參考文獻 |
1. Wang, Y.; D. He; H. ChenD. Wang, Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 117-149.
2. Ashok, J.; S. Pati; P. Hongmanorom; Z. Tianxi; C. JunmeiS. Kawi, A review of recent catalyst advances in CO2 methanation processes. Catalysis Today, 2020, 356, 471-489.
3. Wittich, K.; M. Krämer; N. BottkeS.A. Schunk, Catalytic Dry Reforming of Methane: Insights from Model Systems. ChemCatChem, 2020, 12(8), 2130-2147.
4. Thomas, M.; T. Partridge; B.H. HarthornN. Pidgeon, Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nature Energy, 2017, 2(5).
5. Stacy M. Morris, P.F.F., and Mietek Jaroniec, Ordered Mesoporous Alumina-Supported Metal Oxides. Journal of the American Chemical Society, 2008.
6. Li, B.; Y. Luo; B. Li; X. YuanX. Wang, Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane. Fuel Processing Technology, 2019, 193, 348-360.
7. Xie, Z.; Y. Xu; M. Xie; X. Chen; J.H. Lee; E. Stavitski; S. KattelJ.G. Chen, Reactions of CO(2) and ethane enable CO bond insertion for production of C3 oxygenates. Nat Commun, 2020, 11(1), 1887.
8. Tsiotsias, A.I.; N.D. Charisiou; I.V. YentekakisM.A. Goula, Bimetallic Ni-Based Catalysts for CO(2) Methanation: A Review. Nanomaterials (Basel), 2020, 11(1).
9. Theofanidis, S.A.; V.V. Galvita; H. PoelmanG.B. Marin, Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. ACS Catalysis, 2015, 5(5), 3028-3039.
10. Tanksale, A.; J.N. BeltraminiG.M. Lu, A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 2010, 14(1), 166-182.
11. Noor, Z.Z.; R.O. Yusuf; A.H. Abba; M.A. Abu HassanM.F. Mohd Din, An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renewable and Sustainable Energy Reviews, 2013, 20, 378-384.
12. Donald J. Wuebbles*, K.H., Atmospheric methane and global change. Earth-Science Reviews, 2002.
13. Bahari, M.B.; N.H.H. Phuc; B. Abdullah; F. AlenazeyD.-V.N. Vo, Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. Journal of Environmental Chemical Engineering, 2016, 4(4), 4830-4838.
14. M.A. Pefia a, j.p.G.b., J.L.G. Fierro a,*, New catalytic routes for syngas and hydrogen production. Applied Catalysis A: General, 1996.
15. Abdullah, B.; N.A. Abd GhaniD.-V.N. Vo, Recent advances in dry reforming of methane over Ni-based catalysts. Journal of Cleaner Production, 2017, 162, 170-185.
16. Aramouni, N.A.K.; J.G. Touma; B.A. Tarboush; J. ZeaiterM.N. Ahmad, Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews, 2018, 82, 2570-2585.
17. Yan, B.; X. Yang; S. Yao; J. Wan; M. Myint; E. Gomez; Z. Xie; S. Kattel; W. XuJ.G. Chen, Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts. ACS Catalysis, 2016, 6(11), 7283-7292.
18. Zhao, B.; B. Yan; S. Yao; Z. Xie; Q. Wu; R. Ran; D. Weng; C. ZhangJ.G. Chen, LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane. Journal of Catalysis, 2018, 358, 168-178.
19. Myint, M.; B. Yan; J. Wan; S. ZhaoJ.G. Chen, Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts. Journal of Catalysis, 2016, 343, 168-177.
20. Tsiotsias, A.I.; N.D. Charisiou; V. Sebastian; S. Gaber; S.J. Hinder; M.A. Baker; K. PolychronopoulouM.A. Goula, A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane. International Journal of Hydrogen Energy, 2022, 47(8), 5337-5353.
21. Gärtner, C.A.; A.C. van VeenJ.A. Lercher, Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 2013, 5(11), 3196-3217.
22. Theofanidis, S.A.; C. Loizidis; E. HeracleousA.A. Lemonidou, CO2-oxidative ethane dehydrogenation over highly efficient carbon-resistant Fe-catalysts. Journal of Catalysis, 2020, 388, 52-65.
23. López, E.; E. Heracleous; A.A. LemonidouD.O. Borio, Study of a multitubular fixed-bed reactor for ethylene production via ethane oxidative dehydrogenation. Chemical Engineering Journal, 2008, 145(2), 308-315.
24. Rodríguez, M.L.; D.E. Ardissone; E. López; M.N. PederneraD.O. Borio, Reactor Designs for Ethylene Production via Ethane Oxidative Dehydrogenation: Comparison of Performance. Industrial & Engineering Chemistry Research, 2010, 50(5), 2690-2697.
25. F. Cavani, F.T., The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins. Catalysis Today, 1995.
26. Moulijn*, X.X.a.J.A., Mitigation of CO2 by chemical conversion: Plausible chemical reactions and promising products. Energy & Fuels, 1996.
27. Hu, J.; L. Buelens; S.-A. Theofanidis; V.V. Galvita; H. PoelmanG.B. Marin, CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping. Journal of CO2 Utilization, 2016, 16, 8-16.
28. Zhang, P.; J. TongK. Huang, Role of CO2 in Catalytic Ethane-to-Ethylene Conversion Using a High-Temperature CO2 Transport Membrane Reactor. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 6889-6897.
29. Lei, T.; C. Miao; W. Hua; Y. YueZ. Gao, Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts. Catalysis Letters, 2018, 148(6), 1634-1642.
30. Shuang Deng, S.L., Huiquan Li, and Yi Zhang, Oxidative Dehydrogenation of Ethane to Ethylene with CO2 over Fe-Cr/ZrO2Catalysts. Industrial & Engineering Chemistry Research 2009.
31. Hurtado Cotillo, M.; D. Unsihuay; C.E. Santolalla-Vargas; A. Paredes Doig; R. Sun KouG. Picasso, Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane. Catalysis Today, 2020, 356, 312-321.
32. Beretta, A.P. Forzatti, High-Temperature and Short-Contact-Time Oxidative Dehydrogenation of Ethane in the Presence of Pt/Al2O3 and BaMnAl11O19 Catalysts. Journal of Catalysis, 2001, 200(1), 45-58.
33. Li, X.; Z. Yang; L. Zhang; Z. He; R. Fang; Z. Wang; Y. YanJ. Ran, Effect of Pd doping in (Fe/Ni)/CeO2 catalyst for the reaction path in CO2 oxidative ethane dehydrogenation/reforming. Energy, 2021, 234.
34. Bustinza, A.; M. Frías; Y. LiuE. García-Bordejé, Mono- and bimetallic metal catalysts based on Ni and Ru supported on alumina-coated monoliths for CO2 methanation. Catalysis Science & Technology, 2020, 10(12), 4061-4071.
35. Bian, Z.; S. Das; M.H. Wai; P. HongmanoromS. Kawi, A Review on Bimetallic Nickel-Based Catalysts for CO(2) Reforming of Methane. Chemphyschem, 2017, 18(22), 3117-3134.
36. Heracleous, E.; A. Lee; K. WilsonA. Lemonidou, Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. Journal of Catalysis, 2005, 231(1), 159-171.
37. Seo, H., Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2) Reforming of Methane. Catalysts, 2018, 8(3).
38. Fan, C.; Y.A. Zhu; Y. Xu; Y. Zhou; X.G. ZhouD. Chen, Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study. J Chem Phys, 2012, 137(1), 014703.
39. Theofanidis, S.A.; V.V. Galvita; C. Konstantopoulos; H. PoelmanG.B. Marin, Fe-Based Nano-Materials in Catalysis. Materials (Basel), 2018, 11(5).
40. Yan, B.; S. Yao; S. Kattel; Q. Wu; Z. Xie; E. Gomez; P. Liu; D. SuJ.G. Chen, Active sites for tandem reactions of CO(2) reduction and ethane dehydrogenation. Proc Natl Acad Sci U S A, 2018, 115(33), 8278-8283.
41. Kim, S.M.; P.M. Abdala; T. Margossian; D. Hosseini; L. Foppa; A. Armutlulu; W. van Beek; A. Comas-Vives; C. CoperetC. Muller, Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. J Am Chem Soc, 2017, 139(5), 1937-1949.
42. Stavros Alexandros Theofanidis, V.V.G., Hilde Poelman, and Guy B Marin, Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catalysis, 2015.
43. Serrer, M.-A.; A. Gaur; J. Jelic; S. Weber; C. Fritsch; A.H. Clark; E. Saraçi; F. StudtJ.-D. Grunwaldt, Structural dynamics in Ni–Fe catalysts during CO2 methanation – role of iron oxide clusters. Catalysis Science & Technology, 2020, 10(22), 7542-7554.
44. Raseale, S.; W. Marquart; G. Prieto; M. ClaeysN. Fischer, CO2 reduction via oxidative dehydrogenation and dry reforming of ethane over Fe3Ni1 nanoparticles: The influence of the oxide support. Catalysis Today, 2024, 441.
45. Shi, X.; S. JiK. Wang, Oxidative Dehydrogenation of Ethane to Ethylene with Carbon dioxide over Cr–Ce/SBA-15 Catalysts. Catalysis Letters, 2008, 125(3-4), 331-339.
46. Deng, S.; H. Li; S. LiY. Zhang, Activity and characterization of modified Cr2O3/ZrO2 nano-composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO2. Journal of Molecular Catalysis A: Chemical, 2007, 268(1-2), 169-175.
47. Rahmani, F.; M. HaghighiB. Mohammadkhani, Enhanced dispersion of Cr nanoparticles over nanostructured ZrO2 -doped ZSM-5 used in CO2 -oxydehydrogenation of ethane. Microporous and Mesoporous Materials, 2017, 242, 34-49.
48. Zafarnak, S.; A. Bakhtyari; H. Taghvaei; M.R. RahimpourA. Iulianelli, Conversion of ethane to ethylene and hydrogen by utilizing carbon dioxide: Screening catalysts. International Journal of Hydrogen Energy, 2021, 46(37), 19717-19730.
49. Yan, B.; S. YaoJ.G. Chen, Effect of Oxide Support on Catalytic Performance of FeNi‐based Catalysts for CO2‐assisted Oxidative Dehydrogenation of Ethane. ChemCatChem, 2019, 12(2), 494-503.
50. Abdulrasheed, A.; A.A. Jalil; Y. Gambo; M. Ibrahim; H.U. HambaliM.Y. Shahul Hamid, A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews, 2019, 108, 175-193.
51. Das, S.; M. Sengupta; J. PatelA. Bordoloi, A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Applied Catalysis A: General, 2017, 545, 113-126.
52. Hassani Rad, S.J.; M. Haghighi; A. Alizadeh Eslami; F. RahmaniN. Rahemi, Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition. International Journal of Hydrogen Energy, 2016, 41(11), 5335-5350.
53. Kwon, Y.; J.E. Eichler; M.E. FlotoC.B. Mullins, The complementary relationship between Ru/Al2O3 and Ni/Al2O3 catalyst for dry reforming of methane. Chemical Engineering Research and Design, 2023, 195, 624-636.
54. Xu, Y.; X. Du; L. Shi; T. Chen; H. Wan; P. Wang; S. Wei; B. Yao; J. ZhuM. Song, Improved performance of Ni/Al2O3 catalyst deriving from the hydrotalcite precursor synthesized on Al2O3 support for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46(27), 14301-14310.
55. Márquez‐Alvarez, C.; N. Žilková; J. Pérez‐ParienteJ. Čejka, Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas. Catalysis Reviews, 2008, 50(2), 222-286.
56. Pakhare, D.J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev, 2014, 43(22), 7813-37.
57. Eli Ruckenstein *, Y.H.H., Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Applied Catalysis A 1995.
58. Lonergan, W.W.; T. Wang; D.G. VlachosJ.G. Chen, Effect of oxide support surface area on hydrogenation activity: Pt/Ni bimetallic catalysts supported on low and high surface area Al2O3 and ZrO2. Applied Catalysis A: General, 2011, 408(1-2), 87-95.
59. Azancot, L.; L.F. Bobadilla; J.L. Santos; J.M. Córdoba; M.A. CentenoJ.A. Odriozola, Influence of the preparation method in the metal-support interaction and reducibility of Ni-Mg-Al based catalysts for methane steam reforming. International Journal of Hydrogen Energy, 2019, 44(36), 19827-19840.
60. Kumar, R.; K. Kumar; K.K. PantN.V. Choudary, Tuning the metal-support interaction of methane tri-reforming catalysts for industrial flue gas utilization. International Journal of Hydrogen Energy, 2020, 45(3), 1911-1929.
61. Ewbank, J.L.; L. Kovarik; F.Z. DialloC. Sievers, Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Applied Catalysis A: General, 2015, 494, 57-67.
62. Tang, H.; F. Liu; J. Wei; B. Qiao; K. Zhao; Y. Su; C. Jin; L. Li; J.J. Liu; J. WangT. Zhang, Ultrastable Hydroxyapatite/Titanium-Dioxide-Supported Gold Nanocatalyst with Strong Metal-Support Interaction for Carbon Monoxide Oxidation. Angew Chem Int Ed Engl, 2016, 55(36), 10606-11.
63. Li, S.; Y. Fu; W. Kong; J. Wang; C. Yuan; B. Pan; H. Zhu; X. Chen; Y. Zhang; J. ZhangY. Sun, Tuning strong metal-support interactions to boost activity and stability of aluminium nitride supported nickel catalysts for dry reforming of methane. Fuel, 2023, 343.
64. Li, M.; S. FangY.H. Hu, Self-stabilization of Ni/Al2O3 Catalyst with a NiAl2O4 Isolation Layer in Dry Reforming of Methane. Catalysis Letters, 2021, 152(9), 2852-2859.
65. Huang, Q.; X. Fang; Q. Cheng; Q. Li; X. Xu; L. Xu; W. Liu; Z. Gao; W. ZhouX. Wang, Synthesis of a Highly Active and Stable Nickel‐Embedded Alumina Catalyst for Methane Dry Reforming: On the Confinement Effects of Alumina Shells for Nickel Nanoparticles. ChemCatChem, 2017, 9(18), 3563-3571.
66. Peng, H.; X. Zhang; X. Han; X. You; S. Lin; H. Chen; W. Liu; X. Wang; N. Zhang; Z. Wang; P. Wu; H. ZhuS. Dai, Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catalysis, 2019, 9(10), 9072-9080.
67. Hwang, S.; U.G. Hong; J. Lee; J.H. Baik; D.J. Koh; H. LimI.K. Song, Methanation of Carbon Dioxide Over Mesoporous Nickel–M–Alumina (M = Fe, Zr, Ni, Y, and Mg) Xerogel Catalysts: Effect of Second Metal. Catalysis Letters, 2012, 142(7), 860-868.
68. C. T. Kresge, M.E.L., W. J. Roth, J. C. Vartuli & J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992.
69. J. S. Beck, f.J.C.V., *f W. J. Roth,* * M. E. Leonowicz,* * C. T. Kresge,* *; K.D.S.C.T.-W.C.D.H.O.E.W.S.S.B. McCullen/J.B.H.a.J.L. Schlenker+, A new family of mesoporous molecular sieves prepared with liquid crystal templates. . J. Am, Chem. Soc., 1992.
70. Wu, J.; F. Xu; S. Li; P. Ma; X. Zhang; Q. Liu; R. FuD. Wu, Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv Mater, 2019, 31(4), e1802922.
71. Deng, Y.; J. Wei; Z. SunD. Zhao, Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev, 2013, 42(9), 4054-70.
72. Mandal, A.K.; J. MahmoodJ.B. Baek, Two‐Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat, 2017, 3(6), 373-391.
73. Markus Templin, A.F., Alexander Du Chesne, Heike Leist, Yuanming Zhang, Ralph Ulrich, Volker Schadler,U. Wiesner*, Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases. American Association for the Advancement of Science, 2016.
74. Wei, C.; F. Xue; C. Miao; Y. Yue; W. Yang; W. HuaZ. Gao, Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts. Catalysts, 2016, 6(11).
75. Al-Awadi, A.S.; A.M. El-Toni; S.M. Al-Zahrani; A.E. Abasaeed; M. Alhoshan; A. Khan; J.P. LabisA. Al-Fatesh, Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Applied Catalysis A: General, 2019, 584.
76. Rahmani, F.M. Haghighi, One-pot hydrothermal synthesis of ZSM-5–CeO2 composite as a support for Cr-based nanocatalysts: influence of ceria loading and process conditions on CO2-enhanced dehydrogenation of ethane. RSC Advances, 2016, 6(92), 89551-89563.
77. Cai, W.; J. Yu; C. Anand; A. VinuM. Jaroniec, Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011, 23(5), 1147-1157.
78. Zhangxiong Wu, Q.L., Dan Feng,Paul A. Webley,and Dongyuan Zhao*, Ordered Mesoporous Crystalline γ-Al2O3 with Variable Architecture and Porosity from a Single Hard Template. J. Am. Chem. SOC, 2010.
79. Stephen A. Bagshaw, E.P., * Thomas J. Pinnavaiat, Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. SCIENCE, 1995.
80. Peidong Yang, D.Z., David I. Margolese, Bradley F. Chmelka & Galen D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998.
81. Baca, M.; E. de la Rochefoucauld; E. Ambroise; J.-M. Krafft; R. Hajjar; P.P. Man; X. CarrierJ. Blanchard, Characterization of mesoporous alumina prepared by surface alumination of SBA-15. Microporous and Mesoporous Materials, 2008, 110(2-3), 232-241.
82. Cabrera, S.; J.E. Haskouri; J. Alamo; A. Beltrán; D. Beltrán; S. Mendioroz; M.D. MarcosP. Amorós, Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Advanced Materials, 1999, 11(5), 379-381.
83. Changmook Kim, Y.K., Pil Kim and Jongheop Yi†, Synthesis of Mesoporous Alumina by using a Cost-effective Template. Korean J. Chem. Eng, 2003.
84. S. Valange a, b., J.-L. Guth a, F. Kolenda c, S. Lacombe d, Z. Gabelica, Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Microporous and Mesoporous Materials, 2000.
85. Xu, X.; S.K. Megarajan; Y. ZhangH. Jiang, Ordered Mesoporous Alumina and Their Composites Based on Evaporation Induced Self-Assembly for Adsorption and Catalysis. Chemistry of Materials, 2019, 32(1), 3-26.
86. Wei, J.; Z. Sun; W. Luo; Y. Li; A.A. Elzatahry; A.M. Al-Enizi; Y. DengD. Zhao, New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. J Am Chem Soc, 2017, 139(5), 1706-1713.
87. Liu, Y.; Z. Wang; W. Teng; H. Zhu; J. Wang; A.A. Elzatahry; D. Al-Dahyan; W. Li; Y. DengD. Zhao, A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. Journal of Materials Chemistry A, 2018, 6(7), 3162-3170.
88. Li, C.; Q. Li; Y.V. Kaneti; D. Hou; Y. YamauchiY. Mai, Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev, 2020, 49(14), 4681-4736.
89. Ogawa, M., Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. J. Am. Chem. SOC, 1994.
90. Y. Lu , R.G., C. A. Drewien , M. T. Anderson , C. J. Brinker , W. Gong , Y. Guo , H. Soyez , B. Dunn , M. H. Huang and J. I. Zink Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature, 1997.
91. M. Templin , A.F., A. Du Chesne , H. Leist , Y. Zhang , R. Ulrich , V. Schädler and U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science, 1997.
92. Stacy M. Morris, P.F.F., and Mietek Jaroniec, Ordered Mesoporous Alumina-Supported Metal Oxides. J Am Chem Soc, 2008.
93. Niesz, K.; P. YangG.A. Somorjai, Sol-gel synthesis of ordered mesoporous alumina. Chem Commun (Camb), 2005, (15), 1986-7.
94. Quan Yuan, A.-X.Y., Chen Luo, Ling-Dong Sun, Ya-Wen Zhang,H.-C.L. Wen-Tao Duan, * and Chun-Hua Yan*, Facile Synthesis for Ordered Mesoporous γ-Aluminas with High Thermal Stability. JACS., 2008.
95. Xie, Y.; D. Kocaefe; Y. Kocaefe; J. ChengW. Liu, The Effect of Novel Synthetic Methods and Parameters Control on Morphology of Nano-alumina Particles. Nanoscale Res Lett, 2016, 11(1), 259.
96. Pan, D.; M. Guo; M. He; S. Chen; X. Wang; F. YuR. Li, Facile synthesis of highly ordered mesoporous chromium–alumina catalysts with improved catalytic activity and stability. Journal of Materials Research, 2014, 29(6), 811-819.
97. Liu, Q.; Y. Qiao; Y. Tian; F. Gu; Z. ZhongF. Su, Ordered Mesoporous Ni–Fe–Al Catalysts for CO Methanation with Enhanced Activity and Resistance to Deactivation. Industrial & Engineering Chemistry Research, 2017, 56(35), 9809-9820.
98. Ashok, J.S. Kawi, Nickel–Iron Alloy Supported over Iron–Alumina Catalysts for Steam Reforming of Biomass Tar Model Compound. ACS Catalysis, 2013, 4(1), 289-301.
99. Kim, K.H.; Y.-W. You; M.H. Jeong; B.G. Jung; M. Im; Y.J. Kim; I. Heo; T.-S. ChangJ.H. Lee, Influence of support acidity on CO2 reforming of ethane at high temperature. Journal of CO2 Utilization, 2021, 53.
100. Zhang, R.; H. Wang; S. Tang; C. Liu; F. Dong; H. YueB. Liang, Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas. ACS Catalysis, 2018, 8(10), 9280-9286. |