博碩士論文 111324071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.189.170.65
姓名 王妤瑄(Yu-Hsuan Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Process Development for Chemical Recycling of Poly(ethylene 2,5-furandicarboxylate) (PEF) by Alkaline Hydrolysis and Its Optimization Using Full Factorial Design Method)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 聚2,5-呋喃二甲酸乙二醇酯(PEF)是一種由生物基原料製成的新型塑膠,與廣泛使用的聚對苯二甲酸乙二酯(PET)相比,PEF具有更好的機械性能、氧氣阻隔性能和熱穩定性。隨著環保意識的增強及相關技術的發展,PEF被視為傳統塑膠的一種重要替代材料,未來有望得到更為廣泛的應用。儘管PEF具備可生物降解的特性,但其降解過程需要特定的環境條件,因此研究其回收策略仍然至關重要。在各種塑膠回收方法中,鹼性水解是一種簡單且具有商業可行性的方法,目前關於探討PEF鹼水解的文獻仍然有限,因此在本研究中,主要探討PEF鹼水解中各實驗參數對製程及最後產物的影響。
我們在高壓釜中進行PEF的鹼水解實驗,將高壓釜置於烘箱中,控制反應溫度和時間。PEF經鹼性水解後生成呋喃酸二鈉(DSF),隨後通過添加硫酸水溶液(H₂SO₄(aq))產生最終產物2,5-呋喃二甲酸(FDCA)單體。本研究第一部分,使用不同的鹼(NaOH和KOH)、反應溫度(80°、100°、120°和160 °C)、反應時間(4、6和8小時)和NaOH與PEF之重複單元的莫爾比(2.2和6.6),初步探討各參數對PEF轉化率、FDCA產率和FDCA純度的影響,為後續實驗設計(DoE)提供依據。
第二部分使用Minitab 19軟體,採用全因子設計法(Full Factorial Design, FFD)進行實驗設計與分析,探討鹼水解過程中單一實驗因子(反應溫度、反應時間和NaOH與PEF之重複單元的莫爾比)及兩因子間的相互作用對反應結果(PEF轉化率、FDCA產率和FDCA純度)的影響。根據FFD的分析結果,識別影響實驗結果的顯著因子,並建立各實驗結果的數學模型方程式。最後,使用最佳化條件(反應溫度為160 °C、反應時間為6小時及NaOH與PEF之重複單元的莫爾比為2.2)驗證數學模型方程式的準確性,在最佳化條件下,獲得的平均實驗結果分別為PEF轉化率97.7 %、FDCA產率84.5 %及FDCA純度97.2 %,經由計算,模型預測值與實驗值的相對預測誤差在± 3.5 %內,表明此模型具有較高的準確度。
摘要(英) Poly(ethylene 2,5-furandicarboxylate) (PEF) is a new type of plastic made from bio-based raw materials. Compared to the widely used poly(ethylene terephthalate) (PET), PEF has better mechanical properties, oxygen barrier performance, and thermal stability. With the increasing environmental awareness and the development of related technologies, PEF is regarded as an important alternative to traditional plastics and is expected to be more widely used in the future. Although PEF is biodegradable, its degradation process requires specific environmental conditions, so studying its recycling strategies remains crucial. Among various plastic recycling methods, alkaline hydrolysis is a simple and commercially viable method. Currently, the literature on exploring PEF alkaline hydrolysis is still limited. Therefore, this study mainly investigates the impact of various experimental parameters on the process and final products of PEF alkaline hydrolysis.
The alkaline hydrolysis of PEF was carried out in an autoclave, which was then placed in an oven set to specific reaction temperatures and times. After alkaline hydrolysis, PEF generated disodium furanoate (DSF), which was subsequently converted into the final product, 2,5-furandicarboxylic acid (FDCA) monomer, by adding sulfuric acid aqueous solution (H₂SO₄(aq)). In the first part of this study, different bases (NaOH and KOH), reaction temperatures (80°, 100°, 120°, and 160 °C), reaction times (4, 6, and 8 h), and molar ratio of NaOH per PEF repeating unit (2.2 and 6.6) were used to preliminarily investigate the effects of each parameter on the conversion of PEF, the yield of FDCA, and the assay of FDCA. This provided a basis for subsequent the design of experimental (DoE).
In the second part, Minitab 19 software was used to perform experimental design and analysis using the Full Factorial Design (FFD) method. This was done to investigate the effects of single experimental factors (reaction temperature, reaction time, and molar ratio of NaOH per PEF repeating unit) and the interaction between two factors on the reaction outcomes (the conversion of PEF, the yield of FDCA, and the assay of FDCA) during the alkaline hydrolysis process. Based on the analysis results of the FFD, identify the significant factors affecting the experimental results and establish the mathematical model equations for each experimental result. Finally, the optimal conditions (reaction temperature of 160 °C, reaction time of 6 h, and molar ratio of NaOH per PEF repeating unit of 2.2) were used to verify the mathematical model. Under the optimal conditions, the average experimental results obtained were the PEF conversion of 97.7 %, the FDCA yield of 84.5 %, and the FDCA assay of 97.2 %. The relative prediction error between the model′s predicted values and the experimental values was within ± 3.5 %, indicating that the model had high accuracy.
關鍵字(中) ★ 回收
★ 聚2,5-呋喃二甲酸乙二醇酯
★ 鹼水解
★ 結晶
★ 2,5-呋喃二甲酸
★ 實驗設計
關鍵字(英) ★ Recycle
★ Poly(ethylene 2,5-furandicarboxylate)
★ Alkaline hydrolysis
★ Crystallization
★ 2,5-Furandicarboxylic acid
★ Design of Experiment
論文目次 摘要...i
Abstract...iii
Acknowledgement...v
Table of Contents...vii
List of Figures...x
List of Tables...xii
List of Schemes...xiii
Chapter 1 Introduction...1
1.1 Poly(ethylene 2,5-furandicarboxylate) (PEF)...1
1.2 Recycling Methods...4
1.3 Chemical Recycling...5
1.4 Alkaline Hydrolysis...12
1.5 Design of Experiment (DoE)...14
1.6 Concept of Work...16
Chapter 2 Experimental Section...19
2.1 Materials...19
2.1.1 Chemicals...19
2.1.2 Solvents...20
2.2 Experimental Methods...22
2.2.1 Recycling of Poly(ethylene 2,5-furandicarboxylate) (PEF) by Alkaline Hydrolysis...22
2.2.2 Recovery of 2,5-Furandicarboxylic Acid (FDCA) from PEF Alkaline Hydrolysis by Acidification...24
2.2.3 Preliminary Experiments for Recycling PEF by Alkaline Hydrolysis to Understand the Process Variables...27
2.2.4 Design of Experiments (DoE) by Full Factorial Design...29
2.3 Analytical Instrumentation...31
2.3.1 Optical Microscopy (OM)...31
2.3.2 Fourier Transform Infrared (FT-IR) Spectroscopy...31
2.3.3 Powder X-ray Diffraction (PXRD)...32
2.3.4 Thermal Gravimetric Analysis (TGA)...32
2.3.5 Differential Scanning Calorimetry (DSC)...33
2.3.6 Nuclear Magnetic Resonance (NMR)...34
2.3.7 High Performance Liquid Chromatographic Analyzer (HPLC)...34
Chapter 3 Results and Discussion...37
3.1 Preliminary Experiments for Recovery of FDCA from PEF by Alkaline Hydrolysis to Understand the Process Variables...37
3.1.1 Alkaline Hydrolysis of Poly(ethylene 2,5-furan dicarboxylate) (PEF)...37
3.1.2 Recovery of 2,5-Furandicarboxylic acid (FDCA) from Alkaline Hydrolysis...38
3.1.3 Summary of Preliminary Experimental Results...39
3.2 Kinetic Model...45
3.3 DoE for Alkaline Hydrolysis of Poly(ethylene 2,5-furan dicarboxylate) (PEF)...48
3.3.1 Full Factorial Design...48
3.3.2 Johnson Transformation...51
3.3.3 The Main Results of the Full Factorial Design...54
3.4 Use Test of FDCA...70
3.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy...70
3.4.2 Powder X-ray Diffraction (PXRD)...72
Chapter 4 Conclusions and Future Works...73
4.1 Conclusions...73
4.2 Future Works...75
Appendices...77
References...84
參考文獻 (1) Amundarain, I.; Asueta, A.; Leivar, J.; Santin, K.; Arnaiz, S. Optimization of Pressurized Alkaline Hydrolysis for Chemical Recycling of Post-Consumer PET Waste. Materials 2024, 17 (11), 2619.
(2) Lee, H. L.; Chiu, C. W.; Lee, T. Engineering Terephthalic Acid Product from Recycling of PET Bottles Waste for Downstream Operations. Chem. Eng. J. Adv. 2021, 5, 100079.
(3) Gabirondo, E.; Melendez-Rodriguez, B.; Arnal, C.; Lagaron, J. M.; De Ilarduya, A. M.; Sardon, H.; Torres-Giner, S. Organocatalyzed Closed-Loop Chemical Recycling of Thermo-Compressed Films of Poly(ethylene furanoate). Polym. Chem. 2021, 12 (10), 1571-1580.
(4) Tamoor, M.; Samak, N. A.; Yang, M.; Xing, J. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene Terephthalate: Environmental Perspective. Molecules 2022, 27 (5), 1599.
(5) Ghatak, H. R. Biorefineries from the Perspective of Sustainability: Feedstocks, Products, and Processes. Renew. Sust. Energ. Rev. 2011, 15 (8), 4042-4052.
(6) Papageorgiou, G. Z.; Nikolaidis, G. N.; Ioannidis, R. O.; Rinis, K.; Papageorgiou, D. G.; Klonos, P. A.; Achilias, D. S.; Kapnisti, M.; Terzopoulou, Z.; Bikiaris, D. N. A Step Forward in Thermoplastic Polyesters: Understanding the Crystallization and Melting of Biobased Poly(ethylene 2, 5-furandicarboxylate)(PEF). ACS Sustain. Chem. Eng. 2022, 10 (21), 7050-7064.
(7) Loos, K.; Zhang, R.; Pereira, I.; Agostinho, B.; Hu, H.; Maniar, D.; Sbirrazzuoli, N.; Silvestre, A. J.; Guigo, N.; Sousa, A. F. A Perspective on PEF Synthesis, Properties, and End-Life. Front. Chem. 2020, 8, 585.
(8) Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate). Macromolecules 2014, 47 (4), 1383-1391.
(9) Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J.; Rudić, S.; Silvestre, A. J.; Vaz, P. D.; Sousa, A. F. Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules 2018, 51 (9), 3515-3526.
(10) Xie, H.; Wu, L.; Li, B.-G.; Dubois, P. Modification of Poly(ethylene 2, 5-furandicarboxylate) with Biobased 1, 5-Pentanediol: Significantly Toughened Copolyesters Retaining High Tensile Strength and O2 Barrier Property. Biomacromolecules 2018, 20 (1), 353-364.
(11) Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S.; Gruter, G.-J. M.; Coelho, J. F.; Silvestre, A. J. Biobased Polyesters and Other Polymers from 2, 5-Furandicarboxylic Acid: a Tribute to Furan Excellency. Polym. Chem. 2015, 6 (33), 5961-5983.
(12) Eerhart, A.; Faaij, A.; Patel, M. Replacing Fossil Based PET with Biobased PEF; Process Analysis, Energy and GHG Balance. Energy Environ. Sci. 2012, 5 (4), 6407-6422.
(13) Siddiqui, M. N.; Redhwi, H. H.; Al-Arfaj, A. A.; Achilias, D. S. Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability 2021, 13 (19), 10528.
(14) Gruter, G.-J. Technology & Markets Day Path to the Future. Avantium https://www. avantium.com/wp-content/uploads/2019/06/20190606-Technology-Day_CTO_Gert-Jan_Gruter_breakout_final_. pdf 2019.
(15) Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manage. 2017, 69, 24-58.
(16) Dimitris, S.; Achilias, L. Recent Advances in the Chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). Mater. Recycl. Trends Perspect 2014, 3, 64.
(17) Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life Cycle Environmental Impacts of Chemical Recycling via Pyrolysis of Mixed Plastic Waste in Comparison with Mechanical Recycling and Energy Recovery. Sci. Total Environ. 2021, 769, 144483.
(18) Qu, X.; Zhou, G.; Wang, R.; Yuan, B.; Jiang, M.; Tang, J. Synergistic Catalysis of Imidazole Acetate Ionic Liquids for the Methanolysis of Spiral Poly(ethylene 2, 5-furandicarboxylate) Under a Mild Condition. Green Chem. 2021, 23 (4), 1871-1882.
(19) Pellis, A.; Haernvall, K.; Pichler, C. M.; Ghazaryan, G.; Breinbauer, R.; Guebitz, G. M. Enzymatic Hydrolysis of Poly(ethylene furanoate). J. Biotech. 2016, 235, 47-53.
(20) Weinberger, S.; Canadell, J.; Quartinello, F.; Yeniad, B.; Arias, A.; Pellis, A.; Guebitz, G. M. Enzymatic Degradation of Poly(ethylene 2, 5-furanoate) Powders and Amorphous Films. Catalysts 2017, 7 (11), 318.
(21) Weinberger, S.; Haernvall, K.; Scaini, D.; Ghazaryan, G.; Zumstein, M. T.; Sander, M.; Pellis, A.; Guebitz, G. M. Enzymatic Surface Hydrolysis of Poly(ethylene furanoate) Thin Films of Various Crystallinities. Green Chem. 2017, 19 (22), 5381-5384.
(22) Karayannidis, G.; Chatziavgoustis, A.; Achilias, D. Poly (ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Adv. Polym. Technol.: Journal of the Polymer Processing Institute 2002, 21 (4), 250-259.
(23) Ravichandran, S. A.; Rajan, V. P.; Aravind, P. V.; Seenivasan, A.; Prakash, D. G.; Ramakrishnan, K. Characterization of Terephthalic Acid Monomer Recycled from Post‐Consumer PET Polymer Bottles. In Macromol. Symp., 2016; Wiley Online Library: Vol. 361, 30-33.
(24) Vinnakota, K. Chemical Recycling of Poly (Ethylene Terephthalate) and its Co-polyesters with 2, 5-Furandicarboxylic Acid using Alkaline Hydrolysis. The University of Toledo, 2018.
(25) Alsheekh, R. Chemical Recycling of Blend and Copolymer of Polyethylene Terephthalate (PET) and Polyethylene 2, 5-Furandicarboxylate (PEF) Using Alkaline Hydrolysis and Glycolysis. University of Toledo, 2023.
(26) Lavilla, C.; Muñoz-Guerra, S. Biodegradation and Hydrolytic Degradation of Poly (butylene terephthalate) Copolyesters Containing Cyclic Sugar Units. Polym. Degrad. Stabil. 2012, 97 (9), 1762-1771.
(27) Kessaissia, F. Z.; Zegaoui, A.; Aillerie, M.; Arab, M.; Boutoubat, M.; Fares, C. Factorial Design and Response Surface Optimization for Modeling Photovoltaic Module Parameters. Energy Reports 2020, 6, 299-309.
(28) Gary Wang, G.; DONG, Z.; AITCHISON, P. Adaptive Response Surface Method - A Global Optimization Scheme for Approximation-Based Design Problems. Eng. Optimiz. 2001, 33 (6), 707-733.
(29) Beg, S.; Swain, S. Introduction to the Experimental Designs: Basic Fundamentals. In Des. Exp. Pharm. Prod. Dev.: Vol. I: Basics Fundam. Princ. 2021, 1-14.
(30) Williamson, E. M.; Sun, Z.; Mora-Tamez, L.; Brutchey, R. L. Design of Experiments for Nanocrystal Syntheses: A How-to Guide for Proper Implementation. Chem. Mater. 2022, 34 (22), 9823-9835.
(31) Permana, A.; Purba, H. H.; Hasibuan, S. Design of Experiment (DOE) Analysis with Response Surface Method (RSM) to Optimize the Electroplating Parameter. ComTech: Computer, Mathematics and Engineering Applications 2021, 12 (2), 99-109.
(32) Lee, H. L.; Yang, C. L.; Lee, T. Shaping Particle Size Distribution of a Metastable Polymorph in Additive-Assisted Reactive Crystallization by the Taguchi Method. CrystEngComm 2022, 24 (40), 7176-7192.
(33) Vanaja, K.; Shobha Rani, R. Design of Experiments: Concept and Applications of Plackett Burman Design. Clin. Res. Regul. Aff. 2007, 24 (1), 1-23.
(34) Jankovic, A.; Chaudhary, G.; Goia, F. Designing the Design of Experiments (DOE) – An Investigation on the Influence of Different Factorial Designs on the Characterization of Complex Systems. Energ. Buildings 2021, 250, 111298.
(35) Kukreja, A.; Chopra, P.; Aggarwal, A.; Khanna, P. Application of Full Factorial Design for Optimization of Feed Rate of Stationary Hook Hopper. Int. J. Model. Optim. 2011, 1 (3), 205.
(36) Rafidah, A.; Nurulhuda, A.; Azrina, A.; Suhaila, Y.; Anwar, I.; Syafiq, R. Comparison Design of Experiment (DoE): Taguchi Method and Full Factorial Design in Surface Roughness. Appl. Mech. Mater. 2014, 660, 275-279.
(37) Gunst, R. F.; Mason, R. L. Fractional Factorial Design. Wiley Interdiscip. Rev.: Comput. Stat. 2009, 1 (2), 234-244.
(38) Hamzaçebi, C.; Li, P.; Pereira, P.; Navas, H. Taguchi Method as a Robust Design Tool. Qual. Control-Intell. Manuf., Robust Des. Charts 2020, 1-19.
(39) Kim, J.; Kim, D.-G.; Ryu, K. H. Enhancing Response Surface Methodology through Coefficient Clipping Based on Prior Knowledge. Processes 2023, 11 (12), 3392.
(40) Lu, L.; Anderson-Cook, C. M. Rethinking the Optimal Response Surface Design for a First-Order Model with Two-Factor Lnteractions, When Protecting Against Curvature. Qual. Eng. 2012, 24 (3), 404-422.
(41) Tarley, C. R. T.; Silveira, G.; dos Santos, W. N. L.; Matos, G. D.; da Silva, E. G. P.; Bezerra, M. A.; Miró, M.; Ferreira, S. L. C. Chemometric Tools in Electroanalytical Chemistry: Methods for Optimization Based on Factorial Design and Response Surface Methodology. Microchem. J. 2009, 92 (1), 58-67.
(42) Su, C.-S.; Tang, M.; Chen, Y.-P. Micronization of Nabumetone Using the Rapid Expansion of Supercritical Solution (RESS) Process. J. Supercrit. Fluid. 2009, 50 (1), 69-76.
(43) Chou, Y.-M.; Polansky, A. M.; Mason, R. L. Transforming Non-Normal Data to Normality in Statistical Process Control. J. Qual. Technol. 1998, 30 (2), 133-141.
(44) Abdel-Ghani, N.; Hegazy, A. K.; El-Chaghaby, G.; Lima, E. C. Factorial Experimental Design for Biosorption of Iron and Zinc Using Typha Domingensis Phytomass. Desalination 2009, 249 (1), 343-347.
(45) Krishnan, T.; Purushothaman, R. Optimization and Influence of Parameter Affecting the Compressive Strength of Geopolymer Concrete Containing Recycled Concrete Aggregate: Using Full Factorial Design Approach. In IOP Conf. Ser.: Earth Environ. Sci., 2017; IOP Publishing: Vol. 80, p 012013.
(46) Bingol, D.; Tekin, N.; Alkan, M. Brilliant Yellow Dye Adsorption onto Sepiolite Using a Full Factorial Design. Appl. Clay Sci. 2010, 50 (3), 315-321.
(47) Periasamy, S. M.; Baskar, R. Assessment of the Influence of Graphene Nanoparticles on Thermal Conductivity of Graphene/Water Nanofluids Using Factorial Design of Experiments. Period. Polytech. Chem. Eng. 2018, 62 (3), 317-322.
(48) Hasniyati, M. R.; Zuhailawati, H.; Ramakrishnan, S. A Statistical Prediction of Multiple Responses Using Overlaid Contour Plot on Hydroxyapatite Coated Magnesium via Cold Spray Deposition. Procedia Chem. 2016, 19, 181-188.
(49) Regti, A.; Laamari, M. R.; Stiriba, S.-E.; El Haddad, M. Use of Response Factorial Design for Process Optimization of Basic Dye Adsorption onto Activated Carbon Derived from Persea Species. Microchem. J. 2017, 130, 129-136.
(50) Castillo Henríquez, L.; Bahloul, B.; Alhareth, K.; Oyoun, F.; Frejková, M.; Kostka, L.; Etrych, T.; Kalshoven, L.; Guillaume, A.; Mignet, N. Step‐By‐Step Standardization of the Bottom‐Up Semi‐Automated Nanocrystallization of Pharmaceuticals: A Quality By Design and Design of Experiments Joint Approach. Small 2024, 2306054.
(51) Kumar, S.; Mishra, D. K.; Yoon, S.; Chauhan, A. K.; Koh, J. Synthesis of 2, 5-Furandicarboxylic Acid-Enriched-Chitosan for Anti-Inflammatory and Metal Ion Uptake. Int. J. Biol. Macromol. 2021, 179, 500-506.
(52) Xu, L.; Fu, J.; Du, C.; Xu, Q.; Liu, B.; Bao, Z. Solubility of Biocompounds 2, 5-Furandicarboxylic Acid and 5-Formylfuran-2-Carboxylic Acid in Binary Solvent Mixtures of Water and 1, 4-Dioxane. Processes 2022, 10 (12), 2480.
(53) Antonyraj, C. A.; Huynh, N. T. T.; Lee, K. W.; Kim, Y. J.; Shin, S.; Shin, J. S.; Cho, J. K. Base-Free Oxidation of 5-Hydroxymethyl-2-Furfural to 2, 5-Furan Dicarboxylic Acid Over Basic Metal Oxide-Supported Ruthenium Catalysts Under Aqueous Conditions. J. Chem. Sci. 2018, 130, 1-9.
指導教授 李度(Tu Lee) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明