博碩士論文 111324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.145.84.16
姓名 吳沛濬(Pei-Chun Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 矽奈米線場效電晶體生物感測器對microRNA-21和microRNA-155進行多重感測之研究
(Multiplexing detection of microRNA-21 and microRNA-155 by silicon nanowire field effect transistor)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) microRNAs,是一種長度約為21-25個核苷酸的非編碼小片段RNA,它會通過辨識mRNA並與其結合,抑制後續蛋白質的轉譯,藉此來調控基因的表現。某些microRNA在各個發育階段的全部細胞中都有表達,某些microRNA在不同組織、不同發育階段中的表達水平也有著顯著的差異,因此,目前已經有越來越多的研究將miRNAs作為診斷、治療和預後的重要生物標記物。然而,microRNA和目標基因之間雖然有一定的專一性,但卻不是一對一的關係,一種microRNA可以結合一種以上的目標mRNA,從而對多種基因進行調控,也就是說,一種基因的表達可能是多種microRNA造成的,這是一種動態與複雜的系統。
檢測miRNAs的方法有許多種,而在眾多檢測方法中,由於矽奈米線場效應電晶體 (Silicon nanowire field-effect transistors, SiNWFETs)具有高靈敏度、免螢光標定、耗時短等特性使其在未來醫療的診斷方面具有很大的應用潛力。通常對於SiNWFETs的生物分子固定化方式大多採用整片式固定法( all area modification ),這使得SiNWFETs只能對單一一種microRNA進行檢測,但是,若是只透過檢測單一種microRNA來對癌症進行診斷及追蹤,其可靠度可能還是偏低,因此,本研究將嘗試將整片SiNWFETs晶片分為兩部分固定上兩種生物探針對miR-21和miR-155兩種microRNA同時進行檢測,以驗證SiNWFETs的多重感測(multiplexing)的可行性。
在使用COB (Chip on board)系統對本研究所使用的多重生物感測器(multiplex biosensor)所產生的電訊號進行研究前,我們會使用Cyanine3 (Cy3) 染料修飾的miR-21,透過螢光顯微鏡來觀察其在表面經過不同條件的清洗方式所剩餘的螢光的量的多少,以此來篩選出最佳的清洗條件。最後我們發現,先使用70℃熱水沖洗,再經過8M之尿素5分鐘的浸泡,最後再用70℃熱水沖洗為最佳的清洗方式。
對於multiplex biosensor的製作,本研究會先對整片SiNWFETs晶片使用Mixed-SAMs (Silane-PEG-NH2:Silane-PEG-OH=1:3(mM/mM))以及戊二醛 (Glutaraldehyde)對元件進行表面改質,之後將一片晶片分為兩個部分分別修飾上與miR-21和miR-155具有專一性的兩種不同的DNA生物探針,以此來完成multiplex biosensor的改質。
接下來我們會對multiplex biosensor的專一性、可重複性、靈敏度以及抗干擾能力來對其進行研究。對於miR-21和miR-155的專一性,我們分別使用1fM之miR-21和miR-155作為target並於multiplex biosensor上使用COB系統對其進行檢測,最後發現,兩者都只會在在與自身具專一性的生物探針上產生較大的訊號變化,說明miR-21與miR-155皆只會和與自身具有專一性的生物探針雜交,具有較高的專一性;同時我們也將上述實驗重複進行了三次,結果三次實驗所得到的電訊號值大小皆差不多,這說明該biosensor具有良好的的可重複性。
對於其靈敏度,我們使用上述multiplex biosensor分別對單一miR-21 target和單一miR-155 target進行檢測,之後再對同樣線性範圍濃度之miR-21和miR-155的混合物進行檢測。單一 target 之檢測極限 (Limit of detection)分別為 4.73 aM 和 7.27 aM ,對於其混合物,檢測極限則變為 5.58 aM 和 7.32 aM ,線性範圍 (Linear range)則皆為 10 aM-100 fM。若進行對比,會發現對混合物檢測結果所得到之電訊號雖然相比於單一target檢測得到之電訊號有些許減少,電訊號隨濃度變化之斜率也有降低,但其檢測極限並不會受到明顯的影響。
對於其抗干擾能力,首先我們使用了1 pM 的miR-155作為干擾物分別與不同線性範圍濃度內的miR-21混合後使用SiNWFETs進行檢測,經過計算,此時之檢測極限為 5.97 aM ; 接著使用1 pM 的miR-21作為干擾物分別與不同線性範圍濃度內的miR-155混合後使用SiNWFETs進行檢測,經過計算,此時之檢測極限為 7.62 aM,該結果表明非專一性之microRNA並不會對檢測極限以及線性範圍造成影響。再來我們使用了SiNWFETs對1fM miR-210,1fM miR-21與miR-155之混合物,1fM miR-210、miR-21與miR-155之混合物進行檢測,該結果表明,miR-210對於兩種目標物之檢測幾乎不會造成影響,說明該multiplex biosensor具有較高的抗干擾能力。
最後,將 miR-21 以及 miR-155 之混合物 spike in 人類血清中進行檢測,這時, miR-21 之檢測極限為 0.42 fM ,而miR-155 之檢測極限則是 0.48 fM。
摘要(英) MicroRNAs are small, non-coding RNA molecules containing 21-25 nucleotides. Multiple microRNAs regulate gene expression, which is a dynamic and complex process. Targeting the complex and dynamic process by monitoring the microRNA profiling facilitates the usage of a silicon nanowire field-effect transistor (SiNWFET), which has the characteristics of real-time, label-free, high sensitivity, and the possibility of multiplexing. This study aims to verify the feasibility of multiplexing SiNWFETs by simultaneously detecting two microRNAs, miR-21 and miR-155, with high sensitivity and specificity requirements.
Before using the COB (Chip on board) system to study the electrical signals generated by the multiplex biosensor, we used a fluorescence microscope to observe the amount of remaining Cyanine3 (Cy3) dye-modified miR-21 on the surface to obtain an optimized cleaning process for detection. Finally, we found that the best cleaning procedure is first to rinse the surface with 80°C water, then immerse in 8M urea for 5 minutes, and finally rinse with 80°C water.
For the specificity of miR-21 and miR-155, we used the COB system to detect 1fM of miR-21 and miR-155 on the multiplex biosensor. Finally, we found that only probes that are specific to themselves generated significant signal changes, indicating that both miR-21 and miR-155 have high specificity. We also repeated the above experiment three times. As a result, the electrical signals obtained in the three experiments were all similar, which shows that the biosensor has good repeatability.
For the sensitivity, we used the multiplex biosensor to detect miR-21, miR-155, and the mixture of miR-21 and miR-155, respectively. The detection limit of single target are 4.73 aM for miR-21 and 7.27 aM for miR-155. For mixture, the detection limit of miR-21 is 5.58 aM, the detection limit of miR-155 is 7.32 aM ,the linear range are all 10 aM-100 fM. If compared, we can find that although other non-specific microRNA has little influence on the electrical signal and slope, it has almost no influence on the detection limit and linear range.
For anti-interference ability, we used 1 pM miR-155 as interference to detect miR-21 in different concentrations and compared the calibration line obtained from this result with the calibration line obtained from the detection of single miR-21 target, we found that non-specific microRNA has almost no influence on the detection limit and linear range. We can see the same result if we use 1 pM miR-21 as interference to detect miR-155. Finally, we used SiNWFETs to detect 1fM miR-210, the mixture of 1fM miR-21 and miR-155, and the mixture of 1fM miR-210, miR-21 and miR-155. The results show that miR-210 has almost no influence on the detection of target, indicating that our multiplex biosensor has high anti-interference ability.
Finally, we detected the mixture of miR-21 and miR-155 which was spiked in human serum . The detection limit of miR-21 was 0.42 fM, while the detection limit of miR-155 was 0.48 fM.
關鍵字(中) ★ 多重感測
★ miR-21
★ 矽奈米線場效電晶體
★ miR-155
關鍵字(英) ★ Multiplexing
★ miR-21
★ miR-155
★ silicon nanowire field-effect transistor
論文目次 摘要 II
Abstract v
目錄 vii
圖目錄 xiv
表目錄 xviii
第一章 緒論 1
第二章 文獻回顧 4
2.1 癌症檢測 4
2.1.1 癌症檢體 4
2.1.2 生物標示物 (Biomarker) 5
2.2 核酸分子介紹 7
2.2.1 核酸分子 7
2.2.2 去氧核醣核酸 8
2.2.3 核醣核酸 10
2.2.4 微小核醣核酸 11
2.3 生物標示物多重感測 15
2.3.1 蛋白質之多重感測 15
2.3.2 核酸之多重感測 17
2.3.3 核酸及蛋白質之同時感測 21
2.4 核酸檢測 23
2.4.1 聚合酶鏈鎖反應 23
2.4.2 即時定量聚合酶鏈鎖反應 24
2.5 矽奈米線場效電晶體 28
2.6 晶片表面改質 31
2.6.1 自組裝單層膜 31
2.6.2矽氧烷-聚乙二醇 (Silane-PEG)於自組裝單層膜應用 34
第三章 實驗藥品、儀器設備與方法 37
3.1實驗藥品 37
3.2 儀器設備 39
3.3 晶片表面改質 40
3.3.1 晶片表面清洗及氧電漿處理 40
3.3.2 修飾 Mixed-SAMs 40
3.3.3 修飾 GA (Glutaraldehyde) 40
3.3.4 核酸探針固定化 41
3.3.5 利用三羥甲基胺基甲烷進行殘基封阻 42
3.4 原子力顯微鏡 (AFM) 對經核酸探針改質表面之表面化學分析 44
3.4.1 矽控片表面清洗及氧電漿處理 44
3.4.2 修飾 Mixed-SAMs 44
3.4.3 修飾 GA (Glutaraldehyde) 45
3.4.4 核酸探針固定化 45
3.5 螢光顯微鏡(Fluorescence microscope)對不同清洗條件之分析 47
3.5.1 矽控片表面清洗及氧電漿處理 47
3.5.2 修飾 Mixed-SAMs 47
3.5.3 修飾 GA (Glutaraldehyde) 48
3.5.4 核酸探針固定化 48
3.5.5 利用三羥甲基胺基甲烷進行殘基封阻 49
3.5.6 目標檢測物與核酸探針之雜交 49
3.5.7 雜交之DNA與RNA之清洗 49
3.5.8 清洗後之核酸探針與目標檢測物之再雜交 50
3.6 SiNWFETs之電性測量 51
第四章 結果與討論 53
4.1 探針不同改質時間對於表面之影響 53
4.1.1 原子力顯微鏡 53
4.1.2 橢圓偏光儀 54
4.2 尿素對於雜交之DNA與RNA的影響 56
4.3 對於multiplex biosensor 專一性與可重複性之分析 58
4.4 對於multiplex biosensor靈敏度之分析 60
4.4.1 SiNWFETs 元件之訊號 60
4.4.2 單一microRNA於multiplex biosensor之檢測 60
4.4.3 miR-21與miR-155之mixture於multiplex biosensor之檢測 62
4.5 對於multiplex biosensor抗干擾能力之分析 66
4.5.1 非專一性target對於靈敏度之影響 66
4.5.2 非專一性target對multiplex biosensor之影響 69
4.6 檢測血清中之miR-21 以及miR-155時multiplex biosensor靈敏度之分析 71
第五章 結論 73
第六章 參考文獻 75
參考文獻 [1] Gilson, Pauline, Jean-Louis Merlin, and Alexandre Harlé. “Deciphering tumour heterogeneity: From tissue to liquid biopsy.” Cancers 14.6 (2022): 1384.
[2] Underwood, Jacob J., et al. “Liquid biopsy for cancer: review and implications for the radiologist.” Radiology 294.1 (2020): 5-17.
[3] Marrugo-Ramírez, José, Mònica Mir, and Josep Samitier. “Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy.” International journal of molecular sciences 19.10 (2018): 2877.
[4] Oshi, Masanori, et al. “Urine as a source of liquid biopsy for cancer.” Cancers 13.11 (2021): 2652.
[5] Mattox, Austin K., Hai Yan, and Chetan Bettegowda. “The potential of cerebrospinal fluid–based liquid biopsy approaches in CNS tumors.” Neuro-oncology 21.12 (2019): 1509-1518.
[6] Brock, Graham, et al. “Liquid biopsy for cancer screening, patient stratification and monitoring.” Translational Cancer Research 4.3 (2015).
[7] Hirahata, Tetsuyuki, et al. “Liquid biopsy: a distinctive approach to the diagnosis and prognosis of cancer.” Cancer informatics 21 (2022): 11769351221076062.
[8] Lone, S.N., Nisar, S., Masoodi, T. et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 21, 79 (2022).
[9] Wu, Li, and Xiaogang Qu. “Cancer biomarker detection: recent achievements and challenges.” Chemical Society Reviews 44.10 (2015): 2963-2997.
[10] Goossens, Nicolas, et al. "Cancer biomarker discovery and validation." Translational cancer research 4.3 (2015): 256.
[11] Schwarzenbach, Heidi, Dave SB Hoon, and Klaus Pantel. "Cell-free nucleic acids as biomarkers in cancer patients." Nature Reviews Cancer 11.6 (2011): 426-437.
[12] Borrebaeck, Carl AK. "Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer." Nature Reviews Cancer 17.3 (2017): 199-204.
[13] Li, Shichao, et al. "Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: a systematic review and meta-analysis." Clinical and experimental medicine 16 (2016): 29-35.
[14] Bica-Pop, Cecilia, et al. "Overview upon miR-21 in lung cancer: focus on NSCLC." Cellular and Molecular Life Sciences 75 (2018): 3539-3551.
[15] Wu, Li, and Xiaogang Qu. "Cancer biomarker detection: recent achievements and challenges." Chemical Society Reviews 44.10 (2015): 2963-2997.
[16] J.D. Watson, F.H. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature 171(4356) (1953) 737-738.
[17] A. Leslie, S. Arnott, R. Chandrasekaran, R. Ratliff, Polymorphism of DNA double helices, Journal of molecular biology 143(1) (1980) 49-72.
[18] J. Fohrer, M. Hennig, and T. Carlomagno, "Influence of the 2′-hydroxyl group conformation on the stability of A-form helices in RNA," Journal of molecular biology, vol. 356, no. 2, pp. 280-287, 2006.
[19] K. Zhang, J. Hodge, A. Chatterjee, T.S. Moon, K.M. Parker, Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA, Environmental science and technology 55(12) (2021) 8045-8053.
[20] P.H. Olsen, V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation, Developmental biology 216(2) (1999) 671-680.
[21] B. Wightman, I. Ha, and G. Ruvkun, "Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans," Cell, vol. 75, no. 5, pp. 855-862, 1993.
[22] Bartel, David P. "MicroRNAs: genomics, biogenesis, mechanism, and function." cell 116.2 (2004): 281-297.
[23] MacFarlane, Leigh-Ann, and Paul R Murphy. "MicroRNA: biogenesis, function and role in cancer." Current genomics 11.7 (2010): 537-561.
[24] Valencia-Sanchez, Marco Antonio, et al. "Control of translation and mRNA degradation by miRNAs and siRNAs." Genes & development 20.5 (2006): 515-524.
[25] Jansson, Martin D., and Anders H. Lund. "MicroRNA and cancer." Molecular oncology 6.6 (2012): 590-610.
[26] Calin, George Adrian, and Carlo Maria Croce. "MicroRNA-cancer connection: the beginning of a new tale." Cancer research 66.15 (2006): 7390-7394.
[27] Garzon, Ramiro, et al. "MicroRNA expression and function in cancer." Trends in molecular medicine 12.12 (2006): 580-587.
[28] Lin, Shuibin, and Richard I. Gregory. "MicroRNA biogenesis pathways in cancer." Nature reviews cancer 15.6 (2015): 321-333.
[29] Peng, Y., Croce, C. The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1, 15004 (2016).
[30] Kosaka, Nobuyoshi, Haruhisa Iguchi, and Takahiro Ochiya. "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis." Cancer science 101.10 (2010): 2087-2092.
[31] FDA-NIH Biomarker Working Group. "Response biomarker." BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet] (2021).
[32] Mitchell, Kaitlynn R., Joule E. Esene, and Adam T. Woolley. "Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices." Analytical and Bioanalytical Chemistry 414.1 (2022): 167-180.
[33] Jet, Thomas, et al. "Advances in multiplexed techniques for the detection and quantification of microRNAs." Chemical Society Reviews 50.6 (2021): 4141-4161.
[34] Zhang, Yulin, et al. "Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva." Analytical Sciences 31.2 (2015): 73-78.
[35] Rezayi, Majid, et al. "MicroRNA-based biosensors for early detection of cancers." Current pharmaceutical design 24.39 (2018): 4675-4680.
[36] Di Leva, Gianpiero, Michela Garofalo, and Carlo M. Croce. "MicroRNAs in cancer." Annual Review of Pathology: Mechanisms of Disease 9 (2014): 287-314.
[37] Zheng, Yanjie, et al. "Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155." Analytical and Bioanalytical Chemistry 413 (2021): 1605-1614.
[38] Zhang, Ya, et al. "An ultrasensitive electrochemical biosensor for simultaneously detect microRNA-21 and microRNA-155 based on specific interaction of antimonide quantum dot with RNA." Microchemical Journal 185 (2023): 108173.
[39] Gao, Anran, et al. "Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays." Biosensors and Bioelectronics 91 (2017): 482-488.
[40] An, Na, et al. "A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms." Talanta 231 (2021): 122361.
[41] Matsuda, Kazuyuki. "PCR-based detection methods for single-nucleotide polymorphism or mutation: real-time PCR and its substantial contribution toward technological refinement." Advances in clinical chemistry 80 (2017): 45-72.
[42] J. Wilhelm and A. Pingoud, "Real‐time polymerase chain reaction," Chembiochem, vol. 4, no. 11, pp. 1120-1128, 2003.
[43] Johnson, Blake N., and Raj Mutharasan. "Biosensor-based microRNA detection: techniques, design, performance, and challenges." Analyst 139.7 (2014): 1576-1588.
[44] Johnson, Blake N., and Raj Mutharasan. "Biosensor-based microRNA detection: techniques, design, performance, and challenges." Analyst 139.7 (2014): 1576-1588.
[45] Lu, Na, et al. "CMOS‐compatible silicon nanowire field‐effect transistors for ultrasensitive and label‐free microRNAs sensing." small 10.10 (2014): 2022-2028.
[46] Dekker, A., et al. "Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene." Biomaterials 12.2 (1991): 130-138.
[47] Ma, Hong, et al. "Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors." Physical Chemistry Chemical Physics 14.41 (2012): 14110-14126.
[48] Kind, Martin, and Christof Wöll. "Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application." Progress in Surface Science 84.7-8 (2009): 230-278.
[49] MA Zhuoyuan, WANG Dayang. Status and Prospect of Surface Wettability of Molecular Self-assembled Monolayers. Chem. J. Chinese Universities, 2021, 42(4): 1031.
[50] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces, Journal of the American Chemical Society 102(1) (1980) 92-98.
[51] G. Capecchi, M.G. Faga, G. Martra, S. Coluccia, M.F. Iozzi, M. Cossi, Adsorption of CH3 COOH on TiO2: IR and theoretical investigations, Research on chemical intermediates volume 33(3) (2007) 269-284.
[52] G.M. Wang, W.C. Sandberg, S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch, Nanotechnology 17(19) (2006) 4819.
[53] Sagiv, Jacob. "Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces." Journal of the American Chemical Society 102.1 (1980): 92-98.
[54] Batault, F, et al. "Acetaldehyde and acetic acid adsorption on TiO2 under dry and humid conditions." Chemical Engineering Journal 264 (2015): 197-210.
[55] Harris, J. Milton. "Introduction to biotechnical and biomedical applications of poly (ethylene glycol)." Poly (ethylene glycol) chemistry: biotechnical and biomedical applications (1992): 1-14.
[56] Vu, Cao-An, et al. "Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study." Sensors and Actuators B: Chemical 329 (2021): 129150.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明