博碩士論文 111324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.144.92.231
姓名 朱境鴻(Ching-Hung Chu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 有序介孔Fe-Ni/Al2O3催化劑對二氧化碳與乙烷的乾重組和氧化脫氫反應之探討
(Ordered Mesoporous Fe-Ni/Al2O3 Catalysts for Dry Reforming and Oxidative Dehydrogenation of Ethane with Carbon Dioxide)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-20以後開放)
摘要(中) 由於溫室氣體效應和PM2.5的排放增加已導致全球暖化和海平面上升,減少二氧化碳排放已成為未來幾十年的重要目標。除了減少排放和推動替代能源外,利用二氧化碳生產產品或新材料是一種更有效且具前景的方法。
本研究採用二氧化碳與乙烷進行反應,透過乾重組與氧化脫氫反應生成乙烯和合成氣體(H2和CO)。在觸媒合成階段,採用了一步到位的蒸發誘導自組裝法(Evaporation-Induced Self-Assembly, EISA),成功合成了具有二維六角結構的有序介孔材料。此方法合成的觸媒具有大比表面積和高熱穩定性的優點,能使附載金屬高度分散在有序介孔通道中,有效延緩附載顆粒的遷移和聚集。並透過XRD、氮氣吸附-脫附實驗、HR-TEM、H2-TPR、CO2-TPD、NH3-TPD和XPS等方法對觸媒進行分析,確認成功合成了預期的介孔材料。本研究選用Fe和Ni作為附載金屬,其中Fe具有良好的氧化還原性能,Ni具有優異的催化活性,並選用具有良好熱穩定性的γ-Al2O3作為載體,透過一步到位的EISA方法,合成了不同Fe和Ni附載比例的xFe-yNi/Al2O3有序介孔金屬-氧化物觸媒。
本研究主要探討不同Fe-Ni比例的xFe-yNi/Al2O3有序介孔金屬-氧化物觸媒在不同反應條件下的影響。在活性測試中觀察到,更高的Ni附載比例促進乾重組反應,生成更多的合成氣體;而更高的Fe附載比例則可以增加觸媒的抗積碳能力。然而,在較高的反應溫度下,即使沒有觸媒,仍可觀察到乙烯的生成,這表明溫度是影響乙烷轉化為乙烯的主要因素。活性測試結果顯示,透過調整Fe和Ni的比例,可以在一定程度上控制生成產物的比例。
總結來說,我們利用EISA方法開發了介孔材料,並探討了Fe-Ni附載比例及附載量對反應的影響。這些結果將幫助我們更深入了解觸媒對反應的影響,從而優化觸媒的反應效果。
摘要(英) Due to the increase in greenhouse gas effects and PM2.5 emissions, global warming and rising sea levels have become pressing issues. Reducing carbon dioxide emissions has become a crucial goal for the coming decades. In addition to reducing emissions and promoting alternative energy sources, utilizing carbon dioxide to produce products or new materials is a more effective and promising approach.
This study employs the reaction between carbon dioxide and ethane to produce ethylene and syngas (H2 and CO) through dry reforming and oxidative dehydrogenation reactions. During the catalyst synthesis phase, a one-step Evaporation-Induced Self-Assembly (EISA) method was used to successfully synthesize ordered mesoporous materials with a two-dimensional hexagonal structure. Catalysts synthesized by this method have the advantages of high surface area and thermal stability, allowing the metal to be highly dispersed in the ordered mesoporous channels, effectively delaying the migration and aggregation of metal particles. The catalysts were analyzed using XRD, nitrogen adsorption-desorption experiments, HR-TEM, H2-TPR, CO2-TPD, NH3-TPD, and XPS, confirming the successful synthesis of the expected mesoporous materials. Fe and Ni were selected as the supported metals for this study, where Fe exhibits good redox properties, and Ni demonstrates excellent catalytic activity. γ-Al2O3, with its good thermal stability, was chosen as the support. Through the one-step EISA method, xFe-yNi/Al2O3 ordered mesoporous metal-oxide catalysts with different Fe and Ni loading ratios were synthesized.
This study mainly investigates the impact of different Fe-Ni ratios in xFe-yNi/Al2O3 ordered mesoporous metal-oxide catalysts under various reaction conditions. In activity tests, it was observed that higher Ni loading promotes the dry reforming reaction, producing more syngas, while higher Fe loading increases the catalyst′s resistance to coking. However, at higher reaction temperatures, ethylene formation was observed even in the absence of a catalyst, indicating that temperature is a major factor influencing ethane conversion to ethylene. The activity test results show that by adjusting the Fe and Ni ratios, the proportion of the produced products can be controlled to some extent.
In summary, we developed mesoporous materials using the EISA method and investigated the effects of Fe-Ni loading ratios and amounts on the reaction. These results will help us gain a deeper understanding of the catalyst′s impact on the reaction, thereby optimizing the catalyst′s performance.
關鍵字(中) ★ 乙烷
★ 二氧化碳
★ 蒸發誘導自組裝法
★ 乾重組反應
★ 氧化脫氫反應
關鍵字(英) ★ Ethane
★ Carbon dioxide
★ Evaporation-Induced Self-Assembly (EISA)
★ Dry reforming reaction
★ Oxidative dehydrogenation reaction
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 5
2-1 乙烷與二氧化碳的催化反應 5
2-1-1 乾重組反應 5
2-1-2 氧化脫氫反應及其他副反應 6
2-2 金屬-氧化物觸媒 8
2-3 金屬氧化物觸媒載體 12
2-3-1 載體的選擇 12
2-3-2 附載金屬與載體的相互作用 14
2-4 有序介孔材料 15
2-5 蒸發誘導自組裝法(Evaporation-induced self-assembly, EISA) 18
第三章 實驗部分 23
3-1 實驗藥品 23
3-2 分析及實驗儀器 24
3-2-1 X光繞射分析儀(X-ray diffraction analysis, XRD) 24
3-2-2 比表面積及孔徑分析儀(Specific surface area and pore size analyzer) 24
3-2-3 高解析掃描穿透式電子顯微鏡(High Resolution Scanning Transmission Electron Microscope, HR-STEM) 25
3-2-4 化學吸附分析儀 26
3-2-5 光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 28
3-2-6 氣相層析儀(Gas Chromatography, GC) 29
3-2-7 熱重分析儀(Thermogravimetric analysis, TGA) 30
3-3 實驗步驟 31
3-3-1 金屬觸媒之製備 31
3-3-2 觸媒活性測試流程 33
第四章 結果與討論 35
4-1 前導 35
4-2 xFe-yNi有序介孔觸媒之材料性質分析 36
4-2-1 X光繞射分析(XRD) 36
4-2-2 比表面積及孔徑分析(BET) 37
4-2-3 xFe-yNi結構分析(HR-TEM) 39
4-2-4 氫氣程溫還原(H2-TPR) 42
4-2-5 二氧化碳與氨氣程溫脫附分析(NH3 -TPD, CO2 -TPD) 43
4-2-6 X-ray光電子能譜儀(XPS) 47
4-3 xFe-yNi有序介孔觸媒之活性測試 50
4-3-1 不同進料比例對反應的影響 50
4-3-2 不同反應溫度對反應的影響 52
4-3-3 不同還原溫度對反應的影響 54
4-3-4 xFe-yNi附載比例對反應的影響 56
4-3-5 xFe-yNi觸媒在不同反應溫度下產物生成隨時間的變化 62
4-3-6 無觸媒之活性測試 64
4-3-7 純Al2O3之活性測試 66
4-4 反應後xFe-yNi有序介孔觸媒之材料性質分析 68
4-4-1 反應後之X光繞射分析(XRD) 68
4-4-2 反應後之TEM分析(HR-TEM) 70
4-4-3 750 ℃還原,700 ℃反應後之熱重分析(TGA) 72
4-4-4 750 ℃還原,800 ℃反應後之熱重分析(TGA) 74
4-4-5 850 ℃還原,800 ℃反應後之熱重分析(TGA) 76
4-5 3Fe-1Ni(z %)有序介孔觸媒之材料性質分析 78
4-5-1 X光繞射分析(XRD) 78
4-5-2 比表面積及孔徑分析(BET) 80
4-5-3 3Fe-1Ni(z wt%)結構分析(HR-TEM) 82
4-6 3Fe-1Ni(z %)有序介孔觸媒之活性測試 84
4-6-1 不同附載量下3Fe-1Ni(z %)之活性測試 84
4-7 反應後3Fe-1Ni(z %)有序介孔觸媒之材料性質分析 86
4-7-1 熱重分析(TGA) 86
第五章 結論與未來展望 88
第六章 附錄 90
6-1 GC-2014AT之分析圖譜 90
6-2 GC-2014AT氣體檢量線 93
參考文獻 96
參考文獻 1. Wang, Y.; D. He; H. ChenD. Wang, Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 117-149.
2. Ashok, J.; S. Pati; P. Hongmanorom; Z. Tianxi; C. JunmeiS. Kawi, A review of recent catalyst advances in CO2 methanation processes. Catalysis Today, 2020, 356, 471-489.
3. Wittich, K.; M. Krämer; N. BottkeS.A. Schunk, Catalytic Dry Reforming of Methane: Insights from Model Systems. ChemCatChem, 2020, 12(8), 2130-2147.
4. Thomas, M.; T. Partridge; B.H. HarthornN. Pidgeon, Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nature Energy, 2017, 2(5).
5. Stacy M. Morris, P.F.F., and Mietek Jaroniec, Ordered Mesoporous Alumina-Supported Metal Oxides. Journal of the American Chemical Society, 2008.
6. Li, B.; Y. Luo; B. Li; X. YuanX. Wang, Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane. Fuel Processing Technology, 2019, 193, 348-360.
7. Xie, Z.; Y. Xu; M. Xie; X. Chen; J.H. Lee; E. Stavitski; S. KattelJ.G. Chen, Reactions of CO(2) and ethane enable CO bond insertion for production of C3 oxygenates. Nat Commun, 2020, 11(1), 1887.
8. Tsiotsias, A.I.; N.D. Charisiou; I.V. YentekakisM.A. Goula, Bimetallic Ni-Based Catalysts for CO(2) Methanation: A Review. Nanomaterials (Basel), 2020, 11(1).
9. Theofanidis, S.A.; V.V. Galvita; H. PoelmanG.B. Marin, Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. ACS Catalysis, 2015, 5(5), 3028-3039.
10. Tanksale, A.; J.N. BeltraminiG.M. Lu, A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 2010, 14(1), 166-182.
11. Noor, Z.Z.; R.O. Yusuf; A.H. Abba; M.A. Abu HassanM.F. Mohd Din, An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renewable and Sustainable Energy Reviews, 2013, 20, 378-384.
12. Donald J. Wuebbles*, K.H., Atmospheric methane and global change. Earth-Science Reviews, 2002.
13. Bahari, M.B.; N.H.H. Phuc; B. Abdullah; F. AlenazeyD.-V.N. Vo, Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. Journal of Environmental Chemical Engineering, 2016, 4(4), 4830-4838.
14. M.A. Pefia a, j.p.G.b., J.L.G. Fierro a,*, New catalytic routes for syngas and hydrogen production. Applied Catalysis A: General, 1996.
15. Abdullah, B.; N.A. Abd GhaniD.-V.N. Vo, Recent advances in dry reforming of methane over Ni-based catalysts. Journal of Cleaner Production, 2017, 162, 170-185.
16. Aramouni, N.A.K.; J.G. Touma; B.A. Tarboush; J. ZeaiterM.N. Ahmad, Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews, 2018, 82, 2570-2585.
17. Yan, B.; X. Yang; S. Yao; J. Wan; M. Myint; E. Gomez; Z. Xie; S. Kattel; W. XuJ.G. Chen, Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts. ACS Catalysis, 2016, 6(11), 7283-7292.
18. Zhao, B.; B. Yan; S. Yao; Z. Xie; Q. Wu; R. Ran; D. Weng; C. ZhangJ.G. Chen, LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane. Journal of Catalysis, 2018, 358, 168-178.
19. Myint, M.; B. Yan; J. Wan; S. ZhaoJ.G. Chen, Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts. Journal of Catalysis, 2016, 343, 168-177.
20. Tsiotsias, A.I.; N.D. Charisiou; V. Sebastian; S. Gaber; S.J. Hinder; M.A. Baker; K. PolychronopoulouM.A. Goula, A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane. International Journal of Hydrogen Energy, 2022, 47(8), 5337-5353.
21. Gärtner, C.A.; A.C. van VeenJ.A. Lercher, Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 2013, 5(11), 3196-3217.
22. Theofanidis, S.A.; C. Loizidis; E. HeracleousA.A. Lemonidou, CO2-oxidative ethane dehydrogenation over highly efficient carbon-resistant Fe-catalysts. Journal of Catalysis, 2020, 388, 52-65.
23. López, E.; E. Heracleous; A.A. LemonidouD.O. Borio, Study of a multitubular fixed-bed reactor for ethylene production via ethane oxidative dehydrogenation. Chemical Engineering Journal, 2008, 145(2), 308-315.
24. Rodríguez, M.L.; D.E. Ardissone; E. López; M.N. PederneraD.O. Borio, Reactor Designs for Ethylene Production via Ethane Oxidative Dehydrogenation: Comparison of Performance. Industrial & Engineering Chemistry Research, 2010, 50(5), 2690-2697.
25. F. Cavani, F.T., The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins. Catalysis Today, 1995.
26. Moulijn*, X.X.a.J.A., Mitigation of CO2 by chemical conversion: Plausible chemical reactions and promising products. Energy & Fuels, 1996.
27. Hu, J.; L. Buelens; S.-A. Theofanidis; V.V. Galvita; H. PoelmanG.B. Marin, CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping. Journal of CO2 Utilization, 2016, 16, 8-16.
28. Zhang, P.; J. TongK. Huang, Role of CO2 in Catalytic Ethane-to-Ethylene Conversion Using a High-Temperature CO2 Transport Membrane Reactor. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 6889-6897.
29. Lei, T.; C. Miao; W. Hua; Y. YueZ. Gao, Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts. Catalysis Letters, 2018, 148(6), 1634-1642.
30. Shuang Deng, S.L., Huiquan Li, and Yi Zhang, Oxidative Dehydrogenation of Ethane to Ethylene with CO2 over Fe-Cr/ZrO2Catalysts. Industrial & Engineering Chemistry Research 2009.
31. Hurtado Cotillo, M.; D. Unsihuay; C.E. Santolalla-Vargas; A. Paredes Doig; R. Sun KouG. Picasso, Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane. Catalysis Today, 2020, 356, 312-321.
32. Beretta, A.P. Forzatti, High-Temperature and Short-Contact-Time Oxidative Dehydrogenation of Ethane in the Presence of Pt/Al2O3 and BaMnAl11O19 Catalysts. Journal of Catalysis, 2001, 200(1), 45-58.
33. Li, X.; Z. Yang; L. Zhang; Z. He; R. Fang; Z. Wang; Y. YanJ. Ran, Effect of Pd doping in (Fe/Ni)/CeO2 catalyst for the reaction path in CO2 oxidative ethane dehydrogenation/reforming. Energy, 2021, 234.
34. Bustinza, A.; M. Frías; Y. LiuE. García-Bordejé, Mono- and bimetallic metal catalysts based on Ni and Ru supported on alumina-coated monoliths for CO2 methanation. Catalysis Science & Technology, 2020, 10(12), 4061-4071.
35. Bian, Z.; S. Das; M.H. Wai; P. HongmanoromS. Kawi, A Review on Bimetallic Nickel-Based Catalysts for CO(2) Reforming of Methane. Chemphyschem, 2017, 18(22), 3117-3134.
36. Heracleous, E.; A. Lee; K. WilsonA. Lemonidou, Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. Journal of Catalysis, 2005, 231(1), 159-171.
37. Seo, H., Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2) Reforming of Methane. Catalysts, 2018, 8(3).
38. Fan, C.; Y.A. Zhu; Y. Xu; Y. Zhou; X.G. ZhouD. Chen, Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study. J Chem Phys, 2012, 137(1), 014703.
39. Theofanidis, S.A.; V.V. Galvita; C. Konstantopoulos; H. PoelmanG.B. Marin, Fe-Based Nano-Materials in Catalysis. Materials (Basel), 2018, 11(5).
40. Yan, B.; S. Yao; S. Kattel; Q. Wu; Z. Xie; E. Gomez; P. Liu; D. SuJ.G. Chen, Active sites for tandem reactions of CO(2) reduction and ethane dehydrogenation. Proc Natl Acad Sci U S A, 2018, 115(33), 8278-8283.
41. Kim, S.M.; P.M. Abdala; T. Margossian; D. Hosseini; L. Foppa; A. Armutlulu; W. van Beek; A. Comas-Vives; C. CoperetC. Muller, Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. J Am Chem Soc, 2017, 139(5), 1937-1949.
42. Stavros Alexandros Theofanidis, V.V.G., Hilde Poelman, and Guy B Marin, Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catalysis, 2015.
43. Serrer, M.-A.; A. Gaur; J. Jelic; S. Weber; C. Fritsch; A.H. Clark; E. Saraçi; F. StudtJ.-D. Grunwaldt, Structural dynamics in Ni–Fe catalysts during CO2 methanation – role of iron oxide clusters. Catalysis Science & Technology, 2020, 10(22), 7542-7554.
44. Raseale, S.; W. Marquart; G. Prieto; M. ClaeysN. Fischer, CO2 reduction via oxidative dehydrogenation and dry reforming of ethane over Fe3Ni1 nanoparticles: The influence of the oxide support. Catalysis Today, 2024, 441.
45. Shi, X.; S. JiK. Wang, Oxidative Dehydrogenation of Ethane to Ethylene with Carbon dioxide over Cr–Ce/SBA-15 Catalysts. Catalysis Letters, 2008, 125(3-4), 331-339.
46. Deng, S.; H. Li; S. LiY. Zhang, Activity and characterization of modified Cr2O3/ZrO2 nano-composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO2. Journal of Molecular Catalysis A: Chemical, 2007, 268(1-2), 169-175.
47. Rahmani, F.; M. HaghighiB. Mohammadkhani, Enhanced dispersion of Cr nanoparticles over nanostructured ZrO2 -doped ZSM-5 used in CO2 -oxydehydrogenation of ethane. Microporous and Mesoporous Materials, 2017, 242, 34-49.
48. Zafarnak, S.; A. Bakhtyari; H. Taghvaei; M.R. RahimpourA. Iulianelli, Conversion of ethane to ethylene and hydrogen by utilizing carbon dioxide: Screening catalysts. International Journal of Hydrogen Energy, 2021, 46(37), 19717-19730.
49. Yan, B.; S. YaoJ.G. Chen, Effect of Oxide Support on Catalytic Performance of FeNi‐based Catalysts for CO2‐assisted Oxidative Dehydrogenation of Ethane. ChemCatChem, 2019, 12(2), 494-503.
50. Abdulrasheed, A.; A.A. Jalil; Y. Gambo; M. Ibrahim; H.U. HambaliM.Y. Shahul Hamid, A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews, 2019, 108, 175-193.
51. Das, S.; M. Sengupta; J. PatelA. Bordoloi, A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Applied Catalysis A: General, 2017, 545, 113-126.
52. Hassani Rad, S.J.; M. Haghighi; A. Alizadeh Eslami; F. RahmaniN. Rahemi, Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition. International Journal of Hydrogen Energy, 2016, 41(11), 5335-5350.
53. Kwon, Y.; J.E. Eichler; M.E. FlotoC.B. Mullins, The complementary relationship between Ru/Al2O3 and Ni/Al2O3 catalyst for dry reforming of methane. Chemical Engineering Research and Design, 2023, 195, 624-636.
54. Xu, Y.; X. Du; L. Shi; T. Chen; H. Wan; P. Wang; S. Wei; B. Yao; J. ZhuM. Song, Improved performance of Ni/Al2O3 catalyst deriving from the hydrotalcite precursor synthesized on Al2O3 support for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46(27), 14301-14310.
55. Márquez‐Alvarez, C.; N. Žilková; J. Pérez‐ParienteJ. Čejka, Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas. Catalysis Reviews, 2008, 50(2), 222-286.
56. Pakhare, D.J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev, 2014, 43(22), 7813-37.
57. Eli Ruckenstein *, Y.H.H., Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Applied Catalysis A 1995.
58. Lonergan, W.W.; T. Wang; D.G. VlachosJ.G. Chen, Effect of oxide support surface area on hydrogenation activity: Pt/Ni bimetallic catalysts supported on low and high surface area Al2O3 and ZrO2. Applied Catalysis A: General, 2011, 408(1-2), 87-95.
59. Azancot, L.; L.F. Bobadilla; J.L. Santos; J.M. Córdoba; M.A. CentenoJ.A. Odriozola, Influence of the preparation method in the metal-support interaction and reducibility of Ni-Mg-Al based catalysts for methane steam reforming. International Journal of Hydrogen Energy, 2019, 44(36), 19827-19840.
60. Kumar, R.; K. Kumar; K.K. PantN.V. Choudary, Tuning the metal-support interaction of methane tri-reforming catalysts for industrial flue gas utilization. International Journal of Hydrogen Energy, 2020, 45(3), 1911-1929.
61. Ewbank, J.L.; L. Kovarik; F.Z. DialloC. Sievers, Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Applied Catalysis A: General, 2015, 494, 57-67.
62. Tang, H.; F. Liu; J. Wei; B. Qiao; K. Zhao; Y. Su; C. Jin; L. Li; J.J. Liu; J. WangT. Zhang, Ultrastable Hydroxyapatite/Titanium-Dioxide-Supported Gold Nanocatalyst with Strong Metal-Support Interaction for Carbon Monoxide Oxidation. Angew Chem Int Ed Engl, 2016, 55(36), 10606-11.
63. Li, S.; Y. Fu; W. Kong; J. Wang; C. Yuan; B. Pan; H. Zhu; X. Chen; Y. Zhang; J. ZhangY. Sun, Tuning strong metal-support interactions to boost activity and stability of aluminium nitride supported nickel catalysts for dry reforming of methane. Fuel, 2023, 343.
64. Li, M.; S. FangY.H. Hu, Self-stabilization of Ni/Al2O3 Catalyst with a NiAl2O4 Isolation Layer in Dry Reforming of Methane. Catalysis Letters, 2021, 152(9), 2852-2859.
65. Huang, Q.; X. Fang; Q. Cheng; Q. Li; X. Xu; L. Xu; W. Liu; Z. Gao; W. ZhouX. Wang, Synthesis of a Highly Active and Stable Nickel‐Embedded Alumina Catalyst for Methane Dry Reforming: On the Confinement Effects of Alumina Shells for Nickel Nanoparticles. ChemCatChem, 2017, 9(18), 3563-3571.
66. Peng, H.; X. Zhang; X. Han; X. You; S. Lin; H. Chen; W. Liu; X. Wang; N. Zhang; Z. Wang; P. Wu; H. ZhuS. Dai, Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catalysis, 2019, 9(10), 9072-9080.
67. Hwang, S.; U.G. Hong; J. Lee; J.H. Baik; D.J. Koh; H. LimI.K. Song, Methanation of Carbon Dioxide Over Mesoporous Nickel–M–Alumina (M = Fe, Zr, Ni, Y, and Mg) Xerogel Catalysts: Effect of Second Metal. Catalysis Letters, 2012, 142(7), 860-868.
68. C. T. Kresge, M.E.L., W. J. Roth, J. C. Vartuli & J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992.
69. J. S. Beck, f.J.C.V., *f W. J. Roth,* * M. E. Leonowicz,* * C. T. Kresge,* *; K.D.S.C.T.-W.C.D.H.O.E.W.S.S.B. McCullen/J.B.H.a.J.L. Schlenker+, A new family of mesoporous molecular sieves prepared with liquid crystal templates. . J. Am, Chem. Soc., 1992.
70. Wu, J.; F. Xu; S. Li; P. Ma; X. Zhang; Q. Liu; R. FuD. Wu, Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv Mater, 2019, 31(4), e1802922.
71. Deng, Y.; J. Wei; Z. SunD. Zhao, Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev, 2013, 42(9), 4054-70.
72. Mandal, A.K.; J. MahmoodJ.B. Baek, Two‐Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat, 2017, 3(6), 373-391.
73. Markus Templin, A.F., Alexander Du Chesne, Heike Leist, Yuanming Zhang, Ralph Ulrich, Volker Schadler,U. Wiesner*, Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases. American Association for the Advancement of Science, 2016.
74. Wei, C.; F. Xue; C. Miao; Y. Yue; W. Yang; W. HuaZ. Gao, Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts. Catalysts, 2016, 6(11).
75. Al-Awadi, A.S.; A.M. El-Toni; S.M. Al-Zahrani; A.E. Abasaeed; M. Alhoshan; A. Khan; J.P. LabisA. Al-Fatesh, Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Applied Catalysis A: General, 2019, 584.
76. Rahmani, F.M. Haghighi, One-pot hydrothermal synthesis of ZSM-5–CeO2 composite as a support for Cr-based nanocatalysts: influence of ceria loading and process conditions on CO2-enhanced dehydrogenation of ethane. RSC Advances, 2016, 6(92), 89551-89563.
77. Cai, W.; J. Yu; C. Anand; A. VinuM. Jaroniec, Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011, 23(5), 1147-1157.
78. Zhangxiong Wu, Q.L., Dan Feng,Paul A. Webley,and Dongyuan Zhao*, Ordered Mesoporous Crystalline γ-Al2O3 with Variable Architecture and Porosity from a Single Hard Template. J. Am. Chem. SOC, 2010.
79. Stephen A. Bagshaw, E.P., * Thomas J. Pinnavaiat, Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. SCIENCE, 1995.
80. Peidong Yang, D.Z., David I. Margolese, Bradley F. Chmelka & Galen D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998.
81. Baca, M.; E. de la Rochefoucauld; E. Ambroise; J.-M. Krafft; R. Hajjar; P.P. Man; X. CarrierJ. Blanchard, Characterization of mesoporous alumina prepared by surface alumination of SBA-15. Microporous and Mesoporous Materials, 2008, 110(2-3), 232-241.
82. Cabrera, S.; J.E. Haskouri; J. Alamo; A. Beltrán; D. Beltrán; S. Mendioroz; M.D. MarcosP. Amorós, Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Advanced Materials, 1999, 11(5), 379-381.
83. Changmook Kim, Y.K., Pil Kim and Jongheop Yi†, Synthesis of Mesoporous Alumina by using a Cost-effective Template. Korean J. Chem. Eng, 2003.
84. S. Valange a, b., J.-L. Guth a, F. Kolenda c, S. Lacombe d, Z. Gabelica, Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Microporous and Mesoporous Materials, 2000.
85. Xu, X.; S.K. Megarajan; Y. ZhangH. Jiang, Ordered Mesoporous Alumina and Their Composites Based on Evaporation Induced Self-Assembly for Adsorption and Catalysis. Chemistry of Materials, 2019, 32(1), 3-26.
86. Wei, J.; Z. Sun; W. Luo; Y. Li; A.A. Elzatahry; A.M. Al-Enizi; Y. DengD. Zhao, New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. J Am Chem Soc, 2017, 139(5), 1706-1713.
87. Liu, Y.; Z. Wang; W. Teng; H. Zhu; J. Wang; A.A. Elzatahry; D. Al-Dahyan; W. Li; Y. DengD. Zhao, A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. Journal of Materials Chemistry A, 2018, 6(7), 3162-3170.
88. Li, C.; Q. Li; Y.V. Kaneti; D. Hou; Y. YamauchiY. Mai, Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev, 2020, 49(14), 4681-4736.
89. Ogawa, M., Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. J. Am. Chem. SOC, 1994.
90. Y. Lu , R.G., C. A. Drewien , M. T. Anderson , C. J. Brinker , W. Gong , Y. Guo , H. Soyez , B. Dunn , M. H. Huang and J. I. Zink Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature, 1997.
91. M. Templin , A.F., A. Du Chesne , H. Leist , Y. Zhang , R. Ulrich , V. Schädler and U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science, 1997.
92. Stacy M. Morris, P.F.F., and Mietek Jaroniec, Ordered Mesoporous Alumina-Supported Metal Oxides. J Am Chem Soc, 2008.
93. Niesz, K.; P. YangG.A. Somorjai, Sol-gel synthesis of ordered mesoporous alumina. Chem Commun (Camb), 2005, (15), 1986-7.
94. Quan Yuan, A.-X.Y., Chen Luo, Ling-Dong Sun, Ya-Wen Zhang,H.-C.L. Wen-Tao Duan, * and Chun-Hua Yan*, Facile Synthesis for Ordered Mesoporous γ-Aluminas with High Thermal Stability. JACS., 2008.
95. Xie, Y.; D. Kocaefe; Y. Kocaefe; J. ChengW. Liu, The Effect of Novel Synthetic Methods and Parameters Control on Morphology of Nano-alumina Particles. Nanoscale Res Lett, 2016, 11(1), 259.
96. Pan, D.; M. Guo; M. He; S. Chen; X. Wang; F. YuR. Li, Facile synthesis of highly ordered mesoporous chromium–alumina catalysts with improved catalytic activity and stability. Journal of Materials Research, 2014, 29(6), 811-819.
97. Liu, Q.; Y. Qiao; Y. Tian; F. Gu; Z. ZhongF. Su, Ordered Mesoporous Ni–Fe–Al Catalysts for CO Methanation with Enhanced Activity and Resistance to Deactivation. Industrial & Engineering Chemistry Research, 2017, 56(35), 9809-9820.
98. Ashok, J.S. Kawi, Nickel–Iron Alloy Supported over Iron–Alumina Catalysts for Steam Reforming of Biomass Tar Model Compound. ACS Catalysis, 2013, 4(1), 289-301.
99. Kim, K.H.; Y.-W. You; M.H. Jeong; B.G. Jung; M. Im; Y.J. Kim; I. Heo; T.-S. ChangJ.H. Lee, Influence of support acidity on CO2 reforming of ethane at high temperature. Journal of CO2 Utilization, 2021, 53.
100. Zhang, R.; H. Wang; S. Tang; C. Liu; F. Dong; H. YueB. Liang, Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas. ACS Catalysis, 2018, 8(10), 9280-9286.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明