參考文獻 |
(1) Amundarain, I.; Asueta, A.; Leivar, J.; Santin, K.; Arnaiz, S. Optimization of Pressurized Alkaline Hydrolysis for Chemical Recycling of Post-Consumer PET Waste. Materials 2024, 17 (11), 2619.
(2) Lee, H. L.; Chiu, C. W.; Lee, T. Engineering Terephthalic Acid Product from Recycling of PET Bottles Waste for Downstream Operations. Chem. Eng. J. Adv. 2021, 5, 100079.
(3) Gabirondo, E.; Melendez-Rodriguez, B.; Arnal, C.; Lagaron, J. M.; De Ilarduya, A. M.; Sardon, H.; Torres-Giner, S. Organocatalyzed Closed-Loop Chemical Recycling of Thermo-Compressed Films of Poly(ethylene furanoate). Polym. Chem. 2021, 12 (10), 1571-1580.
(4) Tamoor, M.; Samak, N. A.; Yang, M.; Xing, J. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene Terephthalate: Environmental Perspective. Molecules 2022, 27 (5), 1599.
(5) Ghatak, H. R. Biorefineries from the Perspective of Sustainability: Feedstocks, Products, and Processes. Renew. Sust. Energ. Rev. 2011, 15 (8), 4042-4052.
(6) Papageorgiou, G. Z.; Nikolaidis, G. N.; Ioannidis, R. O.; Rinis, K.; Papageorgiou, D. G.; Klonos, P. A.; Achilias, D. S.; Kapnisti, M.; Terzopoulou, Z.; Bikiaris, D. N. A Step Forward in Thermoplastic Polyesters: Understanding the Crystallization and Melting of Biobased Poly(ethylene 2, 5-furandicarboxylate)(PEF). ACS Sustain. Chem. Eng. 2022, 10 (21), 7050-7064.
(7) Loos, K.; Zhang, R.; Pereira, I.; Agostinho, B.; Hu, H.; Maniar, D.; Sbirrazzuoli, N.; Silvestre, A. J.; Guigo, N.; Sousa, A. F. A Perspective on PEF Synthesis, Properties, and End-Life. Front. Chem. 2020, 8, 585.
(8) Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate). Macromolecules 2014, 47 (4), 1383-1391.
(9) Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J.; Rudić, S.; Silvestre, A. J.; Vaz, P. D.; Sousa, A. F. Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules 2018, 51 (9), 3515-3526.
(10) Xie, H.; Wu, L.; Li, B.-G.; Dubois, P. Modification of Poly(ethylene 2, 5-furandicarboxylate) with Biobased 1, 5-Pentanediol: Significantly Toughened Copolyesters Retaining High Tensile Strength and O2 Barrier Property. Biomacromolecules 2018, 20 (1), 353-364.
(11) Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S.; Gruter, G.-J. M.; Coelho, J. F.; Silvestre, A. J. Biobased Polyesters and Other Polymers from 2, 5-Furandicarboxylic Acid: a Tribute to Furan Excellency. Polym. Chem. 2015, 6 (33), 5961-5983.
(12) Eerhart, A.; Faaij, A.; Patel, M. Replacing Fossil Based PET with Biobased PEF; Process Analysis, Energy and GHG Balance. Energy Environ. Sci. 2012, 5 (4), 6407-6422.
(13) Siddiqui, M. N.; Redhwi, H. H.; Al-Arfaj, A. A.; Achilias, D. S. Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability 2021, 13 (19), 10528.
(14) Gruter, G.-J. Technology & Markets Day Path to the Future. Avantium https://www. avantium.com/wp-content/uploads/2019/06/20190606-Technology-Day_CTO_Gert-Jan_Gruter_breakout_final_. pdf 2019.
(15) Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manage. 2017, 69, 24-58.
(16) Dimitris, S.; Achilias, L. Recent Advances in the Chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). Mater. Recycl. Trends Perspect 2014, 3, 64.
(17) Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life Cycle Environmental Impacts of Chemical Recycling via Pyrolysis of Mixed Plastic Waste in Comparison with Mechanical Recycling and Energy Recovery. Sci. Total Environ. 2021, 769, 144483.
(18) Qu, X.; Zhou, G.; Wang, R.; Yuan, B.; Jiang, M.; Tang, J. Synergistic Catalysis of Imidazole Acetate Ionic Liquids for the Methanolysis of Spiral Poly(ethylene 2, 5-furandicarboxylate) Under a Mild Condition. Green Chem. 2021, 23 (4), 1871-1882.
(19) Pellis, A.; Haernvall, K.; Pichler, C. M.; Ghazaryan, G.; Breinbauer, R.; Guebitz, G. M. Enzymatic Hydrolysis of Poly(ethylene furanoate). J. Biotech. 2016, 235, 47-53.
(20) Weinberger, S.; Canadell, J.; Quartinello, F.; Yeniad, B.; Arias, A.; Pellis, A.; Guebitz, G. M. Enzymatic Degradation of Poly(ethylene 2, 5-furanoate) Powders and Amorphous Films. Catalysts 2017, 7 (11), 318.
(21) Weinberger, S.; Haernvall, K.; Scaini, D.; Ghazaryan, G.; Zumstein, M. T.; Sander, M.; Pellis, A.; Guebitz, G. M. Enzymatic Surface Hydrolysis of Poly(ethylene furanoate) Thin Films of Various Crystallinities. Green Chem. 2017, 19 (22), 5381-5384.
(22) Karayannidis, G.; Chatziavgoustis, A.; Achilias, D. Poly (ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Adv. Polym. Technol.: Journal of the Polymer Processing Institute 2002, 21 (4), 250-259.
(23) Ravichandran, S. A.; Rajan, V. P.; Aravind, P. V.; Seenivasan, A.; Prakash, D. G.; Ramakrishnan, K. Characterization of Terephthalic Acid Monomer Recycled from Post‐Consumer PET Polymer Bottles. In Macromol. Symp., 2016; Wiley Online Library: Vol. 361, 30-33.
(24) Vinnakota, K. Chemical Recycling of Poly (Ethylene Terephthalate) and its Co-polyesters with 2, 5-Furandicarboxylic Acid using Alkaline Hydrolysis. The University of Toledo, 2018.
(25) Alsheekh, R. Chemical Recycling of Blend and Copolymer of Polyethylene Terephthalate (PET) and Polyethylene 2, 5-Furandicarboxylate (PEF) Using Alkaline Hydrolysis and Glycolysis. University of Toledo, 2023.
(26) Lavilla, C.; Muñoz-Guerra, S. Biodegradation and Hydrolytic Degradation of Poly (butylene terephthalate) Copolyesters Containing Cyclic Sugar Units. Polym. Degrad. Stabil. 2012, 97 (9), 1762-1771.
(27) Kessaissia, F. Z.; Zegaoui, A.; Aillerie, M.; Arab, M.; Boutoubat, M.; Fares, C. Factorial Design and Response Surface Optimization for Modeling Photovoltaic Module Parameters. Energy Reports 2020, 6, 299-309.
(28) Gary Wang, G.; DONG, Z.; AITCHISON, P. Adaptive Response Surface Method - A Global Optimization Scheme for Approximation-Based Design Problems. Eng. Optimiz. 2001, 33 (6), 707-733.
(29) Beg, S.; Swain, S. Introduction to the Experimental Designs: Basic Fundamentals. In Des. Exp. Pharm. Prod. Dev.: Vol. I: Basics Fundam. Princ. 2021, 1-14.
(30) Williamson, E. M.; Sun, Z.; Mora-Tamez, L.; Brutchey, R. L. Design of Experiments for Nanocrystal Syntheses: A How-to Guide for Proper Implementation. Chem. Mater. 2022, 34 (22), 9823-9835.
(31) Permana, A.; Purba, H. H.; Hasibuan, S. Design of Experiment (DOE) Analysis with Response Surface Method (RSM) to Optimize the Electroplating Parameter. ComTech: Computer, Mathematics and Engineering Applications 2021, 12 (2), 99-109.
(32) Lee, H. L.; Yang, C. L.; Lee, T. Shaping Particle Size Distribution of a Metastable Polymorph in Additive-Assisted Reactive Crystallization by the Taguchi Method. CrystEngComm 2022, 24 (40), 7176-7192.
(33) Vanaja, K.; Shobha Rani, R. Design of Experiments: Concept and Applications of Plackett Burman Design. Clin. Res. Regul. Aff. 2007, 24 (1), 1-23.
(34) Jankovic, A.; Chaudhary, G.; Goia, F. Designing the Design of Experiments (DOE) – An Investigation on the Influence of Different Factorial Designs on the Characterization of Complex Systems. Energ. Buildings 2021, 250, 111298.
(35) Kukreja, A.; Chopra, P.; Aggarwal, A.; Khanna, P. Application of Full Factorial Design for Optimization of Feed Rate of Stationary Hook Hopper. Int. J. Model. Optim. 2011, 1 (3), 205.
(36) Rafidah, A.; Nurulhuda, A.; Azrina, A.; Suhaila, Y.; Anwar, I.; Syafiq, R. Comparison Design of Experiment (DoE): Taguchi Method and Full Factorial Design in Surface Roughness. Appl. Mech. Mater. 2014, 660, 275-279.
(37) Gunst, R. F.; Mason, R. L. Fractional Factorial Design. Wiley Interdiscip. Rev.: Comput. Stat. 2009, 1 (2), 234-244.
(38) Hamzaçebi, C.; Li, P.; Pereira, P.; Navas, H. Taguchi Method as a Robust Design Tool. Qual. Control-Intell. Manuf., Robust Des. Charts 2020, 1-19.
(39) Kim, J.; Kim, D.-G.; Ryu, K. H. Enhancing Response Surface Methodology through Coefficient Clipping Based on Prior Knowledge. Processes 2023, 11 (12), 3392.
(40) Lu, L.; Anderson-Cook, C. M. Rethinking the Optimal Response Surface Design for a First-Order Model with Two-Factor Lnteractions, When Protecting Against Curvature. Qual. Eng. 2012, 24 (3), 404-422.
(41) Tarley, C. R. T.; Silveira, G.; dos Santos, W. N. L.; Matos, G. D.; da Silva, E. G. P.; Bezerra, M. A.; Miró, M.; Ferreira, S. L. C. Chemometric Tools in Electroanalytical Chemistry: Methods for Optimization Based on Factorial Design and Response Surface Methodology. Microchem. J. 2009, 92 (1), 58-67.
(42) Su, C.-S.; Tang, M.; Chen, Y.-P. Micronization of Nabumetone Using the Rapid Expansion of Supercritical Solution (RESS) Process. J. Supercrit. Fluid. 2009, 50 (1), 69-76.
(43) Chou, Y.-M.; Polansky, A. M.; Mason, R. L. Transforming Non-Normal Data to Normality in Statistical Process Control. J. Qual. Technol. 1998, 30 (2), 133-141.
(44) Abdel-Ghani, N.; Hegazy, A. K.; El-Chaghaby, G.; Lima, E. C. Factorial Experimental Design for Biosorption of Iron and Zinc Using Typha Domingensis Phytomass. Desalination 2009, 249 (1), 343-347.
(45) Krishnan, T.; Purushothaman, R. Optimization and Influence of Parameter Affecting the Compressive Strength of Geopolymer Concrete Containing Recycled Concrete Aggregate: Using Full Factorial Design Approach. In IOP Conf. Ser.: Earth Environ. Sci., 2017; IOP Publishing: Vol. 80, p 012013.
(46) Bingol, D.; Tekin, N.; Alkan, M. Brilliant Yellow Dye Adsorption onto Sepiolite Using a Full Factorial Design. Appl. Clay Sci. 2010, 50 (3), 315-321.
(47) Periasamy, S. M.; Baskar, R. Assessment of the Influence of Graphene Nanoparticles on Thermal Conductivity of Graphene/Water Nanofluids Using Factorial Design of Experiments. Period. Polytech. Chem. Eng. 2018, 62 (3), 317-322.
(48) Hasniyati, M. R.; Zuhailawati, H.; Ramakrishnan, S. A Statistical Prediction of Multiple Responses Using Overlaid Contour Plot on Hydroxyapatite Coated Magnesium via Cold Spray Deposition. Procedia Chem. 2016, 19, 181-188.
(49) Regti, A.; Laamari, M. R.; Stiriba, S.-E.; El Haddad, M. Use of Response Factorial Design for Process Optimization of Basic Dye Adsorption onto Activated Carbon Derived from Persea Species. Microchem. J. 2017, 130, 129-136.
(50) Castillo Henríquez, L.; Bahloul, B.; Alhareth, K.; Oyoun, F.; Frejková, M.; Kostka, L.; Etrych, T.; Kalshoven, L.; Guillaume, A.; Mignet, N. Step‐By‐Step Standardization of the Bottom‐Up Semi‐Automated Nanocrystallization of Pharmaceuticals: A Quality By Design and Design of Experiments Joint Approach. Small 2024, 2306054.
(51) Kumar, S.; Mishra, D. K.; Yoon, S.; Chauhan, A. K.; Koh, J. Synthesis of 2, 5-Furandicarboxylic Acid-Enriched-Chitosan for Anti-Inflammatory and Metal Ion Uptake. Int. J. Biol. Macromol. 2021, 179, 500-506.
(52) Xu, L.; Fu, J.; Du, C.; Xu, Q.; Liu, B.; Bao, Z. Solubility of Biocompounds 2, 5-Furandicarboxylic Acid and 5-Formylfuran-2-Carboxylic Acid in Binary Solvent Mixtures of Water and 1, 4-Dioxane. Processes 2022, 10 (12), 2480.
(53) Antonyraj, C. A.; Huynh, N. T. T.; Lee, K. W.; Kim, Y. J.; Shin, S.; Shin, J. S.; Cho, J. K. Base-Free Oxidation of 5-Hydroxymethyl-2-Furfural to 2, 5-Furan Dicarboxylic Acid Over Basic Metal Oxide-Supported Ruthenium Catalysts Under Aqueous Conditions. J. Chem. Sci. 2018, 130, 1-9. |