參考文獻 |
[1] P. Wang et al., "Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants," Science of the Total Environment, vol. 693, p. 133440, 2019.
[2] T. H. Aldhyani, M. Al-Yaari, H. Alkahtani, and M. Maashi, "Water quality prediction using artificial intelligence algorithms," Applied Bionics and Biomechanics, vol. 2020, 2020.
[3] H. Lu and X. Ma, "Hybrid decision tree-based machine learning models for short-term water quality prediction," Chemosphere, vol. 249, p. 126169, 2020.
[4] J. Yang et al., "Discriminative algorithm approach to forecast Cd threshold exceedance probability for rice grain based on soil characteristics," Environmental Pollution, vol. 261, p. 114211, 2020.
[5] U. Ahmed, R. Mumtaz, H. Anwar, A. A. Shah, R. Irfan, and J. García-Nieto, "Efficient water quality prediction using supervised machine learning," Water, vol. 11, no. 11, p. 2210, 2019.
[6] J. Yang et al., "Brief introduction of medical database and data mining technology in big data era," Journal of Evidence‐Based Medicine, vol. 13, no. 1, pp. 57-69, 2020.
[7] P. Huang, C. Wen, L. Fu, Q. Peng, and Y. Tang, "A deep learning approach for multi-attribute data: A study of train delay prediction in railway systems," Information Sciences, vol. 516, pp. 234-253, 2020.
[8] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso, "Survey of network intrusion detection methods from the perspective of the knowledge discovery in databases process," IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2451-2479, 2020.
[9] S. Laxman and P. S. Sastry, "A survey of temporal data mining," Sadhana, vol. 31, pp. 173-198, 2006.
[10] A. Aleem and M. M. Gore, "Educational data mining methods: A survey," in 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT), 2020: IEEE, pp. 182-188.
[11] M. Mittal, L. M. Goyal, D. J. Hemanth, and J. K. Sethi, "Clustering approaches for high‐dimensional databases: A review," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 3, p. e1300, 2019.
[12] G. Kesavaraj and S. Sukumaran, "A study on classification techniques in data mining," in 2013 fourth international conference on computing, communications and networking technologies (ICCCNT), 2013: IEEE, pp. 1-7.
[13] B. Charbuty and A. Abdulazeez, "Classification based on decision tree algorithm for machine learning," Journal of Applied Science and Technology Trends, vol. 2, no. 01, pp. 20-28, 2021.
[14] M. Schonlau and R. Y. Zou, "The random forest algorithm for statistical learning," The Stata Journal, vol. 20, no. 1, pp. 3-29, 2020.
[15] J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, "A comparison of random forest variable selection methods for classification prediction modeling," Expert systems with applications, vol. 134, pp. 93-101, 2019.
[16] D. Umar Sidiq, S. M. Aaqib, and R. A. Khan, "Diagnosis of various thyroid ailments using data mining classification techniques," Int J Sci Res Coput Sci Inf Technol, vol. 5, pp. 131-6, 2019.
[17] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, "A comprehensive survey on support vector machine classification: Applications, challenges and trends," Neurocomputing, vol. 408, pp. 189-215, 2020.
[18] L. A. Demidova, "Two-stage hybrid data classifiers based on SVM and kNN algorithms," Symmetry, vol. 13, no. 4, p. 615, 2021.
[19] S. Ghosh, A. Dasgupta, and A. Swetapadma, "A study on support vector machine based linear and non-linear pattern classification," in 2019 International Conference on Intelligent Sustainable Systems (ICISS), 2019: IEEE, pp. 24-28.
[20] L. Verma, S. Srivastava, and P. Negi, "A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data," Journal of medical systems, vol. 40, pp. 1-7, 2016.
[21] A. Dogan and D. Birant, "Machine learning and data mining in manufacturing," Expert Systems with Applications, vol. 166, p. 114060, 2021.
[22] P. Garikapati, K. Balamurugan, T. Latchoumi, and R. Malkapuram, "A cluster-profile comparative study on machining AlSi7/63% of SiC hybrid composite using agglomerative hierarchical clustering and K-means," Silicon, vol. 13, no. 4, pp. 961-972, 2021.
[23] J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symposium on Math., Stat., and Prob, 1965, p. 281.
[24] S. F. Hussain and M. Haris, "A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data," Expert Systems with Applications, vol. 118, pp. 20-34, 2019.
[25] E. Çakır, R. Fışkın, and C. Sevgili, "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering & System Safety, vol. 209, p. 107470, 2021.
[26] C. P. Wulandari, C. Ou-Yang, and H.-C. Wang, "Applying mutual information for discretization to support the discovery of rare-unusual association rule in cerebrovascular examination dataset," Expert Systems with Applications, vol. 118, pp. 52-64, 2019.
[27] R. Agrawal, T. Imieliński, and A. Swami, "Mining association rules between sets of items in large databases," in Proceedings of the 1993 ACM SIGMOD international conference on Management of data, 1993, pp. 207-216.
[28] W. Altaf, M. Shahbaz, and A. Guergachi, "Applications of association rule mining in health informatics: a survey," Artificial Intelligence Review, vol. 47, pp. 313-340, 2017.
[29] Y. Sato, K. Izui, T. Yamada, and S. Nishiwaki, "Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization," Expert Systems with Applications, vol. 119, pp. 247-261, 2019.
[30] M. Santosh Kumar and K. Balakrishnan, "Development of a model recommender system for agriculture using apriori algorithm," in Cognitive Informatics and Soft Computing: Proceeding of CISC 2017, 2019: Springer, pp. 153-163.
[31] A. Telikani, A. H. Gandomi, and A. Shahbahrami, "A survey of evolutionary computation for association rule mining," Information Sciences, vol. 524, pp. 318-352, 2020.
[32] A. Telikani, A. H. Gandomi, A. Shahbahrami, and M. N. Dehkordi, "Privacy-preserving in association rule mining using an improved discrete binary artificial bee colony," Expert Systems with Applications, vol. 144, p. 113097, 2020.
[33] A. Telikani and A. Shahbahrami, "Data sanitization in association rule mining: An analytical review," Expert Systems with Applications, vol. 96, pp. 406-426, 2018.
[34] 行政院環境保護署,土壤及地下水污染整治法土壤及地下水目,民國99年。
[35] 行政院環境保護署,全國重金屬高污染潛勢農地之管制及調查計畫,民國99年。
[36] 行政院環境保護署,全國重金屬高污染潛勢農地之管制及調查計畫,民國101年。
[37] 行政院環境保護署,全國重金屬高污染潛勢農地之管制及調查計畫,民國105年。
[38] 行政院環境保護署,桃園地區污染農地調查計畫,民國100年。
[39] 桃園市政府環境保護局,桃園縣農地土壤污染控制場址改善計畫監督及驗證工作,民國103年。
[40] 桃園市政府環境保護局,桃園縣農地土壤污染控制場址改善計畫(第二期)監督及驗證工作,民國104年。
[41] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國105年。
[42] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國106年。
[43] 桃園市政府環境保護局,桃園市農地土壤污染控制場址排客土改善計畫監督及驗證工作,民國106年。
[44] 桃園市政府環境保護局,105年-107 年度桃園市農地土壤污染控制場址適當措施改善計畫第3期之3-1)監督及驗證工作-桃園大圳第三、四支線等灌區,民國107年。
[45] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國107年。
[46] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國108年。
[47] 桃園市政府環境保護局,107-109年度桃園市農地土壤污染控制場址適當措施改善計畫(第3期之3-2)監督及驗證工作-桃園大圳第三、四支線等灌區,民國109年。
[48] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國109年。
[49] 桃園市政府環境保護局,108-110年度桃園市農地土壤污染控制場址適當措施改善計畫(第4期)監督及驗證工作,民國110年。
[50] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國110年。
[51] 桃園市政府環境保護局,桃園市土壤及地下水污染調查及查證工作計畫,民國111年。
[52] 土壤及地下水污染整治網,"全國各縣市農地列管及解列情形統計," 2022. [Online]. Available: https://sgw.epa.gov.tw/SGM/Anonymous/SgmLogin.aspx.
[53] 桃園市政府環境保護局,桃園市農地污染源預防管理計畫,民國112年。
[54] P. Charoen-Ung and P. Mittrapiyanuruk, "Sugarcane yield grade prediction using random forest with forward feature selection and hyper-parameter tuning," in Recent Advances in Information and Communication Technology 2018: Proceedings of the 14th International Conference on Computing and Information Technology (IC2IT 2018), 2019: Springer, pp. 33-42. |