sidders,C Ramshaw, Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art Review. chemical engineering research and design 2011; 89: 1609-1624.
[12] Husain E. Ashkanani, Rui Wang, Wei Shi, Nicholas S. Siefert, Robert L. Thompson, Kathryn Smith, et al., Levelized Cost of CO2 Captured Using Five Physical Solvents in Pre-combustion Applications. International Journal of Greenhouse Gas Control 2020; 101: 103135-103153.
[13] David Berstad, Rahul Anantharaman,P Neksa, Low-temperature CO2 Capture Technologies: Applications and Potential. International Journal of Refrigeration 2013; 36: 1403-1416.
[14] HJ Richter,K Knoche, Reversibility of Combustion Processes. ACS Symposium Series 1983; 235: 71-85.
[15] Jian Chen, Lunbo Duan,Z Sun, Review on the Development of Sorbents for Calcium Looping. Energy & Fuels 2020; 34: 7806-7836.
[16] Rui Han, Yang Wang, Shuang Xing, Caihong Pang, Yang Hao, Chunfeng Song, et al., Progress in Reducing Calcination Reaction Temperature of Calcium-Looping CO2 capture Technology: A Critical Review. Chemical Engineering Journal 2022; 450: 137952-137966.
[17] S Bachu, Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control 2015; 40: 188-202.
[18] R Kohli, Applications of Ionic Liquids in Removal of Surface Contaminants, Published, 2019.
[19] Benworth B. Hansen, Stephanie Spittle, Brian Chen, Derrick Poe, Yong Zhang, Jeffrey M. Klein, et al., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews 2021; 121: 1232-1285.
[20] GC Andrew P. Abbott, David L. Davies, Raymond K. Rasheed, Vasuki Tambyrajah, Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chemical Communications 2003: 70-71.
[21] Aunie Afifah Abdul Mutalib,Nur Farhana Jaafar, Potential of Deep Eutectic Solvent in Photocatalyst Fabrication Methods for Water Pollutant Degradation: A Review. Journal of Environmental Chemical Engineering 2022; 10: 107422-107442.
[22] Xin Xiong Chang, Nabisab Mujawar Mubarak, Shaukat Ali Mazari, Abdul Sattar Jatoi, Awais Ahmad, Mohammad Khalid, et al., A Review on the Properties and Applications of Chitosan, Cellulose and Deep Eutectic Solvent in Green Chemistry. Journal of Industrial and Engineering Chemistry 2021; 104: 362-380.
[23] ES Jun Cao, Hydrophobic Deep Eutectic Solvents: the New Generation of Green Solvents for Diversified and Colorful Applications in Green Chemistry Journal of Cleaner Production 2021; 314: 127965-127995.
[24] GC Andrew P. Abbott , Katy J. McKenzie, Karl S. Ryder, Electrodeposition of Zinc–Tin Alloys from Deep Eutectic Solvents Based on Choline Chloride. Journal of Electroanalytical Chemistry 2007; 599: 288-294.
[25] KJM Andrew P. Abbott*, and Karl S. Ryder, Electropolishing and Electroplating of Metals Using Ionic Liquids Based on Choline Chloride ACS Symposium Series 2007; 975: 186-197.
[26] E. Gomez, P. Cojocaru, L. Magagnin,E Valles, Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry 2011; 658: 18-24.
[27] Davide Di Marinoa, Marwan Shalabya, Stefanie Krieschera,M Wessling, Corrosion of Metal Electrodes in Deep Eutectic Solvents. Electrochemistry Communications 2018; 90: 101-105.
[28] Aure’lien Boisset, Sebastian Menne, Johan Jacquemin, Andrea Balducci,Mrm Anouti, Deep Eutectic Solvents Based on N-methylacetamide and a Lithium Salt as Suitable Electrolytes for Lithium-ion Batteries. Physical Chemistry Chemical Physics 2013; 15: 20054-20063.
[29] Henry G. Morrisona, Changquan C. Sun,S Neervannan, Characterization of Thermal Behavior of Deep Eutectic Solvents and their Potential as Drug Solubilization Vehicles. International Journal of Pharmaceutics 2009; 378: 136-139.
[30] AR Susana ROMERO, Begona ESCALERA, Pilar BUSTAMANTE, The Behavior of Paracetamol in Mixtures of Amphirotic and Amphiprotic-Aprotic Solvents. Relationship of Solubility Curves to Specific and Nonspecific Interactions. Chemical and Pharmaceutical Bulletin 1996; 44: 1061-1064.
[31] Edgar A. Ahumada, Daniel R. Delgado,F Martinez, Solubility of Acetaminophen in Polyethylene Glycol 400 + Water Mixtures According to the Extended Hildebrand Solubility Approach. Revista Colombiana de Quimica 2012; 41: 433-448.
[32] SA Gregorio Garcia, Ruh Ullah, and Mert Atilhan, Deep Eutectic Solvents: Physicochemical Properties and GasSeparation Applications. Energy & Fuels 2015; 29: 2616-2644.
[33] David Lapena, Diego Errazquin, Laura Lomba, Carlos Lafuente,B Giner, Ecotoxicity and Biodegradability of Pure and Aqueous Mixtures of Deep Eutectic Solvents: Glyceline, Ethaline, and Reline. Environmental Science and Pollution Research 2021; 28: 8812-8821.
[34] Kristina Rado?evi?, Marina Cvjetko Bubalo, Vi?nje Gaurina Sr?ek, Dijana Grgas, Tibela Landeka Dragi?evi?,IR Redovnikovi?, Evaluation of Toxicity and Biodegradability of Choline Chloride Based Deep Eutectic Solvents. Ecotoxicology and Environmental Safety 2015; 112: 46-53.
[35] Oliver S. Hammond, Daniel T. Bowron,KJ Edler, Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Neutron Diffraction and Atomistic Modelling. Green Chemistry 2016; 18: 2736-2744.
[36] Sergey P. Verevkin, Aleksandra Yu. Sazonova, Alla K. Frolkova, Dzmitry H. Zaitsau, Igor V. Prikhodko,C Held, Separation Performance of BioRenewable Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2015; 54: 3498-3504.
[37] GN Wang, Y Dai, XB Hu, F Xiao, YT Wu, ZB Zhang, et al., Novel Ionic Liquid Analogs formed by Triethylbutylammonium Carboxylate-Water Mixtures for CO2 Absorption. Journal of Molecular Liquids 2012; 168: 17-20.
[38] Mohd Belal Haider, Divyam Jha, Balathanigaimani Marriyappan Sivagnanam,R Kumar, Modelling and Simulation of CO2 Removal from Shale Gas Using Deep Eutectic Solvents. Journal of Environmental Chemical Engineer 2019; 7: 102747-102755.
[39] C. Florindo, F. S. Oliveira, L. P. N. Rebelo, Ana M. Fernandes,IM Marrucho, Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustainable Chemistry & Engineering 2014; 2: 2416-2425.
[40] K. Shahbaz, F.S. Mjalli, M.A. Hashim,IM AlNashe, Eutectic Solvents for the Removal of Residual Palm Oil-based Biodiesel Catalyst. Separation and Purification Technology 2011; 81: 216-222.
[41] Sudhir Ravula, ORCID, Nathaniel E. Larm, MPH Mohammad A. Mottaleb,GA Baker, Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 2019; 3: 42-53.
[42] G Pimentel, The Hydrogen Bond. 1960, WH Freeman and Company, London.
[43] G Jeffrey, An Introduction to Hydrogen Bonding. 1997, Oxford University Press.
[44] Bartosz Nowosielski, Marzena Jamrogiewicz, Justyna ?uczak, Maciej ?miechowski,D Warmi?sk, Experimental and Predicted Physicochemical Properties of Monopropanolamine-based Deep Eutectic Solvents. Journal of Molecular Liquids 2020; 309: 113110-113121.
[45] Reza Haghbakhsh, Sona Raeissi,ARC Duarte, Group Contribution and Atomic Contribution Models for the Prediction of Various Physical Properties of Deep Eutectic Solvents. Scientifc Reports 2021; 11: 6684.
[46] Y Marcus,Y Marcus, Deep Eutectic Solvents in Extraction and Sorption Technology. Deep Eutectic Solvents 2019: 153-183.
[47] C. Florindo, A. J. S. McIntosh, cLCB T. Welton,IM Marrucho, A Closer Look into Deep Eutectic Solvents: Exploring Intermolecular Interactions Using Solvatochromic Probes. Phys. Chem. Chem. Phys. 2017; 20: 206-213.
[48] Andrew P. Abbott, Robert C. Harris, Karl S. Ryder, Carmine D’Agostino, Lynn F. Gladdenb,MD Mantle, Glycerol Eutectics as Sustainable Solvent Systems. Green Chemistry 2011; 13: 82-90.
[49] Zhaofu Zhang, Weize Wu, Zhimin Liu, Buxing Han, Haixiang Gao,T Jiang, A Study of Tri-phasic Behavior of Ionic Liquid–methanol–CO2 Systems at Elevated Pressures. Physical Chemistry Chemical Physics 2004; 6: 2352-2357.
[50] Xiaoyong Li, Minqiang Hou, Buxing Han, Xiaoling Wang,L Zou, Solubility of CO2 in a Choline Chloride+Urea Eutectic Mixture. Journal of Chemical & Engineering Data 2008; 53: 548-550.
[51] Y Chen, N Ai, G Li, H Shan, Y Cui,D Deng, Solubilities of Carbon Dioxide in Eutectic Mixtures of Choline Chloride and Dihydric Alcohols. Journal of Chemical & Engineering Data 2014; 59: 1247-1253.
[52] D Deng, Y Chen, Y Cui, G Li,N Ai, Low Pressure Solubilities of CO2 in Five Fatty Amine Polyoxyethylene Ethers. The Journal of Chemical Thermodynamics 2014; 72: 89-93.
[53] D Deng, Y Cui, D Chen,N Ai, Solubility of CO2 in amide-based Bronsted acidic ionic liquids. The Journal of Chemical Thermodynamics 2013; 57: 355-359.
[54] D Deng, G Han, Y Jiang,N Ai, Solubilities of Carbon Dioxide in Five Biobased Solvents. Journal of Chemical & Engineering Data 2014; 60: 104-111.
[55] X Deng, X Duan, L Gong,D Deng, Ammonia Solubility, Density, and Viscosity of Choline Chloride–Dihydric Alcohol Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2020; 65: 4845-4854.
[56] X Duan, B Gao, C Zhang,D Deng, Solubility and Thermodynamic Properties of NH3 in Choline Chloride-Based Deep Eutectic Solvents. The Journal of Chemical Thermodynamics 2019; 133: 79-84.
[57] MB Haider, Z Hussain,R Kumar, CO2 Absorption and Kinetic Study in Ionic Liquid Amine Blends. Journal of Molecular Liquids 2016; 224: 1025-1031.
[58] MB Haider, D Jha, R Kumar,B Marriyappan Sivagnanam, Ternary Hydrophobic Deep Eutectic Solvents for Carbon Dioxide Absorption. International Journal of Greenhouse Gas Control 2020; 92: 102839-102849.
[59] Mohd Belal Haider, Divyam Jha, Balathanigaimani Marriyappan Sivagnanam,R Kumar, Thermodynamic and Kinetic Studies of CO2 Capture by Glycol and Amine-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2018; 63: 2671-2680.
[60] XH Zhen Song, Hongyi Wu, Mingcan Mei, Steffen Linke, Teng Zhou, Zhiwen Qi, Kai Sundmacher, Systematic Screening of Deep Eutectic Solvents as Sustainable Separation Media Exemplified by the CO2 Capture Process. ACS Sustainable Chemistry & Engineering 2020; 8: 8741-8751.
[61] HC Jingwen Wang, Zhen Song, Lifang Chen, Liyuan Deng, Zhiwen Q, Carbon Dioxide Solubility in Phosphonium-Based Deep Eutectic Solvents: An Experimental and Molecular Dynamics Study. Industrial & Engineering Chemistry Research 2019; 58: 17514-17523.
[62] Jun Li, Lifang Chen, Yinmei Ye,Z Qi, Solubility of CO2 in the Mixed Solvent System of Alkanolamines and Poly(ethylene glycol) 200. Journal of Chemical & Engineering Data 2014; 59: 1781-1787.
[63] MKH-K Emad Ali, Sarwono Mulyono, Inas Alnashef, Anis Fakeeha, Farouq Mjalli , Adeeb Hayyan, Solubility of CO2 in Deep Eutectic Solvents: Experiments and Modelling Using the Peng–Robinson Equation of State. 2014; 92: 1891-1906.
[64] Nouman Rafique Mirza, Nathan J. Nicholas, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish,GW Stevens, Experiments and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Three Different Deep Eutectic Solvents (DESs). J. Chem. Eng. Data 2015; 60: 3246-3252.
[65] Rima J. Isaifan,A Amhamed, Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents. Advances in Chemistry 2018: 2675659.
[66] AC Rhoda B. Leron, Meng-Hui Li, Carbon Dioxide Solubility in a Deep Eutectic Solvent based on Choline Chloride and Urea at T=303.15–343.15 K and Moderate Pressures. Journal of the Taiwan Institute of Chemical Engineers 2013; 44: 879-885.
[67] Allan N. Soriano, Bonifacio T. Doma, Jr.,M-H Li, Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data 2008; 53: 2550-2555.
[68] Rhoda B. Leron,M-H Li, Solubility of Carbon Dioxide in a Choline Chloride–Ethylene Glycol based Deep Eutectic Solvent. Thermochimica Acta 2013; 551: 14-19.
[69] Rhoda B. Leron,M-H Li, Solubility of Carbon Dioxide in a Eutectic Mixture of Choline Chloride and Glycerol at Moderate Pressures. The Journal of Chemical Thermodynamics 2013; 57: 131-136.
[70] Tushar J. Trivedi, Ji Hoon Lee, Hyeon Jeong Lee, You Kyeong Jeong,JW Choi, Deep Eutectic Solvents as Attractive Media for CO2 Capture. Green Chemistry 2016; 18: 2834-2842.
[71] Xiao Liang Yuan, Suo Jiang Zhang,XM Lu, Hydroxyl Ammonium Ionic Liquids: Synthesis, Properties, and Solubility of SO2. Journal of Chemical and Engineering Data 2007; 52: 596-599.
[72] Shaojuan Zeng, Hongshuai Gao, Xiaochun Zhang, Haifeng Dong, Xiangping Zhang,S Zhang, Efficient and Reversible Capture of SO2 by Pyridinium-based Ionic Liquids. Chemical Engineering Journal 2014; 251: 248-256.
[73] Jian Wang, Shaojuan Zeng, Lu Bai, Hongshuai Gao, Xiangping Zhang,S Zhang, Novel Ether-Functionalized Pyridinium Chloride Ionic Liquids for Efficient SO2 Capture. Industrial & Engineering Chemistry Research 2014; 53: 16832-16839.
[74] Kai Zhanga, Shuhang Rena, Yucui Houb,W Wu, Efficient Absorption of SO2 with Low-partial Pressures by Environmentally Benign Functional Deep Eutectic Solvents. Journal of Hazardous Materials 2016; 324: 457-463.
[75] Hongwei Ren, Shaohan Lian, Xue Wang, You Zhang,E Duan, Exploiting the Hydrophilic Role of Natural Deep Eutectic Solvents for Greening CO2 Capture. Journal of Cleaner Production 2018; 193: 802-810.
[76] Bin Jiang, Jingwen Ma, Na Yang, Zhaohe Huang, Na Zhang, Xiaowei Tantai, et al., Superbase/Acylamido-based Deep Eutectic Solvents for MultipleSite Efficient CO2 Absorption. Energy & Fuels 2019; 33: 7569-7577.
[77] Yanxue Gu, Yucui Hou, Shuhang Ren, Ying Sun,W Wu, Hydrophobic Functional Deep Eutectic Solvents Used for Efficient and Reversible Capture of CO2. ACS Omega 2020; 5: 6809-6816.
[78] Hong Yan, Lei Zhao, Yinge Bai, Fangfang Li, Haifeng Dong, Hui Wang, et al., Superbase Ionic Liquid-Based Deep Eutectic Solvents for Improving CO2 Absorption. ACS Sustainable Chemistry & Engineering 2020; 8: 2523-2530.
[79] WZ Yan Wang, Shuhang Ren, Yucui Hou, Weize Wu, Rapid Absorption and Desorption of CO2 by Deep Eutectic Solvents via Reversible CO2?Triggered Proton Transfer Process. ACS Sustainable Chem. Eng 2024; 12: 3987-3995.
[80] YL Hongwei Ren, Ruoyao Zhang, Tengda Zhao, Jing Han, Zhiyang Zheng,Erhong Duan, Investigation of the CO2 Capture Behavior in Multiple-site Natural Deep Eutectic Solvents Process Safety and Environmental Protection 2023; 172: 136-143.
[81] Leonhard L. Sze, Shubha Pandey, Sudhir Ravula, Siddharth Pandey, Hua Zhao, Gary A. Baker, et al., Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustainable Chemistry & Engineering 2014; 2: 2117-2123.
[82] Shashi Kant Shukla,J-P Mikkola, Intermolecular Interactions upon Carbon Dioxide Capture in Deep-Eutectic Solvents. Physical Chemistry Chemical Physics 2018; 20: 24591-24601.
[83] Lingwan Hao, Meiri Wang, Wenjuan Shan, Changliang Deng, Wanzhong Ren, Zhouzhou Shi, et al., L-Proline-based Deep Eutectic Solvents (DESs) for Deep Catalytic Oxidative Desulfurization (ODS) of Diesel. Journal of Hazardous Materials 2017; 339: 216-222.
[84] Fareeda Chemata, Nirmala Gnanasundaramb, Azmi Mohd Shariffa,T Murugesan, Effect of L-arginine on Solubility of CO2 in Choline Chloride + Glycerol Based Deep Eutectic Solvents Procedia Engineering 2016; 148: 236-242.
[85] Iwona Cichowska-Kopczy ’nska, Bartosz Nowosielski,DW ’nska, Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules 2023; 28.
[86] E. Aytunga Ar?k Kibar,F Us, Thermal, Mechanical and Water Adsorption Properties of Corn Starch–Carboxymethylcellulose/Methylcellulose Biodegradable Films. Journal of Food Engineering 2013; 114: 123-131.
[87] Kalyan Sou, Keiko Nishikawa, Yoshikata Koga,K-i Tozaki, High-resolution Calorimetry on Thermal Behavior of Glycerol (I): Glass Transition, Crystallization and Melting, and Discovery of a Solid–Solid Transition. Chemical Physics Letters 2011; 506: 217-220.
[88] Karzan A. Omar,R Sadeghi, Physicochemical Properties of Deep Eutectic Solvents: A Review. Journal of Molecular Liquids 2022; 360.
[89] Iwona Cichowska-Kopczy ’nska, Bartosz Nowosielski,DW ’nska, Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules 2023; 28: 5293.
[90] Shaojuan Zeng, Xiaochun Zhang, Hongshuai Gao, Hongyan He, Xiangping Zhang,S Zhang, SO2?Induced Variations in the Viscosity of Ionic Liquids Investigatedby in Situ Fourier Transform Infrared Spectroscopy and Simulation Calculations. Industrial & Engineering Chemistry Research 2015; 54: 10854-10862.
[91] Congmin Wang, Xiaoyan Luo, Huimin Luo, De-en Jiang, Haoran Li,S Dai, Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture. Angewandte Chemie International Edition 2011; 50: 4918-4922.
[92] Ana Roda, Filipa Santos, Yeong Zen Chua, Aarti Kumar, Hoang Tam Do, Alexandre Paiva, et al., Unravelling the Nature of Citric Acid: L-arginine: Water Mixtures: the Bifunctional Role of Water. Physical Chemistry Chemical Physics 2021; 23: 1706-1717.
[93] Noemi Delgado-Mellado, Marcos Larriba, Pablo Navarro, Victoria Rigual, Miguel Ayuso, Julian Garcia, et al., Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. Journal of Molecular Liquids 2018; 260: 37-43.
[94] Nanda MR, Yuan Z, Qin W, Poirier MA,C X, Purification of Crude Glycerol Using Acidification: Effects of Acid Types and Product Characterization. Austin Journal of Chemical Engineering 2014; 1: 7.
[95] Heejun Park, Hye Jin Seo, Eun-Sol Ha, Seung-hyeon Hong, Jeong-Soo Kim, Min-Soo Kima, et al., Preparation and Characterization of Glimepiride Eutectic Mixture with Larginine for Improvement of Dissolution Rate. International Journal of Pharmaceutics 2020; 581: 119288.
[96] Avneet Kaur, Ranjana Prakash,A Ali, 1H NMR Assisted Quantification of Glycerol Carbonate in the Mixture of Glycerol and Glycerol Carbonate. Talanta 2018; 178: 1001-1005.
[97] Shuhang Ren, Yucui Hou, Weize Wu,W Liu, Puri?cation of Ionic Liquids: Sweeping Solvents by Nitrogen. Journal of Chemical & Engineering Data 2010; 55: 5074-5077.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2024-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明