參考文獻 |
[1] Bhaskar, S., Hemavathy, D., & Prasad, S. (2016). Prevalence of chronic
insomnia in adult patients and its correlation with medical comorbidities.
Journal of family medicine and primary care, 5(4), 780-784.
[2] Taylor, D. J., Mallory, L. J., Lichstein, K. L., Durrence, H. H., Riedel, B. W., &
Bush, A. J. (2007). Comorbidity of chronic insomnia with medical problems.
Sleep, 30(2), 213-218.
[3] Fernandez-Mendoza, J., & Vgontzas, A. N. (2013). Insomnia and its impact on
physical and mental health. Current psychiatry reports, 15, 1-8.
[4] Plante, D. T., Jensen, J. E., & Winkelman, J. W. (2012). The role of GABA in
primary insomnia. Sleep, 35(6), 741-742.
[5] Dhakal, R., Bajpai, V. K., & Baek, K.-H. (2012). Production of GABA (γaminobutyric acid) by microorganisms: a review. Brazilian Journal of
Microbiology, 43, 1230-1241.
[6] Cho, Y.-R., Chang, J.-Y., & Chang, H.-C. (2007). Production of γ-Aminobutyric
$ Acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its
neuroprotective effect on neuronal cells. Journal of Microbiology and
Biotechnology, 17(1), 104-109.
[7] Kim, J. E., Kim, J. S., Song, Y. C., Lee, J., & Lee, S. P. (2014). Novel
bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric
acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus
plantarum K154. Food Science and Biotechnology, 23, 1551-1559.
[8] Boonstra, E., De Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., &
Nieuwenhuis, S. (2015). Neurotransmitters as food supplements: the effects of
GABA on brain and behavior. Frontiers in psychology, 6, 167121.
[9] Li, L., Dou, N., Zhang, H., & Wu, C. (2021). The versatile GABA in plants.
Plant signaling & behavior, 16(3), 1862565.
[10] Tillakaratne, N. J., Medina-Kauwe, L., & Gibson, K. M. (1995). Gammaaminobutyric acid (GABA) metabolism in mammalian neural and nonneural
tissues. Comparative Biochemistry and Physiology Part A: Physiology, 112(2),
247-263.
[11] Rashmi, D., Zanan, R., John, S., Khandagale, K., & Nadaf, A. (2018). γaminobutyric acid (GABA): Biosynthesis, role, commercial production, and
applications. Studies in natural products chemistry, 57, 413-452.
[12] Steward, F. (1949). γ-Aminobutyric acid: a constituent of potato tubers? Science,
110, 439-440.
[13] Roberts, E., & Frankel, S. (1950). γ-Aminobutyric acid in brain: its formation
from glutamic acid. Journal of biological chemistry, 187, 55-63.
[14] Zhu, N., Wang, T., Ge, L., Li, Y., Zhang, X., & Bao, H. (2017). γ-Amino butyric
acid (GABA) synthesis enabled by copper-catalyzed carboamination of alkenes.
Organic letters, 19(18), 4718-4721.
[15] Hudec, J., Kobida, Ľ., Čanigová, M., Lacko‐Bartošová, M., Ložek, O., Chlebo,
P., Bystrická, J. (2015). Production of γ‐aminobutyric acid by microorganisms
from different food sources. Journal of the Science of Food and Agriculture,
95(6), 1190-1198.
[16] Narayan, V. S., & Nair, P. (1990). Metabolism, enzymology and possible roles
of 4-aminobutyrate in higher plants. Phytochemistry, 29(2), 367-375.
[17] Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a
bioactive compound in foods: a review. Journal of functional foods, 10, 407-
420.
[18] Wang, J.-J., Lee, C.-L., & Pan, T.-M. (2003). Improvement of monacolin K, γaminobutyric acid and citrinin production ratio as a function of environmental
conditions of Monascus purpureus NTU 601. Journal of Industrial
Microbiology and Biotechnology, 30(11), 669-676.
[19] Lu, X., Chen, Z., Gu, Z., & Han, Y. (2008). Isolation of γ-aminobutyric acidproducing bacteria and optimization of fermentative medium. Biochemical
Engineering Journal, 41(1), 48-52.
[20] Huang, J., Lehe, M., Sheng, Q., Shanjing, Y., & Dongqiang, L. (2007).
Purification and characterization of glutamate decarboxylase of Lactobacillus
brevis CGMCC 1306 isolated from fresh milk. Chinese Journal of Chemical
Engineering, 15(2), 157-161.
[21] Sun, T., Zhao, S., Wang, H., Cai, C., Chen, Y., & Zhang, H. (2009). ACEinhibitory activity and gamma-aminobutyric acid content of fermented skim
milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China.
European Food Research and Technology, 228, 607-612.
[22] Barla, F., Koyanagi, T., Tokuda, N., Matsui, H., Katayama, T., Kumagai, H.,
Enomoto, T. (2016). The γ-aminobutyric acid-producing ability under low pH
conditions of lactic acid bacteria isolated from traditional fermented foods of
Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory
peptides. Biotechnology Reports, 10, 105-110.
[23] Wang, Q., Liu, X., Fu, J., Wang, S., Chen, Y., Chang, K., & Li, H. (2018).
Substrate sustained release-based high efficacy biosynthesis of GABA by
Lactobacillus brevis NCL912. Microbial Cell Factories, 17, 1-8.
[24] Tajabadi, N., Ebrahimpour, A., Baradaran, A., Rahim, R. A., Mahyudin, N. A.,
Manap, M. Y. A., . . . Saari, N. (2015). Optimization of γ-aminobutyric acid
production by Lactobacillus plantarum Taj-Apis362from honeybees. Molecules,
20(4), 6654-6669.
[25] Nomura, M., Kimoto, H., Someya, Y., Furukawa, S., & Suzuki, I. (1998).
Production of γ-aminobutyric acid by cheese starters during cheese ripening.
Journal of Dairy Science, 81(6), 1486-1491.
[26] Li, H., & Cao, Y. (2010). Lactic acid bacterial cell factories for gammaaminobutyric acid. Amino acids, 39, 1107-1116.
[27] Ramos-Ruiz, R., Poirot, E., & Flores-Mosquera, M. (2018). GABA, a nonprotein amino acid ubiquitous in food matrices. Cogent Food & Agriculture,
4(1), 1534323.
[28] Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H.
(2002). GABA and GABA receptors in the central nervous system and other
organs. International review of cytology, 213, 1-47.
[29] Ghose, S., Winter, M. K., McCarson, K. E., Tamminga, C. A., & Enna, S. J.
(2011). The GABAB receptor as a target for antidepressant drug action. British
journal of pharmacology, 162(1), 1-17.
[30] Plante, D. T., Jensen, J. E., Schoerning, L., & Winkelman, J. W. (2012). Reduced
γ-aminobutyric acid in occipital and anterior cingulate cortices in primary
insomnia: a link to major depressive disorder? Neuropsychopharmacology,
37(6), 1548-1557.
[31] Ngo, D.-H., & Vo, T. S. (2019). An updated review on pharmaceutical properties
of gamma-aminobutyric acid. Molecules, 24(15), 2678.
[32] Choi, W.-c., Reid, S. N., Ryu, J.-k., Kim, Y., Jo, Y.-H., Jeon, B. H., Kim, Y.
(2016). Effects of γ-aminobutyric acid-enriched fermented sea tangle
(Laminaria japonica) on brain derived neurotrophic factor-related muscle
growth and lipolysis in middle aged women. Algae, 31(2), 175-187.
[33] Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., & Yamori,
Y. (2004). Effect of a γ-aminobutyric acid-enriched dairy product on the blood
pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats.
British Journal of Nutrition, 92(3), 411-417.
[34] Kleinrok, Z., Matuszek, M., Jesipowicz, J., Matuszek, B., Opolski, A., &
Radzikowski, C. (1998). GABA content and GAD activity in colon tumors
taken from patients with colon cancer or from xenografted human colon cancer
cells growing as sc tumors in athymic nu-nu mice. Journal of physiology and
pharmacology, 49(2).
[35] An, J., Seok, H., & Ha, E.-M. (2021). GABA-producing Lactobacillus
plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant
colorectal cancer cells via GABAB receptor signaling. Journal of Microbiology,
59(2), 202-216.
[36] Adeghate, E., & Ponery, A. (2002). GABA in the endocrine pancreas: cellular
localization and function in normal and diabetic rats. Tissue and Cell, 34(1), 1-
6.
[37] Al-Kuraishy, H. M., Hussian, N. R., Al-Naimi, M. S., Al-Gareeb, A. I., AlMamorri, F., & Al-Buhadily, A. K. (2021). The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal.
International Journal of Preventive Medicine, 12.
[38] Soltani, N., Qiu, H., Aleksic, M., Glinka, Y., Zhao, F., Liu, R., Ng, T. (2011).
GABA exerts protective and regenerative effects on islet beta cells and reverses
diabetes. Proceedings of the National Academy of Sciences, 108(28), 11692-
11697.
[39] Lee, B.-J., Kim, J.-S., Kang, Y. M., Lim, J.-H., Kim, Y.-M., Lee, M.-S., Je, J.-Y.
(2010). Antioxidant activity and γ-aminobutyric acid (GABA) content in sea
tangle fermented by Lactobacillus brevis BJ20 isolated from traditional
fermented foods. Food Chemistry, 122(1), 271-276.
[40] Aryannejad, A., Tabary, M., Noroozi, N., Mashinchi, B., Iranshahi, S., Tavangar,
S. M., . . . Dehpour, A. R. (2022). Anti-inflammatory Effects of Ivermectin in
the Treatment of Acetic Acid-Induced Colitis in Rats: Involvement of GABA B
Receptors. Digestive diseases and sciences, 1-11.
[41] Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi,
H. (2006). Relaxation and immunity enhancement effects of γ‐aminobutyric
acid (GABA) administration in humans. Biofactors, 26(3), 201-208.
[42] Jessen, K. R., Mirsky, R., Dennison, M. E., & Burnstock, G. (1979). GABA may
be a neurotransmitter in the vertebrate peripheral nervous system. Nature,
281(5726), 71-74.
[43] Chen, S., Tan, B., Xia, Y., Liao, S., Wang, M., Yin, J., Bin, P. (2019). Effects of
dietary gamma-aminobutyric acid supplementation on the intestinal functions
in weaning piglets. Food & function, 10(1), 366-378.
[44] Joy, P., Thomas, J., Mathew, S., & Skaria, P. (1998). Medicinal plants, kerala
agricultural university. Aromatic and Medicinal Plants Research Station, 4-6.
[45] Kim, J.-M., Kim, J.-S., Yoo, H., Choung, M.-G., & Sung, M.-K. (2008). Effects
of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on
colonic inflammation and cell proliferation in vitro and in vivo. Journal of
Agricultural and Food Chemistry, 56(18), 8427-8433.
[46] Hildebrand, D., Phillips, G., & Collins, G. (1986). Soybean [Glycine max (L.)
Merr.] Crops I (pp. 283-308): Springer.
[47] Nwokolo, E. (1996). Soybean (Glycine max (L.) Merr.) Food and Feed from
Legumes and Oilseeds (pp. 90-102): Springer.
[48] Meenu, M., Chen, P., Mradula, M., Chang, S. K., & Xu, B. (2023). New insights
into chemical compositions and health‐promoting effects of black beans
(Phaseolus vulgaris L.). Food Frontiers, 4(3), 1019-1038.
[49] Xu, Y., Xu, P., & Wang, X. (2009). Studies on extraction technology and
stability of black soybean polysaccharides. Food Res. Dev, 30, 49-52.
[50] Choung, M.-G., Baek, I.-Y., Kang, S.-T., Han, W.-Y., Shin, D.-C., Moon, H.-P.,
& Kang, K.-H. (2001). Isolation and determination of anthocyanins in seed
coats of black soybean (Glycine max (L.) Merr.). Journal of Agricultural and
Food Chemistry, 49(12), 5848-5851.
[51] Varnosfaderani, S. M., Razavi, S. H., & Fadda, A. M. (2019). Germination and
fermentation of soybeans: Two healthy steps to release angiotensin converting
enzyme inhibitory activity compounds. Applied Food Biotechnology, 6(4), 201-
215.
[52] Fetriyuna, F. (2015). The potential of darmo black soybean varieties as an
alternative of a promising food for future. International Journal on Advanced
Science, Engineering and Information Technology, 5(1), 44-46.
[53] Mateos-Aparicio, I., Cuenca, A. R., Villanueva-Suárez, M., & Zapata-Revilla,
M. (2008). Soybean, a promising health source. Nutricion hospitalaria, 23(4),
305-312.
[54] Council, N. R., Earth, D. o., Studies, L., & Swine, C. o. N. R. o. (2012). Nutrient
requirements of swine.
[55] Hoover, R., Hughes, T., Chung, H., & Liu, Q. (2010). Composition, molecular
structure, properties, and modification of pulse starches: A review. Food
research international, 43(2), 399-413.
[56] Landi, N., Pacifico, S., Piccolella, S., Di Giuseppe, A. M., Mezzacapo, M. C.,
Ragucci, S., . . . Di Maro, A. (2015). Valle Agricola lentil, an unknown lentil
(Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and
prebiotic source. Food & function, 6(9), 3155-3164.
[57] Chang, W.-H., Liu, J.-J., Chen, C.-H., Huang, T.-S., & Lu, F.-J. (2002). Growth
inhibition and induction of apoptosis in MCF-7 breast cancer cells by fermented
soy milk. Nutrition and cancer, 43(2), 214-226.
[58] Wang, H.-J., & Murphy, P. A. (1994). Isoflavone composition of American and
Japanese soybeans in Iowa: effects of variety, crop year, and location. Journal
of Agricultural and Food Chemistry, 42(8), 1674-1677.
[59] Bingham, S., Atkinson, C., Liggins, J., Bluck, L., & Coward, A. (1998). Phytooestrogens: where are we now? British Journal of Nutrition, 79(5), 393-406.
[60] Tepavčević, V., Atanacković, M., Miladinović, J., Malenčić, D., Popović, J., &
Cvejić, J. (2010). Isoflavone composition, total polyphenolic content, and
antioxidant activity in soybeans of different origin. Journal of medicinal food,
13(3), 657-664.
[61] Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019).
Isoflavones. Molecules, 24(6), 1076.
[62] Ganesan, K., & Xu, B. (2017). A critical review on polyphenols and health
benefits of black soybeans. Nutrients, 9(5), 455.
[63] Katsuzaki, H., Hibasami, H., Ohwaki, S., Ishikawa, K., Imai, K., Kimura, Y., &
Komiya, T. (2003). Cyanidin 3-O-β-D-glucoside isolated from skin of black
Glycine max and other anthocyanins isolated from skin of red grape induce
apoptosis in human lymphoid leukemia Molt 4B cells. Oncology reports, 10(2),
297-300.
[64] Shen, Y., Zhang, N., Tian, J., Xin, G., Liu, L., Sun, X., & Li, B. (2022).
Advanced approaches for improving bioavailability and controlled release of
anthocyanins. Journal of Controlled Release, 341, 285-299.
[65] Rekha, C., & Vijayalakshmi, G. (2010). Bioconversion of isoflavone glycosides
to aglycones, mineral bioavailability and vitamin B complex in fermented
soymilk by probiotic bacteria and yeast. Journal of applied microbiology,
109(4), 1198-1208.
[66] Hwang, C. E., Kim, S. C., Lee, H. Y., Suh, H. K., Cho, K. M., & Lee, J. H.
(2021). Enhancement of isoflavone aglycone, amino acid, and CLA contents in
fermented soybean yogurts using different strains: Screening of antioxidant and
digestive enzyme inhibition properties. Food Chemistry, 340, 128199.
[67] Cheng, K.-C., Lin, J.-T., & Liu, W.-H. (2011). Extracts from fermented black
soybean milk exhibit antioxidant and cytotoxic activities. Food Technology and
Biotechnology, 49(1), 111-117.
[68] Shrestha, A. K., Dahal, N. R., & Ndungutse, V. (2010). Bacillus fermentation of
soybean: A review. Journal of Food Science and Technology Nepal, 6, 1-9.
[69] Khosravi, A., & Razavi, S. H. (2021). Therapeutic effects of polyphenols in
fermented soybean and black soybean products. Journal of functional foods, 81,
104467.
[70] Kim, Y., Cho, J.-Y., Kuk, J.-H., Moon, J.-H., Cho, J.-I., Kim, Y.-C., & Park, K.-
H. (2004). Identification and antimicrobial activity of phenylacetic acid
produced by Bacillus licheniformis isolated from fermented soybean,
Chungkook-Jang. Current microbiology, 48, 312-317.
[71] Hosoi, T., & Kiuchi, K. (2003). Natto–a food made by fermenting cooked
soybeans with Bacillus subtilis (natto). Handbook of fermented functional foods,
20034675, 227-250.
[72] Kim, J. Y., Lee, S. Y., Park, N. Y., & Choi, H. S. (2012). Quality characteristics
of black soybean paste (Daemaekjang) prepared with Bacillus subtilis HJ18-4.
Korean Journal of Food Science and Technology, 44(6), 743-749.
[73] Deng, J., Wu, H. C., Zhao, X. X., & Shi, J. J. (2013). Isolation and identification
of Bacillus from spontaneous fermented sufu. Advanced Materials Research,
634, 1179-1183.
[74] Lee, Y.-C., Kung, H.-F., Huang, Y.-L., Wu, C.-H., Huang, Y.-R., & Tsai, Y.-H.
(2016). Reduction of biogenic amines during miso fermentation by
Lactobacillus plantarum as a starter culture. Journal of Food Protection, 79(9),
1556-1561.
[75] Li, S., Du, X., Feng, L., Mu, G., & Tuo, Y. (2021). The microbial community,
biogenic amines content of soybean paste, and the degradation of biogenic
amines by Lactobacillus plantarum HM24. Food Science & Nutrition, 9(12),
6458-6470.
[76] Kim, Y., Yoon, S., Lee, S. B., Han, H. W., Oh, H., Lee, W. J., & Lee, S.-M.
(2014). Fermentation of soy milk via Lactobacillus plantarum improves
dysregulated lipid metabolism in rats on a high cholesterol diet. PloS one, 9(2),
e88231.
[77] Apostolidis, E., Kwon, Y.-I., Ghaedian, R., & Shetty, K. (2007). Fermentation
of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus
enhances functionality for potential dietary management of hyperglycemia and
hypertension. Food biotechnology, 21(3), 217-236.
[78] Bao, W., Huang, X., Liu, J., Han, B., & Chen, J. (2020). Influence of
Lactobacillus brevis on metabolite changes in bacteria‐fermented sufu. Journal
of Food Science, 85(1), 165-172.
[79] Lee, R., Cho, H., Shin, M., Yang, J., Kim, E., Kim, H., Cho, Y. S. (2016).
Manufacturing and quality characteristics of the Doenjang made with
Aspergillus oryzae strains isolated in Korea. Microbiology and Biotechnology
Letters, 44(1), 40-47.
[80] Handoyo, T., & Morita, N. (2006). Structural and functional properties of
fermented soybean (tempeh) by using Rhizopus oligosporus. International
Journal of food properties, 9(2), 347-355.
[81] Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: a literature
survey. Critical reviews in microbiology, 28(4), 281-370.
[82] Rotar, M.-A., Semeniuc, C., Apostu, S., Suharoschi, R., Mureşan, C., Modoran,
C., . . . Culea, M. (2007). Researches concerning microbiological evolution of
lactic acid bacteria to yoghurt storage during shelf-life. Journal of
Agroalimentary Processes and Technologies, 13(1), 135-138.
[83] van Geel-Schutten, G., Flesch, F., Ten Brink, B., Smith, M., & Dijkhuizen, L.
(1998). Screening and characterization of Lactobacillus strains producing large
amounts of exopolysaccharides. Applied Microbiology and Biotechnology, 50,
697-703.
[84] Zúñiga, M., Pardo, I., & Ferrer, S. (1993). An improved medium for
distinguishing between homofermentative and heterofermentative lactic acid
bacteria. International journal of food microbiology, 18(1), 37-42.
[85] Linares, D. M., Gómez, C., Ross, R., & Stanton, C. (2017). Lactic acid bacteria
and bifidobacteria with potential to design natural biofunctional healthpromoting dairy foods. Frontiers in microbiology, 8, 248410.
[86] Mathur, H., Beresford, T. P., & Cotter, P. D. (2020). Health benefits of lactic
acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679.
[87] Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C.,
Usaga, J., Redondo-Solano, M., . . . López-Gómez, J. P. (2020). Multi-product
lactic acid bacteria fermentations: a review. Fermentation, 6(1), 23.
[88] Walter, J. (2008). Ecological role of lactobacilli in the gastrointestinal tract:
implications for fundamental and biomedical research. Applied and
environmental microbiology, 74(16), 4985-4996.
[89] Koll, P., Mändar, R., Smidt, I., Hütt, P., Truusalu, K., Mikelsaar, R.-H.,
Hammarström, L. (2010). Screening and evaluation of human intestinal
lactobacilli for the development of novel gastrointestinal probiotics. Current
microbiology, 61, 560-566.
[90] Fröhlich-Wyder, M.-T., Guggisberg, D., Badertscher, R., Wechsler, D., Wittwer,
A., & Irmler, S. (2013). The effect of Lactobacillus buchneri and Lactobacillus parabuchneri on the eye formation of semi-hard cheese. International Dairy
Journal, 33(2), 120-128.
[91] Garofalo, C., Osimani, A., Milanović, V., Taccari, M., Aquilanti, L., & Clementi,
F. (2015). The occurrence of beer spoilage lactic acid bacteria in craft beer
production. Journal of Food Science, 80(12), M2845-M2852.
[92] Heinl, S., Spath, K., Egger, E., & Grabherr, R. (2011). Sequence analysis and
characterization of two cryptic plasmids derived from Lactobacillus buchneri
CD034. Plasmid, 66(3), 159-168.
[93] Danner, H., Holzer, M., Mayrhuber, E., & Braun, R. (2003). Acetic acid
increases stability of silage under aerobic conditions. Applied and
environmental microbiology, 69(1), 562-567.
[94] Cohn, F. (1875). Untersuchungen Ü ber Bacterien: I: JU Kern.
[95] Nishito, Y., Osana, Y., Hachiya, T., Popendorf, K., Toyoda, A., Fujiyama, A.,
Sakakibara, Y. (2010). Whole genome assembly of a natto production strain
Bacillus subtilis natto from very short read data. BMC genomics, 11, 1-12.
[96] Wang, C., Du, M., Zheng, D., Kong, F., Zu, G., & Feng, Y. (2009). Purification
and characterization of nattokinase from Bacillus subtilis natto B-12. Journal of
Agricultural and Food Chemistry, 57(20), 9722-9729.
[97] Blanc, P., Loret, M., Santerre, A., Pareilleux, A., Prome, D., Promé, J.-C., Goma,
G. (1994). Pigments of monascus. Journal of Food Science, 59(4), 862-865.
[98] Park, S. J., Kim, D. H., Kang, H. J., Shin, M., Yang, S.-Y., Yang, J., & Jung, Y.
H. (2021). Enhanced production of γ-aminobutyric acid (GABA) using
Lactobacillus plantarum EJ2014 with simple medium composition. Lwt, 137,
110443.
[99] Hussin, F. S., Chay, S. Y., Hussin, A. S. M., Wan Ibadullah, W. Z., Muhialdin,
B. J., Abd Ghani, M. S., & Saari, N. (2021). GABA enhancement by simple
carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus
plantarum Taj-Apis362 and metabolomics profiling. Scientific reports, 11(1),
9417.
[100] Anggraini, L., Marlida, Y., Wizna, W., Jamsari, J., & Mirzah, M. (2019).
Optimization of nutrient medium for Pediococcus acidilactici DS15 to produce
GABA. Journal of World′s Poultry Research, 9(3), 139-146.
[101] Iorizzo, M., Paventi, G., & Di Martino, C. (2023). Biosynthesis of GammaAminobutyric Acid (GABA) by Lactiplantibacillus plantarum in Fermented
Food Production. Current Issues in Molecular Biology, 46(1), 200-220.
[102] Li, H., Qiu, T., Huang, G., & Cao, Y. (2010). Production of gammaaminobutyric acid by Lactobacillus brevis NCL912 using fed-batch
fermentation. Microbial Cell Factories, 9, 1-7.
[103] Krieg, N., & Hoffman, P. (1986). Microaerophily and oxygen toxicity. Annual
Reviews in Microbiology, 40(1), 107-130.
[104] Sassi, S., Ilham, Z., Jamaludin, N. S., Halim-Lim, S. A., Shin Yee, C., Weng
Loen, A. W., Wan-Mohtar, W. A. A. Q. I. (2022). Critical optimized conditions
for gamma-aminobutyric acid (GABA)-Producing tetragenococcus halophilus
strain KBC from a commercial soy sauce moromi in batch fermentation.
Fermentation, 8(8), 409.
[105] Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., & Kimura, T. (2005).
Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated
from traditional fermented foods. Food microbiology, 22(6), 497-504.
[106] Yang, S.-Y., Lü, F.-X., Lu, Z.-X., Bie, X.-M., Jiao, Y., Sun, L.-J., & Yu, B.
(2008). Production of γ-aminobutyric acid by Streptococcus salivarius subsp.
thermophilus Y2 under submerged fermentation. Amino acids, 34, 473-478.
[107] Harcombe, W. (2010). Novel cooperation experimentally evolved between
species. Evolution, 64(7), 2166-2172.
[108] Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing
bacteria for the bioconversion of lignocellulosic biomass. International journal
of biological sciences, 5(5), 500.
[109] Watanabe, Y., Hayakawa, K., & Ueno, H. (2011). Effects of co-culturing LAB
on GABA production. J. Biol. Macromol, 11(1), 3-13.
[110] 彭文正. (2020). 探討以 Lactobacillus buchneri 發酵巴西蘑菇並產生 γ-氨
基丁酸之研究 . ( 碩 士 ), 國立中央大學 , 桃園縣 . Retrieved from
https://hdl.handle.net/11296/jkx2fu 臺灣博碩士論文知識加值系統 database.
[111] Chen, K., Gao, C., Han, X., Li, D., Wang, H., & Lu, F. (2021). Co‐fermentation
of lentils using lactic acid bacteria and Bacillus subtilis natto increases
functional and antioxidant components. Journal of Food Science, 86(2), 475-
483.
[112] Folin, O., & Denis, W. (1915). A colorimetric method for the determination of
phenols (and phenol derivatives) in urine. Journal of biological chemistry, 22(2),
305-308.
[113] Eddy, D. R., Nursyamsiah, D., Permana, M. D., Solihudin, Noviyanti, A. R., &
Rahayu, I. (2022). Green production of zero-valent iron (ZVI) using tea-leaf
extracts for fenton degradation of mixed rhodamine B and methyl orange dyes.
Materials, 15(1), 332.
[114] Ford, L., Theodoridou, K., Sheldrake, G. N., & Walsh, P. J. (2019). A critical
review of analytical methods used for the chemical characterisation and
quantification of phlorotannin compounds in brown seaweeds. Phytochemical
Analysis, 30(6), 587-599.
[115] Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl
(DPPH) for estimating antioxidant activity. Songklanakarin J. sci. technol,
26(2), 211-219.
[116] Pyrzynska, K., & Pękal, A. (2013). Application of free radical
diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food
samples. Analytical Methods, 5(17), 4288-4295.
[117] Feehily, C., & Karatzas, K. (2013). Role of glutamate metabolism in bacterial
responses towards acid and other stresses. Journal of applied microbiology,
114(1), 11-24.
[118] Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative
properties of xanthan on the autoxidation of soybean oil in cyclodextrin
emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.
[119] Lim, J.-S., Garcia, C. V., & Lee, S.-P. (2016). Optimized production of GABA
and γ-PGA in a turmeric and roasted soybean mixture co-fermented by Bacillus
subtilis and Lactobacillus plantarum. Food Science and Technology Research,
22(2), 209-217.
[120] Roy, M. K., Koide, M., Rao, T. P., Okubo, T., Ogasawara, Y., & Juneja, L. R.
(2010). ORAC and DPPH assay comparison to assess antioxidant capacity of
tea infusions: Relationship between total polyphenol and individual catechin
content. International journal of food sciences and nutrition, 61(2), 109-124.
[121] Gauvry, E., Mathot, A.-G., Couvert, O., Leguérinel, I., & Coroller, L. (2021).
Effects of temperature, pH and water activity on the growth and the sporulation
abilities of Bacillus subtilis BSB1. International journal of food microbiology,
337, 108915.
[122] Zhang, L., Yue, Y., Wang, X., Dai, W., Piao, C., & Yu, H. (2022). Optimization
of fermentation for γ-aminobutyric acid (GABA) production by yeast
Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess and
biosystems engineering, 45(7), 1111-1123.
[123] Hwang, C. E., Haque, M. A., Lee, J. H., Joo, O. S., Kim, S. C., Lee, H. Y., . . .
Cho, K. M. (2018). Comparison of γ-aminobutyric acid and isoflavone aglycone
contents, to radical scavenging activities of high-protein soybean sprouting by
lactic acid fermentation with Lactobacillus brevis. Korean Journal of Food
Preservation, 25(1), 7-18. |