參考文獻 |
[1] Shadfar Davoodi, Mohammed Al-Shargabi, David A. Wood, Valeriy S. Rukavishnikov,Konstantin M. Minaev, Review of Technological Progress in Carbon Dioxide Capture, Storage, and Utilization. Gas Science and Engineering 2023: 205070-205098.
[2] Ahmed I. Osman, Mahmoud Hefny, M. I. A. Abdel Maksoud, Ahmed M. Elgarahy,David W. Rooney, Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environmental Chemistry Letters 2021; 19: 797–849.
[3] Bartosz Dziejarski, Renata Krzyzy˙ nska,Klas Andersson, Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment. Fuel 2023; 342: 127776-127814.
[4] Abhishek Krishnan, Kannappan Panchamoorthy Gopinath, Dai?Viet N. Vo, Rajagopal Malolan, Vikas Madhav Nagarajan,J Arun, Ionic Liquids, Deep Eutectic Solvents and Liquid Polymers as Green Solvents in Carbon Capture Technologies: A Review. Environmental Chemistry Letters 2020; 18: 2031-2054.
[5] Aseem Dubey,A Arora, Advancements in Carbon Capture Technologies: A Review. Journal of Cleaner Production 2022; 373: 133932-133950.
[6] Esmeralda Portillo, Bernabe Alonso-Farinas, Fernando Vega, Mercedes Cano,Benito Navarrete, Alternatives for Oxygen-selective Membrane Systems and their Integration into the Oxy-fuel Combustion Process: A Review. Separation and Purification Technology 2019; 229: 115708-115722.
[7] S Rackley, Carbon Capture and Storage, Published, Butterworth-Heinemann Press, 2017.
[8] Helene Lepaumier, Sandrine Martin, Dominique Picq, Bruno Delfort,P-L Carrette, New Amines for CO2 Capture. III. Effect of Alkyl Chain Length between AmineFunctions on Polyamines Degradation. Industrial & Engineering Chemistry Research 2010; 49: 4553-4560.
[9] Anindo Dey,Adisorn Aroonwilas, CO2 Absorption into MEA-AMP Blend: Mass Transfer and Absorber Height index. Energy Procedia 2009; 1: 211-215.
[10] Yiyi Li, Xuelei Duan, Weiguo Song, Linge Maa,Jinder Jow, Reaction Mechanisms of Carbon Dioxide Capture by Amino Acid Salt and Desorption by Heat or Mineralization. Chemical Engineering Journal 2021; 405: 126938-126951.
[11] M. Wang, A. Lawal, P. Stephenson, J. Sidders,C Ramshaw, Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art Review. chemical engineering research and design 2011; 89: 1609-1624.
[12] Husain E. Ashkanani, Rui Wang, Wei Shi, Nicholas S. Siefert, Robert L. Thompson, Kathryn Smith, et al., Levelized Cost of CO2 Captured Using Five Physical Solvents in Pre-combustion Applications. International Journal of Greenhouse Gas Control 2020; 101: 103135-103153.
[13] David Berstad, Rahul Anantharaman,P Neksa, Low-temperature CO2 Capture Technologies: Applications and Potential. International Journal of Refrigeration 2013; 36: 1403-1416.
[14] HJ Richter,K Knoche, Reversibility of Combustion Processes. ACS Symposium Series 1983; 235: 71-85.
[15] Jian Chen, Lunbo Duan,Z Sun, Review on the Development of Sorbents for Calcium Looping. Energy & Fuels 2020; 34: 7806-7836.
[16] Rui Han, Yang Wang, Shuang Xing, Caihong Pang, Yang Hao, Chunfeng Song, et al., Progress in Reducing Calcination Reaction Temperature of Calcium-Looping CO2 capture Technology: A Critical Review. Chemical Engineering Journal 2022; 450: 137952-137966.
[17] S Bachu, Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control 2015; 40: 188-202.
[18] R Kohli, Applications of Ionic Liquids in Removal of Surface Contaminants, Published, 2019.
[19] Benworth B. Hansen, Stephanie Spittle, Brian Chen, Derrick Poe, Yong Zhang, Jeffrey M. Klein, et al., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews 2021; 121: 1232-1285.
[20] GC Andrew P. Abbott, David L. Davies, Raymond K. Rasheed, Vasuki Tambyrajah, Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chemical Communications 2003: 70-71.
[21] Aunie Afifah Abdul Mutalib,Nur Farhana Jaafar, Potential of Deep Eutectic Solvent in Photocatalyst Fabrication Methods for Water Pollutant Degradation: A Review. Journal of Environmental Chemical Engineering 2022; 10: 107422-107442.
[22] Xin Xiong Chang, Nabisab Mujawar Mubarak, Shaukat Ali Mazari, Abdul Sattar Jatoi, Awais Ahmad, Mohammad Khalid, et al., A Review on the Properties and Applications of Chitosan, Cellulose and Deep Eutectic Solvent in Green Chemistry. Journal of Industrial and Engineering Chemistry 2021; 104: 362-380.
[23] ES Jun Cao, Hydrophobic Deep Eutectic Solvents: the New Generation of Green Solvents for Diversified and Colorful Applications in Green Chemistry Journal of Cleaner Production 2021; 314: 127965-127995.
[24] GC Andrew P. Abbott , Katy J. McKenzie, Karl S. Ryder, Electrodeposition of Zinc–Tin Alloys from Deep Eutectic Solvents Based on Choline Chloride. Journal of Electroanalytical Chemistry 2007; 599: 288-294.
[25] KJM Andrew P. Abbott*, and Karl S. Ryder, Electropolishing and Electroplating of Metals Using Ionic Liquids Based on Choline Chloride ACS Symposium Series 2007; 975: 186-197.
[26] E. Gomez, P. Cojocaru, L. Magagnin,E Valles, Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry 2011; 658: 18-24.
[27] Davide Di Marinoa, Marwan Shalabya, Stefanie Krieschera,M Wessling, Corrosion of Metal Electrodes in Deep Eutectic Solvents. Electrochemistry Communications 2018; 90: 101-105.
[28] Aure’lien Boisset, Sebastian Menne, Johan Jacquemin, Andrea Balducci,Mrm Anouti, Deep Eutectic Solvents Based on N-methylacetamide and a Lithium Salt as Suitable Electrolytes for Lithium-ion Batteries. Physical Chemistry Chemical Physics 2013; 15: 20054-20063.
[29] Henry G. Morrisona, Changquan C. Sun,S Neervannan, Characterization of Thermal Behavior of Deep Eutectic Solvents and their Potential as Drug Solubilization Vehicles. International Journal of Pharmaceutics 2009; 378: 136-139.
[30] AR Susana ROMERO, Begona ESCALERA, Pilar BUSTAMANTE, The Behavior of Paracetamol in Mixtures of Amphirotic and Amphiprotic-Aprotic Solvents. Relationship of Solubility Curves to Specific and Nonspecific Interactions. Chemical and Pharmaceutical Bulletin 1996; 44: 1061-1064.
[31] Edgar A. Ahumada, Daniel R. Delgado,F Martinez, Solubility of Acetaminophen in Polyethylene Glycol 400 + Water Mixtures According to the Extended Hildebrand Solubility Approach. Revista Colombiana de Quimica 2012; 41: 433-448.
[32] SA Gregorio Garcia, Ruh Ullah, and Mert Atilhan, Deep Eutectic Solvents: Physicochemical Properties and GasSeparation Applications. Energy & Fuels 2015; 29: 2616-2644.
[33] David Lapena, Diego Errazquin, Laura Lomba, Carlos Lafuente,B Giner, Ecotoxicity and Biodegradability of Pure and Aqueous Mixtures of Deep Eutectic Solvents: Glyceline, Ethaline, and Reline. Environmental Science and Pollution Research 2021; 28: 8812-8821.
[34] Kristina Rado?evi?, Marina Cvjetko Bubalo, Vi?nje Gaurina Sr?ek, Dijana Grgas, Tibela Landeka Dragi?evi?,IR Redovnikovi?, Evaluation of Toxicity and Biodegradability of Choline Chloride Based Deep Eutectic Solvents. Ecotoxicology and Environmental Safety 2015; 112: 46-53.
[35] Oliver S. Hammond, Daniel T. Bowron,KJ Edler, Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Neutron Diffraction and Atomistic Modelling. Green Chemistry 2016; 18: 2736-2744.
[36] Sergey P. Verevkin, Aleksandra Yu. Sazonova, Alla K. Frolkova, Dzmitry H. Zaitsau, Igor V. Prikhodko,C Held, Separation Performance of BioRenewable Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2015; 54: 3498-3504.
[37] GN Wang, Y Dai, XB Hu, F Xiao, YT Wu, ZB Zhang, et al., Novel Ionic Liquid Analogs formed by Triethylbutylammonium Carboxylate-Water Mixtures for CO2 Absorption. Journal of Molecular Liquids 2012; 168: 17-20.
[38] Mohd Belal Haider, Divyam Jha, Balathanigaimani Marriyappan Sivagnanam,R Kumar, Modelling and Simulation of CO2 Removal from Shale Gas Using Deep Eutectic Solvents. Journal of Environmental Chemical Engineer 2019; 7: 102747-102755.
[39] C. Florindo, F. S. Oliveira, L. P. N. Rebelo, Ana M. Fernandes,IM Marrucho, Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustainable Chemistry & Engineering 2014; 2: 2416-2425.
[40] K. Shahbaz, F.S. Mjalli, M.A. Hashim,IM AlNashe, Eutectic Solvents for the Removal of Residual Palm Oil-based Biodiesel Catalyst. Separation and Purification Technology 2011; 81: 216-222.
[41] Sudhir Ravula, ORCID, Nathaniel E. Larm, MPH Mohammad A. Mottaleb,GA Baker, Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 2019; 3: 42-53.
[42] G Pimentel, The Hydrogen Bond. 1960, WH Freeman and Company, London.
[43] G Jeffrey, An Introduction to Hydrogen Bonding. 1997, Oxford University Press.
[44] Bartosz Nowosielski, Marzena Jamrogiewicz, Justyna ?uczak, Maciej ?miechowski,D Warmi?sk, Experimental and Predicted Physicochemical Properties of Monopropanolamine-based Deep Eutectic Solvents. Journal of Molecular Liquids 2020; 309: 113110-113121.
[45] Reza Haghbakhsh, Sona Raeissi,ARC Duarte, Group Contribution and Atomic Contribution Models for the Prediction of Various Physical Properties of Deep Eutectic Solvents. Scientifc Reports 2021; 11: 6684.
[46] Y Marcus,Y Marcus, Deep Eutectic Solvents in Extraction and Sorption Technology. Deep Eutectic Solvents 2019: 153-183.
[47] C. Florindo, A. J. S. McIntosh, cLCB T. Welton,IM Marrucho, A Closer Look into Deep Eutectic Solvents: Exploring Intermolecular Interactions Using Solvatochromic Probes. Phys. Chem. Chem. Phys. 2017; 20: 206-213.
[48] Andrew P. Abbott, Robert C. Harris, Karl S. Ryder, Carmine D’Agostino, Lynn F. Gladdenb,MD Mantle, Glycerol Eutectics as Sustainable Solvent Systems. Green Chemistry 2011; 13: 82-90.
[49] Zhaofu Zhang, Weize Wu, Zhimin Liu, Buxing Han, Haixiang Gao,T Jiang, A Study of Tri-phasic Behavior of Ionic Liquid–methanol–CO2 Systems at Elevated Pressures. Physical Chemistry Chemical Physics 2004; 6: 2352-2357.
[50] Xiaoyong Li, Minqiang Hou, Buxing Han, Xiaoling Wang,L Zou, Solubility of CO2 in a Choline Chloride+Urea Eutectic Mixture. Journal of Chemical & Engineering Data 2008; 53: 548-550.
[51] Y Chen, N Ai, G Li, H Shan, Y Cui,D Deng, Solubilities of Carbon Dioxide in Eutectic Mixtures of Choline Chloride and Dihydric Alcohols. Journal of Chemical & Engineering Data 2014; 59: 1247-1253.
[52] D Deng, Y Chen, Y Cui, G Li,N Ai, Low Pressure Solubilities of CO2 in Five Fatty Amine Polyoxyethylene Ethers. The Journal of Chemical Thermodynamics 2014; 72: 89-93.
[53] D Deng, Y Cui, D Chen,N Ai, Solubility of CO2 in amide-based Bronsted acidic ionic liquids. The Journal of Chemical Thermodynamics 2013; 57: 355-359.
[54] D Deng, G Han, Y Jiang,N Ai, Solubilities of Carbon Dioxide in Five Biobased Solvents. Journal of Chemical & Engineering Data 2014; 60: 104-111.
[55] X Deng, X Duan, L Gong,D Deng, Ammonia Solubility, Density, and Viscosity of Choline Chloride–Dihydric Alcohol Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2020; 65: 4845-4854.
[56] X Duan, B Gao, C Zhang,D Deng, Solubility and Thermodynamic Properties of NH3 in Choline Chloride-Based Deep Eutectic Solvents. The Journal of Chemical Thermodynamics 2019; 133: 79-84.
[57] MB Haider, Z Hussain,R Kumar, CO2 Absorption and Kinetic Study in Ionic Liquid Amine Blends. Journal of Molecular Liquids 2016; 224: 1025-1031.
[58] MB Haider, D Jha, R Kumar,B Marriyappan Sivagnanam, Ternary Hydrophobic Deep Eutectic Solvents for Carbon Dioxide Absorption. International Journal of Greenhouse Gas Control 2020; 92: 102839-102849.
[59] Mohd Belal Haider, Divyam Jha, Balathanigaimani Marriyappan Sivagnanam,R Kumar, Thermodynamic and Kinetic Studies of CO2 Capture by Glycol and Amine-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2018; 63: 2671-2680.
[60] XH Zhen Song, Hongyi Wu, Mingcan Mei, Steffen Linke, Teng Zhou, Zhiwen Qi, Kai Sundmacher, Systematic Screening of Deep Eutectic Solvents as Sustainable Separation Media Exemplified by the CO2 Capture Process. ACS Sustainable Chemistry & Engineering 2020; 8: 8741-8751.
[61] HC Jingwen Wang, Zhen Song, Lifang Chen, Liyuan Deng, Zhiwen Q, Carbon Dioxide Solubility in Phosphonium-Based Deep Eutectic Solvents: An Experimental and Molecular Dynamics Study. Industrial & Engineering Chemistry Research 2019; 58: 17514-17523.
[62] Jun Li, Lifang Chen, Yinmei Ye,Z Qi, Solubility of CO2 in the Mixed Solvent System of Alkanolamines and Poly(ethylene glycol) 200. Journal of Chemical & Engineering Data 2014; 59: 1781-1787.
[63] MKH-K Emad Ali, Sarwono Mulyono, Inas Alnashef, Anis Fakeeha, Farouq Mjalli , Adeeb Hayyan, Solubility of CO2 in Deep Eutectic Solvents: Experiments and Modelling Using the Peng–Robinson Equation of State. 2014; 92: 1891-1906.
[64] Nouman Rafique Mirza, Nathan J. Nicholas, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish,GW Stevens, Experiments and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Three Different Deep Eutectic Solvents (DESs). J. Chem. Eng. Data 2015; 60: 3246-3252.
[65] Rima J. Isaifan,A Amhamed, Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents. Advances in Chemistry 2018: 2675659.
[66] AC Rhoda B. Leron, Meng-Hui Li, Carbon Dioxide Solubility in a Deep Eutectic Solvent based on Choline Chloride and Urea at T=303.15–343.15 K and Moderate Pressures. Journal of the Taiwan Institute of Chemical Engineers 2013; 44: 879-885.
[67] Allan N. Soriano, Bonifacio T. Doma, Jr.,M-H Li, Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data 2008; 53: 2550-2555.
[68] Rhoda B. Leron,M-H Li, Solubility of Carbon Dioxide in a Choline Chloride–Ethylene Glycol based Deep Eutectic Solvent. Thermochimica Acta 2013; 551: 14-19.
[69] Rhoda B. Leron,M-H Li, Solubility of Carbon Dioxide in a Eutectic Mixture of Choline Chloride and Glycerol at Moderate Pressures. The Journal of Chemical Thermodynamics 2013; 57: 131-136.
[70] Tushar J. Trivedi, Ji Hoon Lee, Hyeon Jeong Lee, You Kyeong Jeong,JW Choi, Deep Eutectic Solvents as Attractive Media for CO2 Capture. Green Chemistry 2016; 18: 2834-2842.
[71] Xiao Liang Yuan, Suo Jiang Zhang,XM Lu, Hydroxyl Ammonium Ionic Liquids: Synthesis, Properties, and Solubility of SO2. Journal of Chemical and Engineering Data 2007; 52: 596-599.
[72] Shaojuan Zeng, Hongshuai Gao, Xiaochun Zhang, Haifeng Dong, Xiangping Zhang,S Zhang, Efficient and Reversible Capture of SO2 by Pyridinium-based Ionic Liquids. Chemical Engineering Journal 2014; 251: 248-256.
[73] Jian Wang, Shaojuan Zeng, Lu Bai, Hongshuai Gao, Xiangping Zhang,S Zhang, Novel Ether-Functionalized Pyridinium Chloride Ionic Liquids for Efficient SO2 Capture. Industrial & Engineering Chemistry Research 2014; 53: 16832-16839.
[74] Kai Zhanga, Shuhang Rena, Yucui Houb,W Wu, Efficient Absorption of SO2 with Low-partial Pressures by Environmentally Benign Functional Deep Eutectic Solvents. Journal of Hazardous Materials 2016; 324: 457-463.
[75] Hongwei Ren, Shaohan Lian, Xue Wang, You Zhang,E Duan, Exploiting the Hydrophilic Role of Natural Deep Eutectic Solvents for Greening CO2 Capture. Journal of Cleaner Production 2018; 193: 802-810.
[76] Bin Jiang, Jingwen Ma, Na Yang, Zhaohe Huang, Na Zhang, Xiaowei Tantai, et al., Superbase/Acylamido-based Deep Eutectic Solvents for MultipleSite Efficient CO2 Absorption. Energy & Fuels 2019; 33: 7569-7577.
[77] Yanxue Gu, Yucui Hou, Shuhang Ren, Ying Sun,W Wu, Hydrophobic Functional Deep Eutectic Solvents Used for Efficient and Reversible Capture of CO2. ACS Omega 2020; 5: 6809-6816.
[78] Hong Yan, Lei Zhao, Yinge Bai, Fangfang Li, Haifeng Dong, Hui Wang, et al., Superbase Ionic Liquid-Based Deep Eutectic Solvents for Improving CO2 Absorption. ACS Sustainable Chemistry & Engineering 2020; 8: 2523-2530.
[79] WZ Yan Wang, Shuhang Ren, Yucui Hou, Weize Wu, Rapid Absorption and Desorption of CO2 by Deep Eutectic Solvents via Reversible CO2?Triggered Proton Transfer Process. ACS Sustainable Chem. Eng 2024; 12: 3987-3995.
[80] YL Hongwei Ren, Ruoyao Zhang, Tengda Zhao, Jing Han, Zhiyang Zheng,Erhong Duan, Investigation of the CO2 Capture Behavior in Multiple-site Natural Deep Eutectic Solvents Process Safety and Environmental Protection 2023; 172: 136-143.
[81] Leonhard L. Sze, Shubha Pandey, Sudhir Ravula, Siddharth Pandey, Hua Zhao, Gary A. Baker, et al., Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustainable Chemistry & Engineering 2014; 2: 2117-2123.
[82] Shashi Kant Shukla,J-P Mikkola, Intermolecular Interactions upon Carbon Dioxide Capture in Deep-Eutectic Solvents. Physical Chemistry Chemical Physics 2018; 20: 24591-24601.
[83] Lingwan Hao, Meiri Wang, Wenjuan Shan, Changliang Deng, Wanzhong Ren, Zhouzhou Shi, et al., L-Proline-based Deep Eutectic Solvents (DESs) for Deep Catalytic Oxidative Desulfurization (ODS) of Diesel. Journal of Hazardous Materials 2017; 339: 216-222.
[84] Fareeda Chemata, Nirmala Gnanasundaramb, Azmi Mohd Shariffa,T Murugesan, Effect of L-arginine on Solubility of CO2 in Choline Chloride + Glycerol Based Deep Eutectic Solvents Procedia Engineering 2016; 148: 236-242.
[85] Iwona Cichowska-Kopczy ’nska, Bartosz Nowosielski,DW ’nska, Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules 2023; 28.
[86] E. Aytunga Ar?k Kibar,F Us, Thermal, Mechanical and Water Adsorption Properties of Corn Starch–Carboxymethylcellulose/Methylcellulose Biodegradable Films. Journal of Food Engineering 2013; 114: 123-131.
[87] Kalyan Sou, Keiko Nishikawa, Yoshikata Koga,K-i Tozaki, High-resolution Calorimetry on Thermal Behavior of Glycerol (I): Glass Transition, Crystallization and Melting, and Discovery of a Solid–Solid Transition. Chemical Physics Letters 2011; 506: 217-220.
[88] Karzan A. Omar,R Sadeghi, Physicochemical Properties of Deep Eutectic Solvents: A Review. Journal of Molecular Liquids 2022; 360.
[89] Iwona Cichowska-Kopczy ’nska, Bartosz Nowosielski,DW ’nska, Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules 2023; 28: 5293.
[90] Shaojuan Zeng, Xiaochun Zhang, Hongshuai Gao, Hongyan He, Xiangping Zhang,S Zhang, SO2?Induced Variations in the Viscosity of Ionic Liquids Investigatedby in Situ Fourier Transform Infrared Spectroscopy and Simulation Calculations. Industrial & Engineering Chemistry Research 2015; 54: 10854-10862.
[91] Congmin Wang, Xiaoyan Luo, Huimin Luo, De-en Jiang, Haoran Li,S Dai, Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture. Angewandte Chemie International Edition 2011; 50: 4918-4922.
[92] Ana Roda, Filipa Santos, Yeong Zen Chua, Aarti Kumar, Hoang Tam Do, Alexandre Paiva, et al., Unravelling the Nature of Citric Acid: L-arginine: Water Mixtures: the Bifunctional Role of Water. Physical Chemistry Chemical Physics 2021; 23: 1706-1717.
[93] Noemi Delgado-Mellado, Marcos Larriba, Pablo Navarro, Victoria Rigual, Miguel Ayuso, Julian Garcia, et al., Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. Journal of Molecular Liquids 2018; 260: 37-43.
[94] Nanda MR, Yuan Z, Qin W, Poirier MA,C X, Purification of Crude Glycerol Using Acidification: Effects of Acid Types and Product Characterization. Austin Journal of Chemical Engineering 2014; 1: 7.
[95] Heejun Park, Hye Jin Seo, Eun-Sol Ha, Seung-hyeon Hong, Jeong-Soo Kim, Min-Soo Kima, et al., Preparation and Characterization of Glimepiride Eutectic Mixture with Larginine for Improvement of Dissolution Rate. International Journal of Pharmaceutics 2020; 581: 119288.
[96] Avneet Kaur, Ranjana Prakash,A Ali, 1H NMR Assisted Quantification of Glycerol Carbonate in the Mixture of Glycerol and Glycerol Carbonate. Talanta 2018; 178: 1001-1005.
[97] Shuhang Ren, Yucui Hou, Weize Wu,W Liu, Puri?cation of Ionic Liquids: Sweeping Solvents by Nitrogen. Journal of Chemical & Engineering Data 2010; 55: 5074-5077. |