博碩士論文 111324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:3.129.25.7
姓名 施詠馨(Yung-Hsin,SHIH)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Research on the hydrogen storage performance of g-C3N4 nanotubes after microwave irradiation)
相關論文
★ High Specific Area g-C3N4 Produced by Ball Milling for On Board Hydrogen Storage★ A Study on the Relationship Between the Manufacturing Methods of Graphitic-Carbon Nitride (g-C3N4) and their Hydrogen Storage Performance
★ Research on High Entropy Alloys for Hydrogen Storage and TiZr-based Alloys with Different Microstructures★ A Study on the Hydrogen Storage of AB3-type La–Ca–Mg–Ni-based Hydrogen Storage Alloys and Composites
★ A study on the electrical and thermal dissipation properties of carbon nanotube/graphene composite papers★ Study on the Cost-Effective High-Entropy Alloys for Efficient Hydrogen Storage
★ 應用於陰離子交換膜水電解器之三元非貴金屬觸媒開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
考慮到與傳統儲氫系統相關的安全性和成本問題,本研究旨在探索使用石墨氮化碳(g-C3N4)奈米管作為儲氫材料。 g-C3N4 奈米管因其獨特的性質(例如豐富的活性邊緣、輕質結構以及高氫充放電速率)而成為有前途的候選材料。本研究重點研究微波輻照處理後球磨 g-C3N4 奈米管的儲氫性能。目的是在微波輻射過程中在管壁上引入缺陷和孔洞,從而增強氫的吸附。如先前的研究所示,樣本經過球磨,球填充率為 4.4% 和 10%,確保充分混合。然後將球磨的樣品進行微波輻射,以研究暴露時間和材料形態對微波吸收和隨後的儲氫能力的影響。
微波輻射處理以中等功率等級(350-500W)進行,持續時間為4分鐘和8分鐘。值得注意的是,BET 分析表明,10% 球填充率的樣品在微波照射 4 分鐘後表現出最佳的微孔生成(2 至 7 nm)。拉曼光譜還表明,照射 4 分鐘後 D 帶發生顯著變化,表明 g-C3N4 結構內形成了缺陷。這些微孔對於增強氫氣進入管道至關重要,從而改善氫氣儲存。使用 Sievert 方法進行的儲氫測試證實,10% 球填充率的樣品優於 4.4% 的樣品,表現出更穩健的簇狀形態和優異的微波吸收特性。這導致更有效的微孔形成並改善儲氫性能。對於10%球填充率的樣品,在3.7 MPa氫氣壓力下微波照射4分鐘後,儲氫能力從0.036 wt.%增加到0.071 wt.%。然而,長時間的照射(8分鐘)會導緻小孔和管狀結構的破壞,形成較大的孔(> 50 nm)並減少表面積。這種效應在 4.4% 球填充率樣本中尤其明顯,在照射 8 分鐘後顯示最低的儲氫容量 (0.0225 wt.%)。
儲氫性能的改善歸因於4分鐘微波處理過程中缺陷的產生、孔結構的改變和表面功能化。然而,較長的照射時間(8 分鐘)會對材料結構產生不利影響,這可能是由於焊接和聚結等原子級損傷機製造成的。這項研究表明,精確控制球磨參數和微波輻射持續時間對於優化 g-C3N4 奈米管的儲氫能力至關重要。結果表明,精心調整的微波處理可以顯著提高這些材料在儲氫應用中的性能。
關鍵字:儲氫,石墨氮化碳(g-C3N4),微波輻射,白內障運動模式,原子級損傷機制。
摘要(英) Given the safety and cost issues associated with traditional hydrogen storage systems, this study aims to explore the use of graphitic carbon nitride (g-C3N4) nanotubes as a hydrogen storage material. g-C3N4 nanotubes have emerged as promising candidates due to their unique properties, such as abundant active edges, lightweight structure, and high hydrogen charging and discharging rates. This study focuses on investigating the hydrogen storage properties of ball-milled g-C3N4 nanotubes after microwave irradiation treatment. The aim is to introduce defects and holes in the tube walls during the microwave irradiation process, thereby enhancing hydrogen adsorption.
The samples were ball-milled with ball filling rate of 4.4% and 10%, ensuring thorough mixing, as demonstrated in previous studies. The ball-milled samples were then subjected to microwave irradiation to study the effects of exposure time and material morphology on microwave absorption and subsequent hydrogen storage capabilities.
Microwave irradiation treatments were conducted at moderate power levels (350-500 W) for durations of 4 and 8 minutes. Notably, the BET analysis showed that the 10% ball filling rate sample exhibited optimal micropore generation (2 to 7 nm) after 4 minutes of microwave irradiation. Raman spectroscopy also indicated significant changes in the D band after 4 minutes of irradiation, suggesting the formation of defects within the g-C3N4 structure. These micropores are crucial for enhancing hydrogen ingress into the tubes, thereby improving hydrogen storage. Hydrogen storage tests using Sievert′s method confirmed that the 10% ball filling rate sample outperformed the 4.4% sample, exhibiting a more robust cluster-like morphology and superior microwave absorption characteristics. This led to more efficient micropore formation and improved hydrogen storage performance. For the 10% ball filling rate sample, the hydrogen storage capacity increased from 0.036 wt.% to 0.071 wt.% after 4 minutes of microwave irradiation at 3.7 MPa hydrogen pressure. However, prolonged irradiation (8 minutes) resulted in the destruction of small pores and tubular structures, forming larger pores (>50 nm) and reducing surface area. This effect was especially pronounced in the 4.4% ball filling rate samples, which showed the lowest hydrogen storage capacity (0.0225 wt.%) after 8 minutes of irradiation.
The improvement in hydrogen storage performance is attributed to the generation of defects, pore structure modification, and surface functionalization during the 4-minute microwave treatment. However, longer irradiation times (8 minutes) had detrimental effects on the material structure, likely due to atomic-level damage mechanisms such as welding and coalescence. This study demonstrates the critical importance of precise control over ball milling parameters and microwave irradiation duration in optimizing the hydrogen storage capabilities of g-C3N4 nanotubes. The results suggest that carefully tuned microwave treatments can significantly enhance the performance of these materials in hydrogen storage applications.
關鍵字(中) ★ 儲氫
★ 石墨氮化碳(g-C3N4)
★ 微波輻射
★ 白內障運動模式
★ 原子級損傷機制
關鍵字(英) ★ hydrogen storage
★ graphitic carbon nitride (g-C3N4)
★ microwave irradiation
★ cataracting motion mode
★ atomic-level damage mechanisms
論文目次 摘要 i
Abstract ii
Acknowledgments iv
Table of contents vi
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 The background of hydrogen energy 1
1.2 Objective of this work 4
1.3 Thesis Structure 5
Chapter 2 Literature Survey 6
2.1 Introduction 6
An Overview of Hydrogen Storage Technology 8
Physical-based Hydrogen Storage 11
Material-based Hydrogen Storage 13
2.2 A detail of Carbon-Based Solid-State Materials for Hydrogen Storge 15
2.3 An overview of the common hydrogen characterization techniques. 17
2.4 Common Modification Used in Carbon-Based Materials 19
The technology of microwave irradiation 19
(A) Microwave absorption theory and material interaction 21
(B) Structures and properties of some selected microwave absorbers 23
(C) Fundamental for carbon-enabled microwave chemistry 23
2.5 The application of graphitic Carbon Nitride (g-C3N4) Nanotubes 26
Chapter 3 Experimental Methodology 28
3.1 Sample Fabrication 29
The essential parameters on ball milling procedure 30
3.2 Sample modification by microwave treatment 32
3.3 Characterization 35
3.4 Hydrogen adsorption characterization 37
Chapter 4 Experimental Results and Discussion 43
4.1 Introduction 43
4.2 Microstructure study 44
BET analysis 44
SEM analysis 50
TEM and XRD Analysis 53
FTIR Analysis 58
4.3 Raman analysis 60
Peak position characterization with FTIR fingerprint analysis 61
Defect characterization 63
4.4 Hydrogen Storage Characterization 72
Pressure-Composition Isotherm 72
Chapter 5 Conclusion and Future work 76
5.1 Conclusion 76
5.2 Future work 78
Reference 80
參考文獻 [1] H.Z.Geng, T.H.Kim, S.C.Lim, H.K.Jeong, M.H.Jin, Y.W.Jo, Y.H.Lee, Hydrogen Storage In Microwave-Treated Multi-Walled Carbon Nanotubes, Int. J. Hydrogen Energy 35 (2010) 2073–2082.
[2] IEA, World Energy Outlook 2021, 2021. https://www.iea.org/reports/world-energy-outlook-2021.
[3] I.S.Moosa, H.A.Kazem, L.M.R.Al-Iessi, Production Of Hydrogen Via Renewable Energy And Investigation Of Water Molecular Changes During Electrolysis Process, J. Renew. Energy Environ. 8 (2021) 19–28.
[4] O.Hydrogen and Fuel Cell Technologies Office, E.E.& R.ENERGY, Hydrogen Storage, 2023. https://www.energy.gov/eere/fuelcells/hydrogen-storage.
[5] E.Boateng, A.Chen, Recent Advances In Nanomaterial-Based Solid-State Hydrogen Storage, Mater. Today Adv. 6 (2020) 100022.
[6] L.Schlapbach, A.Züttel, Hydrogen-Storage Materials For Mobile Applications, Nature 414 (2001) 353–358.
[7] U.DoE, Target Explanation Document: Onboard Hydrogen Storage For Light-Duty Fuel Cell Vehicles, US Drive 1 (2017) 1–29.
[8] U.S.C. Read, G. Thomas, G. Ordaz, S. Satyapal, No Title, 2007. https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/materials-science-and-engineering/batteries-supercapacitors-and-fuel-cells/on-board-vehicular-hydrogen-storage.
[9] BNEF, Hydrogen Economy Outlook, Bloom. New Energy Financ. (2020) 12. https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf.
[10] M.Ni, M.K.H.Leung, D.Y.C.Leung, K.Sumathy, A Review And Recent Developments In Photocatalytic Water-Splitting Using TiO2 For Hydrogen Production, Renew. Sustain. Energy Rev. 11 (2007) 401–425.
[11] Y.Liu, P.Zhou, B.Jeong, H.Wang, Design And Optimization Of A Type-C Tank For Liquid Hydrogen Marine Transport, Int. J. Hydrogen Energy 48 (2023) 34885–34896.
[12] L.S.Jensen, C.Kaul, N.B.Juncker, M.H.Thomsen, T.Chaturvedi, Biohydrogen Production In Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review, Energies 15 (2022).
[13] A.M.Elberry, J.Thakur, A.Santasalo-Aarnio, M.Larmi, Large-Scale Compressed Hydrogen Storage As Part Of Renewable Electricity Storage Systems, Int. J. Hydrogen Energy 46 (2021) 15671–15690.
[14] A.Rödl, C.Wulf, M.Kaltschmitt, Assessment Of Selected Hydrogen Supply Chains-Factors Determining The Overall GHG Emissions, Hydrog. Supply Chain Des. Deploy. Oper. (2018) 81–109.
[15] H.Yahashi, A.Yamashita, N.Shigemitsu, S.Goto, K.Kida, T.Inou, Development Of High-Pressure Hydrogen Storage System For New FCV, SAE Tech. Pap. (2021).
[16] X.Shen, X.Zhang, H.Liu, Research And Progress On Safety Issues Related To High-Pressure Hydrogen Leakage, Huagong Xuebao/CIESC J. 72 (2021) 1217–1229.
[17] Y.Su, H.Lv, W.Zhou, C.Zhang, Review Of The Hydrogen Permeability Of The Liner Material Of Type Iv On-Board Hydrogen Storage Tank, World Electr. Veh. J. 12 (2021) 1–19.
[18] Addcomposites, Types of Hydrogen Tanks: Technological Differences and Advantages Explained, 2023. https://www.addcomposites.com/post/what-is-a-hydrogen-tank-tank-types.
[19] M.Li, Y.Bai, C.Zhang, Y.Song, S.Jiang, D.Grouset, M.Zhang, Review On The Research Of Hydrogen Storage System Fast Refueling In Fuel Cell Vehicle, Int. J. Hydrogen Energy 44 (2019) 10677–10693.
[20] H.W.Langmi, N.Engelbrecht, P.M.Modisha, D.Bessarabov, Hydrogen Storage, Electrochem. Power Sources Fundam. Syst. Appl. Hydrog. Prod. by Water Electrolysis (2022) 455–486.
[21] R.Bardhan, A.M.Ruminski, A.Brand, J.J.Urban, Magnesium Nanocrystal-Polymer Composites: A New Platform For Designer Hydrogen Storage Materials, Energy Environ. Sci. 4 (2011) 4882–4895.
[22] Q.Lai, M.Paskevicius, D.A.Sheppard, C.E.Buckley, A.W.Thornton, M.R.Hill, Q.Gu, J.Mao, Z.Huang, H.K.Liu, Z.Guo, A.Banerjee, S.Chakraborty, R.Ahuja, K.F.Aguey-Zinsou, Hydrogen Storage Materials For Mobile And Stationary Applications: Current State Of The Art, ChemSusChem 8 (2015) 2789–2825.
[23] J.H.Park, S.J.Park, Expansion Of Effective Pore Size On Hydrogen Physisorption Of Porous Carbons At Low Temperatures With High Pressures, Carbon N. Y. 158 (2020) 364–371.
[24] G.Gizer, H.Cao, J.Puszkiel, C.Pistidda, A.Santoru, W.Zhang, T.He, P.Chen, T.Klassen, M.Dornheim, Enhancement Effect Of Bimetallic Amide K2Mn(NH2)4 And In-Situ Formed KH And Mn4N On The Dehydrogenation/Hydrogenation Properties Of Li–Mg–N–H System, Energies 12 (2019).
[25] Y.Luo, L.Sun, F.Xu, Z.Liu, Improved Hydrogen Storage Of LiBH4 And NH3BH3 By Catalysts, J. Mater. Chem. A 6 (2018) 7293–7309.
[26] G.Han, Y.Lu, H.Jia, Z.Ding, L.Wu, Y.Shi, G.Wang, Q.Luo, Y.Chen, J.Wang, G.Huang, X.Zhou, Q.Li, F.Pan, Magnesium-Based Energy Materials: Progress, Challenges, And Perspectives, J. Magnes. Alloy. 11 (2023) 3896–3925.
[27] W.S.Ko, K.B.Park, H.K.Park, Density Functional Theory Study On The Role Of Ternary Alloying Elements In TiFe-Based Hydrogen Storage Alloys, J. Mater. Sci. Technol. 92 (2021) 148–158.
[28] A.Etiemble, H.Idrissi, L.Roué, On The Decrepitation Mechanism Of MgNi And LaNi5-Based Electrodes Studied By In Situ Acoustic Emission, J. Power Sources 196 (2011) 5168–5173.
[29] K.Manoharan, V.K.Palaniswamy, K.Raman, R.Sundaram, Investigation Of Solid State Hydrogen Storage Performances Of Novel NaBH4/Ah-BN Nanocomposite As Hydrogen Storage Medium For Fuel Cell Applications, J. Alloys Compd. 860 (2021) 158444.
[30] S.Wei, J.Liu, Y.Xia, H.Zhang, R.Cheng, L.Sun, F.Xu, P.Huang, F.Rosei, A.A.Pimerzin, H.J.Seifert, H.Pan, Remarkable Catalysis Of Spinel Ferrite XFe2O4 (X = Ni, Co, Mn, Cu, Zn) Nanoparticles On The Dehydrogenation Properties Of LiAlH4: An Experimental And Theoretical Study, J. Mater. Sci. Technol. 111 (2022) 189–203.
[31] J.Zhu, Y.Mao, H.Wang, J.Liu, L.Ouyang, M.Zhu, Reaction Route Optimized LiBH4for High Reversible Capacity Hydrogen Storage By Tunable Surface-Modified AlN, ACS Appl. Energy Mater. 3 (2020) 11964–11973.
[32] D.Browning, M.Gerrard, J.Lakeman, I.Mellor, R.Mortimer, M.Turpin, Studies Into The Storage Of Hydrogen In Carbon Nanofibers: Proposal Of A Possible Reaction Mechanism, Nano Lett. 2 (2002).
[33] A.Sarkar, S.Saha, S.Ganguly, D.Banerjee, K.Kargupta, Hydrogen Storage On Graphene Using Benkeser Reaction, Int. J. Energy Res. 38 (2014).
[34] A.Züttel, P.Sudan, P.Mauron, T.Kiyobayashi, C.Emmenegger, L.Schlapbach, Hydrogen Storage In Carbon Nanostructures, Int. J. Hydrogen Energy 27 (2002) 203–212.
[35] J.Cheng, X.Yuan, L.Zhao, D.Huang, M.Zhao, L.Dai, R.Ding, GCMC Simulation Of Hydrogen Physisorption On Carbon Nanotubes And Nanotube Arrays, Carbon N. Y. 42 (2004) 2019–2024.
[36] E.Masika, R.Mokaya, Preparation Of Ultrahigh Surface Area Porous Carbons Templated Using Zeolite 13X For Enhanced Hydrogen Storage, Prog. Nat. Sci. Mater. Int. 23 (2013) 308–316.
[37] H.Kabbour, T.F.Baumann, Satcher Joe H., A.Saulnier, C.C.Ahn, Toward New Candidates For Hydrogen Storage:  High-Surface-Area Carbon Aerogels, Chem. Mater. 18 (2006) 6085–6087.
[38] I.Cabria, M.J.López, J.A.Alonso, Simulation Of The Hydrogen Storage In Nanoporous Carbons With Different Pore Shapes, Int. J. Hydrogen Energy 36 (2011) 10748–10759.
[39] S.Gadipelli, Z.X.Guo, Graphene-Based Materials: Synthesis And Gas Sorption, Storage And Separation, Prog. Mater. Sci. 69 (2015) 1–60.
[40] M.R.Zakaria, M.F.Omar, M.S.Zainol Abidin, H.Md Akil, M.M.A.B.Abdullah, Recent Progress In The Three-Dimensional Structure Of Graphene-Carbon Nanotubes Hybrid And Their Supercapacitor And High-Performance Battery Applications, Compos. Part A Appl. Sci. Manuf. 154 (2022) 106756.
[41] A.Ariharan, B.Viswanathan, V.Nandhakumar, Nitrogen-Incorporated Carbon Nanotube Derived From Polystyrene And Polypyrrole As Hydrogen Storage Material, Int. J. Hydrogen Energy 43 (2018) 5077–5088.
[42] J.Chattopadhyay, T.S.Pathak, D.Pak, Heteroatom-Doped Metal-Free Carbon Nanomaterials As Potential Electrocatalysts, Molecules 27 (2022).
[43] G.Speranza, The Role Of Functionalization In The Applications Of Carbon Materials: An Overview, C 5 (2019).
[44] M.Oubenali, M.Kasbaji, M.Mennani, M.Mbarki, A.Moubarik, Introduction to Carbon Nanostructures: History, Classifications, and Recent Advances BT - Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications, in: A.Barhoum, K.Deshmukh (Eds.), Springer International Publishing, Cham, 2023: pp. 1–54.
[45] R.Guo, Y.-S.Tseng, I.Retita, G.Bahmanrokh, B.Arkhurst, S.L.I.Chan, A Detailed Experimental Comparison On The Hydrogen Storage Ability Of Different Forms Of Graphitic Carbon Nitride (Bulk, Nanotubes And Sheets) With Multiwalled Carbon Nanotubes, Mater. Today Chem. 30 (2023) 101508.
[46] P.Tsai, Processing, Modification And Characterisations Of Carbon-Based And Carbon/AB5 Composite Hydrogen Storage Materials, (2012). http://unsworks.unsw.edu.au/fapi/datastream/unsworks:10254/SOURCE02.
[47] F.J.Desai, M.N.Uddin, M.M.Rahman, R.Asmatulu, A Critical Review On Improving Hydrogen Storage Properties Of Metal Hydride Via Nanostructuring And Integrating Carbonaceous Materials, Int. J. Hydrogen Energy 48 (2023) 29256–29294.
[48] Y.-W.Lee, B.M.Clemens, K.J.Gross, Novel Sieverts’ Type Volumetric Measurements Of Hydrogen Storage Properties For Very Small Sample Quantities, J. Alloys Compd. 452 (2008) 410–413.
[49] M.P.Suh, H.J.Park, T.K.Prasad, D.-W.Lim, Hydrogen Storage In Metal–Organic Frameworks, Chem. Rev. 112 (2012) 782–835.
[50] D.P.Broom, C.J.Webb, Pitfalls In The Characterisation Of The Hydrogen Sorption Properties Of Materials, Int. J. Hydrogen Energy 42 (2017) 29320–29343.
[51] J.Felbinger, J.Haverich, I.Bürger, M.Linder, Thermodynamic Characterisation And Application Of The ZrNi–H Metal Hydride System In The Low-Pressure Regime, J. Mater. Chem. A (2024).
[52] G.Sandrock, A Panoramic Overview Of Hydrogen Storage Alloys From A Gas Reaction Point Of View, J. Alloys Compd. 293–295 (1999) 877–888.
[53] D.A.C., J.K. M., B.T. A., K.C. H., B.D. S., H.M. J., Storage Of Hydrogen In Single-Walled Carbon Nanotubes, Nature 386 (1997) 377–379.
[54] S.H.Barghi, T.T.Tsotsis, M.Sahimi, Chemisorption, Physisorption And Hysteresis During Hydrogen Storage In Carbon Nanotubes, Int. J. Hydrogen Energy 39 (2014) 1390–1397.
[55] R.Zacharia, K.Y.Kim, A.K.M.Fazle Kibria, K.S.Nahm, Enhancement Of Hydrogen Storage Capacity Of Carbon Nanotubes Via Spill-Over From Vanadium And Palladium Nanoparticles, Chem. Phys. Lett. 412 (2005) 369–375.
[56] Sai Li, Xiaodong Yang, Haiyan Zhu, Yan Liu, Yongning Liu, Hydrogen Storage Alloy And Carbon Nanotubes Mixed Catalyst In A Direct Borohydride Fuel Cell, J. Mater. Sci. Technol. 27 (2011).
[57] H.Yamaguchi, Y.Nejoh, Numerical Simulation Of Hydrogen Storage Into A Single-Walled Carbon Nanotube In A Plasma, IEEJ Trans. Electr. Electron. Eng. 3 (2008) 596–598.
[58] J.Li, T.Furuta, H.Goto, T.Ohashi, Y.Fujiwara, S.Yip, Theoretical Evaluation Of Hydrogen Storage Capacity In Pure Carbon Nanostructures, J. Chem. Phys. 119 (2003) 2376–2385.
[59] D.J.Durbin, C.Malardier-Jugroot, Review Of Hydrogen Storage Techniques For On Board Vehicle Applications, Int. J. Hydrogen Energy 38 (2013) 14595–14617.
[60] Z.Xiong, Y.S.Yun, H.J.Jin, Applications Of Carbon Nanotubes For Lithium Ion Battery Anodes, Materials (Basel). 6 (2013) 1138–1158.
[61] B.J.Landi, M.J.Ganter, C.D.Cress, R.A.DiLeo, R.P.Raffaelle, Carbon Nanotubes For Lithium Ion Batteries, Energy Environ. Sci. 2 (2009) 638–654.
[62] C.DeLas Casas, W.Li, A Review Of Application Of Carbon Nanotubes For Lithium Ion Battery Anode Material, J. Power Sources 208 (2012) 74–85.
[63] A.M.Rashidi, A.Nouralishahi, A.A.Khodadadi, Y.Mortazavi, A.Karimi, K.Kashefi, Modification Of Single Wall Carbon Nanotubes (SWNT) For Hydrogen Storage, Int. J. Hydrogen Energy 35 (2010) 9489–9495.
[64] R.S.Rajaura, S.Srivastava, P.K.Sharma, S.Mathur, R.Shrivastava, S.S.Sharma, Y.K.Vijay, Structural And Surface Modification Of Carbon Nanotubes For Enhanced Hydrogen Storage Density, Nano-Structures and Nano-Objects 14 (2018) 57–65.
[65] J.Lyu, V.Kudiiarov, A.Lider, An Overview Of The Recent Progress In Modifications Of Carbon Nanotubes For Hydrogen Adsorption, Nanomaterials 10 (2020).
[66] K.S.Rather, S.U., & Nahm, Hydrogen Uptake Of High-Energy Ball Milled Nickel-Multiwalled Carbon Nanotube Composites, Mater. Res. Bull. 49 (2014) 525–530.
[67] Y.Wang, W.Deng, X.Liu, X.Wang, Electrochemical Hydrogen Storage Properties Of Ball-Milled Multi-Wall Carbon Nanotubes, Int. J. Hydrogen Energy 34 (2009) 1437–1443.
[68] K.Awasthi, R.Kamalakaran, A.K.Singh, O.N.Srivastava, Ball-Milled Carbon And Hydrogen Storage, Int. J. Hydrogen Energy 27 (2002) 425–432.
[69] Y.Zhang, Q.Zhang, Q.Shi, Z.Cai, Z.Yang, Acid-Treated G-C3N4 With Improved Photocatalytic Performance In The Reduction Of Aqueous Cr(VI) Under Visible-Light, Sep. Purif. Technol. 142 (2015) 251–257.
[70] C.H.Chen, C.C.Huang, Hydrogen Storage By KOH-Modified Multi-Walled Carbon Nanotubes, Int. J. Hydrogen Energy 32 (2007) 237–246.
[71] R.Z.Ma, B.Q.Wei, C.L.Xu, J.Liang, D.H.Wu, Morphology Changes Of Carbon Nanotubes Under Laser Irradiation, Carbon N. Y. 38 (2000) 636–638.
[72] S.Renukadevi, A.P.Jeyakumari, A One-Pot Microwave Irradiation Route To Synthesis Of CoFe2O4-G-C3N4 Heterojunction Catalysts For High Visible Light Photocatalytic Activity: Exploration Of Efficiency And Stability, Diam. Relat. Mater. 109 (2020) 108012.
[73] J.Li, Y.Tang, R.Jin, Q.Meng, Y.Chen, X.Long, L.Wang, H.Guo, S.Zhang, Ultrasonic-Microwave Assisted Synthesis Of GO/G-C3N4 Composites For Efficient Photocatalytic H2 Evolution, Solid State Sci. 97 (2019) 105990.
[74] M.Wu, X.He, B.Jing, T.Wang, C.Wang, Y.Qin, Z.Ao, S.Wang, T.An, Novel Carbon And Defects Co-Modified G-C3N4 For Highly Efficient Photocatalytic Degradation Of Bisphenol A Under Visible Light, J. Hazard. Mater. 384 (2020) 121323.
[75] G.W.Xi He, Ling Lei, Jinglin Wen, Yufeng Zhao, Longzhe Cui, One-Pot Synthesis Of C-Doping And Defects Co-Modified G-C3N4 For Enhanced Visible-Light Photocatalytic Degradation Of Bisphenol A, J. Environ. Chem. Eng. 10 (2022).
[76] S.Luo, Q.Zhou, W.Xue, N.Liao, Effect Of Pt Doping On Sensing Performance Of G-C3N4 For Detecting Hydrogen Gas: A DFT Study, Vacuum 200 (2022) 111014.
[77] X.Zhang, X.Zhang, P.Yang, S.P.Jiang, Pt Clusters Embedded In G-C3N4 Nanosheets To Form Z-Scheme Heterostructures With Enhanced Photochemical Performance, Surfaces and Interfaces 27 (2021) 101450.
[78] Z.Jiang, X.Zhang, H.S.Chen, P.Yang, S.P.Jiang, Fusiform-Shaped G-C3N4 Capsules With Superior Photocatalytic Activity, Small 16 (2020) 1–10.
[79] Q.Hu, Y.He, F.Wang, J.Wu, Z.Ci, L.Chen, R.Xu, M.Yang, J.Lin, L.Han, D.Zhang, Microwave Technology: A Novel Approach To The Transformation Of Natural Metabolites, Chinese Med. (United Kingdom) 16 (2021) 1–22.
[80] Polshettiwar, Vivek & Mallikarjuna, Microwave-Assisted Chemistry: A Rapid And Sustainable Route To Synthesis Of Organics And Nanomaterials, Aust. J. Chem. 62 (2009) 16–26.
[81] Z.Wang, C.Yu, H.Huang, W.Guo, J.Yu, J.Qiu, Carbon-Enabled Microwave Chemistry: From Interaction Mechanisms To Nanomaterial Manufacturing, Nano Energy 85 (2021) 106027.
[82] H.J.Kitchen, S.R.Vallance, J.L.Kennedy, N.Tapia-Ruiz, L.Carassiti, A.Harrison, A.G.Whittaker, T.D.Drysdale, S.W.Kingman, D.H.Gregory, Modern Microwave Methods In Solid-State Inorganic Materials Chemistry: From Fundamentals To Manufacturing, Chem. Rev. 114 (2014) 1170–1206.
[83] S.A.Galema, Microwave Chemistry, Chem. Soc. Rev. 26 (1997) 233.
[84] Y.J.Zhu, F.Chen, Microwave-Assisted Preparation Of Inorganic Nanostructures In Liquid Phase, Chem. Rev. 114 (2014) 6462–6555.
[85] Y.T.Lee, P.J.Tsai, V.K.Peterson, B.Yang, K.S.Lin, M.Zhu, K.L.Lim, Y.S.Tseng, S.L.I.Chan, A Microstructural And Neutron-Diffraction Study On The Interactions Between Microwave-Irradiated Multiwalled Carbon Nanotubes And Hydrogen, J. Mater. Sci. 51 (2016) 1308–1315.
[86] C.-F.Chen, Chieng-Ming & Chen, Mi & Leu, Fang-Chin & Hsu, Shu-Yu & Wang, Sheng-Chuan & Shi, Shih-Chen & Chen, Purification Of Multi-Walled Carbon Nanotubes By Microwave Digestion Method. Diamond And Related Materials, Diam. Relat. Mater. 13 (2004) 1182–1186.
[87] A.MacKenzie, Kieran & Dunens, Oscar & Harris, A Review Of Carbon Nanotube Purification By Microwave Assisted Acid Digestion., Sep. Purif. Technol. 66 (2009) 209–222.
[88] X.Zeng, X.Cheng, R.Yu, G.D.Stucky, Electromagnetic Microwave Absorption Theory And Recent Achievements In Microwave Absorbers, Carbon N. Y. 168 (2020) 606–623.
[89] S.S.Pinto, M.C.Rezende, Performance Prediction Of Microwave Absorbers Based On POMA/Carbon Black Composites In The Frequency Range Of 8.2 To 20 GHz, J. Aerosp. Technol. Manag. 10 (2018) 1–9.
[90] S.O.Nelson, Dielectric Properties Measurement Techniques And Applications, Trans. Am. Soc. Agric. Eng. 42 (1999) 523–529.
[91] M.Green, X.Chen, Recent Progress Of Nanomaterials For Microwave Absorption, J. Mater. 5 (2019) 503–541.
[92] Wahyu Widanarto, Ananda Iqbal Ekaputra, Mukhtar Effendi, Wahyu Tri Cahyanto, Sib Krishna Ghoshal, Candra Kurniawan, Erfan Handoko, Mudrik Alaydrus, Neodymium Ions Activated Barium Ferrite Composites For Microwave X-Band Absorber Applications: Synthesis And Characterizations, Compos. Commun. 19 (2020).
[93] E.E.Mensah, Z.Abbas, R.S.Azis, A.M.Khamis, Effect Of Microstructure On Complex Permittivity And Microwave Absorption Properties Of Recycled α -Fe 2 O 3 Nanopowder Prepared By High-Energy Ball Milling Technique , Mater. Express 12 (2022) 319–326.
[94] N.Saifuddin, A.Z.Raziah, A.R.Junizah, Carbon Nanotubes : A Review On Structure And Their Interaction With Proteins, 2013 (2013).
[95] I.L.Dongzhi Zhang, Kyungmi Lee, Hierarchical Trajectory Clustering For Spatio-Temporal Periodic Pattern Mining, Expert Syst. Appl. 92 (2018) 1–11.
[96] Hualong Peng, Xiang Zhang, Huili Yang, Zhiqiang Xiong, Chongbo Liu, Yu Xie, Fabrication Of Core-Shell Nanoporous Carbon@chiral Polyschiff Base Iron(II) Composites For High-Performance Electromagnetic Wave Attenuationin The Low-Frequency, J. Alloys Compd. 850 (2021).
[97] Yijing Zhao, Yani Zhang, Chaoran Yang, Laifei Cheng, Ultralight And Flexible SiC Nanoparticle-Decorated Carbon Nanofiber Mats For Broad-Band Microwave Absorption, Carbon N. Y. 171 (2021) 474–483.
[98] Fanbin Meng, Huagao Wang, Fei Huang, Yifan Guo, Zeyong Wang, David Hui, Zuowan Zhou, Graphene-Based Microwave Absorbing Composites: A Review And Prospective, Compos. Part B Eng. (2018) 260–277.
[99] V.Singh, D.Das, Chapter 3 - Potential of Hydrogen Production From Biomass, in: P.E.V.B.T.-S. and E. of H.-B.E.T.deMiranda (Ed.), Academic Press, 2019: pp. 123–164.
[100] Y.Yuan, L.Yin, S.Cao, L.Gu, G.Xu, P.Du, H.Chai, Y.Liao, C.Xue, Microwave-Assisted Heating Synthesis: A General And Rapid Strategy For Large-Scale Production Of High Crystalline G-C3N4 With Enhanced Photocatalytic H2 Production, Green Chem. 16 (2014).
[101] A.Sarimeseli, M.Coskun, M.Yuceer, Modeling Microwave Drying Kinetics Of Thyme (Thymus Vulgaris L.) Leaves Using ANN Methodology And Dried Product Quality, J. Food Process. Preserv. 38 (2012).
[102] J.H.Hai Bang Truong, Sungjun Bae, Jinwoo Cho, Advances In Application Of G–C3N4–Based Materials For Treatment Of Polluted Water And Wastewater Via Activation Of Oxidants And Photoelectrocatalysis: A Comprehensive Review, Chemosphere 286 (2022). https://www.sciencedirect.com/science/article/pii/S0045653521022098.
[103] V.V.Quoc Dat Le, Phi Nguyen Ngoc, Ha Tran Huu, Thanh Huong Thi Nguyen, Thang Nguyen Van, Lan Nguyen Thi, Minh Kha Le, Van Man Tran, My Loan Phung Le, A Novel Anode Sn/G-C3N4 Composite For Lithium-Ion Batteries, Chem. Phys. Lett. 796 (2022).
[104] S.Arabia, G ‑ C 3 N 4 ‑ Based Photocatalysts For Hydrogen Generation, (2014).
[105] Mehreen Ashiq, Rao Aqil Shehzad, Javed Iqbal, Khurshid Ayub, Sensing Applications Of Graphitic Carbon Nitride (G-C3N4) For Sensing SO2 And SO3 – A DFT Study, Phys. B Condens. Matter 676 (2024). Sensing applications of graphitic carbon nitride (g-C3N4) for sensing SO2 and SO3 – A DFT study.
[106] X.Yang, L.Zhao, S.Wang, J.Li, B.Chi, Recent Progress Of G-C3N4 Applied In Solar Cells, J. Mater. 7 (2021) 728–741.
[107] J.Safaei, N.A.Mohamed, M.F.Mohamad Noh, M.F.Soh, N.A.Ludin, M.A.Ibrahim, W.N.Roslam Wan Isahak, M.A.Mat Teridi, Graphitic Carbon Nitride (G-C3N4) Electrodes For Energy Conversion And Storage: A Review On Photoelectrochemical Water Splitting, Solar Cells And Supercapacitors, J. Mater. Chem. A 6 (2018) 22346–22380.
[108] S.L.I.C.R. Guo, Y.-S. Tseng, I. Retita, G. Bahmanrokh, B. Arkhurst, A Detailed Experimental Comparison On The Hydrogen Storage Ability Of Different Forms Of Graphitic Carbon Nitride (Bulk, Nanotubes And Sheets) With Multiwalled Carbon Nanotubes, Mater. Today Chem. 30 (2023). https://www.sciencedirect.com/science/article/pii/S2468519423001350.
[109] L.Zhang, D.Ren, W.Ding, High Hydrogen Storage Ability Of A Decorated G-C3N4 Monolayer Decorated With Both Mg And Li: A Density Functional Theory (DFT) Study, Int. J. Hydrogen Energy 47 (2022) 28548–28555.
[110] Michio Inagaki, Tomoki Tsumura, Tarou Kinumoto, Masahiro Toyoda, Graphitic Carbon Nitrides (G-C3N4) With Comparative Discussion To Carbon Materials, Carbon N. Y. 141 (2019) 580–607. https://www.sciencedirect.com/science/article/pii/S0008622318309047.
[111] E.Kroke, M.Schwarz, E.Horath-Bordon, P.Kroll, B.Noll, A.D.Norman, Tri-S-Triazine Derivatives. Part I. From Trichloro-Tri-S-Triazine To Graphitic C3N4 Structures, New J. Chem. 26 (2002) 508–512.
[112] G.Koh, Y.W.Zhang, H.Pan, First-Principles Study On Hydrogen Storage By Graphitic Carbon Nitride Nanotubes, Int. J. Hydrogen Energy 37 (2012) 4170–4178.
[113] T.Wang, X., Zhou, C., Shi, R., Liu, Q., Waterhouse, G. I., Wu, L., Tung, C., Zhang, Supramolecular Precursor Strategy For The Synthesis Of Holey Graphitic Carbon Nitride Nanotubes With Enhanced Photocatalytic Hydrogen Evolution Performance, Nano Res. 12 (2019) 2385–2389.
[114] E.W.Lemmon, M.L.Huber, J.W.Leachman, Revised Standardized Equation For Hydrogen Gas Densities For Fuel Consumption Applications., J. Res. Natl. Inst. Stand. Technol. 113 (2008) 341–350.
[115] S. ullahRather, Preparation, Characterization And Hydrogen Storage Studies Of Carbon Nanotubes And Their Composites: A Review, Int. J. Hydrogen Energy 45 (2020) 4653–4672.
[116] J.Y.Geng HZ, Kim TH, Lim SC, Jeong HK, Jin MH, Hydrogen Storage In Microwave-Treated Multi-Walled Carbon Nanotubes., Int J Hydrog. Energy 35 (2010).
[117] H.Z.Geng, T.H.Kim, S.C.Lim, H.K.Jeong, M.H.Jin, Y.W.Jo, Y.H.Lee, Hydrogen Storage In Microwave-Treated Multi-Walled Carbon Nanotubes, Int. J. Hydrogen Energy 35 (2010) 2073–2082.
[118] L.Xu, J.Zhang, J.Ding, T.Liu, G.Shi, X.Li, W.Dang, Y.Cheng, R.Guo, Pore Structure And Fractal Characteristics Of Different Shale Lithofacies In The Dalong Formation In The Western Area Of The Lower Yangtze Platform, Minerals 10 (2020).
[119] M.M.Labani, R.Rezaee, A.Saeedi, A.AlHinai, Evaluation Of Pore Size Spectrum Of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion And Mercury Porosimetry: A Case Study From The Perth And Canning Basins, Western Australia, J. Pet. Sci. Eng. 112 (2013) 7–16.
[120] W.Huang, X.Ma, X.Zhou, J.Liu, T.He, H.Tao, S.Li, L.Hao, Characteristics And Controlling Factors Of Pore Structure Of Shale In The 7th Member Of Yanchang Formation In Huachi Area, Ordos Basin, China, J. Nat. Gas Geosci. 8 (2023) 319–336.
[121] W.Ji, Y.Song, Z.Jiang, M.Meng, Q.Liu, F.Gao, Micron-To Nano-Pore Characteristics In The Shale Of Longmaxi Formation, Southeast Sichuan Basin, Pet. Res. 2 (2017) 156–168.
[122] Z.A.Alothman, A Review: Fundamental Aspects Of Silicate Mesoporous Materials, Materials (Basel). 5 (2012) 2874–2902.
[123] J.Cao, C.Qin, Y.Wang, H.Zhang, G.Sun, Z.Zhang, Solid-State Method Synthesis Of SnO2-Decorated G-C3N4 Nanocomposites With Enhanced Gas-Sensing Property To Ethanol, Materials (Basel). 10 (2017) 1–14.
[124] A.Yadav, S.-W.Kang, Y.Hunge, Photocatalytic Degradation Of Rhodamine B Using Graphitic Carbon Nitride Photocatalyst, J. Mater. Sci. Mater. Electron. 32 (2021).
[125] Y.S.Jun, E.Z.Lee, X.Wang, W.H.Hong, G.D.Stucky, A.Thomas, From Melamine-Cyanuric Acid Supramolecular Aggregates To Carbon Nitride Hollow Spheres, Adv. Funct. Mater. 23 (2013) 3661–3667.
[126] D.Minh, D.Tran, T.Quan, N.Nguyen, Q.Huong, D.Nguyen Minh, H.H.Nguyen, Phyto-Synthesis Of Tin Oxide Nanoparticles Using Diospyros Mollis Leaves Extract Doped Graphitic Carbon Nitride For Photocatalytic Methylene Blue Degradation And Hydrogen Peroxide Production, Colloids Surfaces A Physicochem. Eng. Asp. 687 (2024) 133454.
[127] H.Niu, W.Zhao, H.Lv, Y.Yang, Y.Cai, Accurate Design Of Hollow/Tubular Porous G-C3N4 From Melamine-Cyanuric Acid Supramolecular Prepared With Mechanochemical Method, Chem. Eng. J. 411 (2021) 128400.
[128] Y.C.Zhao, D.L.Yu, H.W.Zhou, Y.J.Tian, O.Yanagisawa, Turbostratic Carbon Nitride Prepared By Pyrolysis Of Melamine, J. Mater. Sci. 40 (2005) 2645–2647.
[129] X.Li, J.Zhang, L.Shen, maYanmei, W.Lei, Q.Cui, G.Zou, Preparation And Characterization Of Graphitic Carbon Nitride Through Pyrolysis Of Melamine, Appl. Phys. A 94 (2009) 387–392.
[130] M.Guiotoku, C.Rambo, C.Maia, D.Hotza, Synthesis of carbon-based materials by microwave-assisted hydrothermal process, in: U.Chandra (Ed.), IntechOpen, Rijeka, 2011: p. Ch. 13.
[131] P.Li, Y.Hu, D.Lu, J.Wu, Y.Lv, Study On G-C3N4/BiVO4 Binary Composite Photocatalytic Materials, Micromachines 14 (2023).
[132] S.Demirci, S.Sagbas, O.Neli, A.KOCA, N.Sahiner, B, P, And S Heteroatom Doped, Bio- And Hemo-Compatible 2D Graphitic-Carbon Nitride (G-C3N4) With Antioxidant, Light-Induced Antibacterial, And Bioimaging Endeavors, Nanotechnology 35 (2023).
[133] X.Wang, C.Zhou, R.Shi, Q.Liu, G.Waterhouse, L.-Z.Wu, C.-H.Tung, T.Zhang, Supramolecular Precursor Strategy For The Synthesis Of Holey Graphitic Carbon Nitride Nanotubes With Enhanced Photocatalytic Hydrogen Evolution Performance, Nano Res. (2019).
[134] D.McNulty, Q.Ramasse, C.O’Dwyer, The Structural Conversion From α-AgVO3 To β-AgVO3: Ag Nanoparticle Decorated Nanowires With Application As Cathode Materials For Li-Ion Batteries, Nanoscale 8 (2016).
[135] T.Zhang, X.Shao, D.Zhang, X.Pu, Y.Tang, J.Yin, B.Ge, W.Li, Synthesis Of Direct Z-Scheme G-C 3 N 4 /Ag 2 VO 2 PO 4 Photocatalysts With Enhanced Visible Light Photocatalytic Activity, Sep. Purif. Technol. 195 (2017).
[136] M.Prabhaharan, A.R.Prabakaran, S.Srinivasan, S.Gunasekaran, Density Functional Theory Studies On Molecular Structure, Vibrational Spectra And Electronic Properties Of Cyanuric Acid, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138 (2015) 711–722.
[137] T.Narkbuakaew, P.Sujaridworakun, Synthesis Of Tri-S-Triazine Based G-C3N4 Photocatalyst For Cationic Rhodamine B Degradation Under Visible Light, Top. Catal. 63 (2020) 1–11.
[138] Q.Xiang, J.Yu, M.Jaroniec, Preparation And Enhanced Visible-Light Photocatalytic H2- Production Activity Of Graphene/C3N4 Composites, J. Phys. Chem. C 115 (2011) 7355–7363.
[139] X.Bai, L.Wang, Y.Wang, W.-Q.Yao, Enhanced Oxidation Ability Of G-C3N4 Photocatalyst Via C60 Modification, Appl. Catal. B Environ. s 152–153 (2014) 262–270.
[140] Y.Hou, Z.Wen, S.Cui, X.Guo, J.Chen, Constructing 2D Porous Graphitic C 3 N 4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS 2 Ternary Nanojunction With Enhanced Photoelectrochemical Activity, Adv. Mater. 25 (2013).
[141] Y.Chen, J.Li, Z.Hong, B.Shen, B.Lin, B.Gao, Origin Of The Enhanced Visible-Light Photocatalytic Activity Of CNT Modified G-C3N4 For H2 Production, Phys. Chem. Chem. Phys. 16 (2014).
[142] D.Hollmann, M.Karnahl, S.Tschierlei, K.Kailasam, M.Schneider, J.Radnik, K.Grabow, U.Bentrup, H.Junge, M.Beller, S.Lochbrunner, A.Thomas, A.Brückner, Structure-Activity Relationships In Bulk Polymeric And Sol-Gel-Derived Carbon Nitrides During Photocatalytic Hydrogen Production, Chem. Mater. 26 (2014) 1727–1733.
[143] S.Tonda, S.Kumar, S.Kandula, V.Shanker, Fe-Doped And -Mediated Graphitic Carbon Nitride Nanosheets For Enhanced Photocatalytic Performance Under Natural Sunlight, J. Mater. Chem. A Mater. Energy Sustain. 2 (2014) 6772.
[144] B.Long, J.Lin, X.Wang, Thermally-Induced Desulfurization And Conversion Of Guanidine Thiocyanate Into Graphitic Carbon Nitride Catalysts For Hydrogen Photosynthesis, J. Mater. Chem. A 2 (2014) 2942–2951.
[145] A.J.Lachawiec, T.R.DiRaimondo, R.T.Yang, A Robust Volumetric Apparatus And Method For Measuring High Pressure Hydrogen Storage Properties Of Nanostructured Materials, Rev. Sci. Instrum. 79 (2008).
指導教授 陳立業(Sammy Lap Ip Chan) 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明