參考文獻 |
Angeles-Olvera, Z., Crespo-Yapur, A., Rodriguez, O., Cholula-Diaz, J. L., Martinez, L. M., & Videa, M. (2022). Nickel-based electrocatalysts for water electrolysis. Energies, 15(5), 1609. https://doi.org/10.3390/en15051609
Arzate, S., Pfister, S., Oberschelp, C., & Sanchez-Perez, J. A. (2019). Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Science of the Total Environment, 694, 133572. https://doi.org/10.1016/j.scitotenv.2019.07.378
Bion, N., Duprez, D., & Epron, F. (2012). Design of nanocatalysts for green hydrogen production from bioethanol. ChemSusChem, 5(1), 76-84. https://doi.org/10.1002/cssc.201100400
Bonizzoni, G., & Vassallo, E. (2002). Plasma physics and technology; industrial applications. Vacuum, 64(3-4), 327-336. https://doi.org/10.1016/S0042-207X(01)00341-4
Chen, W.T., Chan, A., Sun-Waterhouse, D., Llorca, J., Idriss, H., & Waterhouse, G. I. (2018). Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. Journal of Catalysis, 367, 27-42. https://doi.org/10.1016/j.jcat.2018.08.015
Chen, W.T., Chan, A., Sun-Waterhouse, D., Moriga, T., Idriss, H., & Waterhouse, G. I. (2015). Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 326, 43-53. https://doi.org/10.1016/j.jcat.2015.03.008
Chen, W., Wang, Y., Liu, S., Gao, L., Mao, L., Fan, Z., Shangguan, W., & Jiang, Z. (2018). Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Applied Surface Science, 445, 527-534. https://doi.org/10.1016/j.apsusc.2018.03.209
Chen, Z., Li, X., Hu, D., Cui, Y., Gu, F., Jia, F., Xiao, T., Su, H., Xu, J., & Wang, H. (2018). Performance and methane fermentation characteristics of a pilot scale anaerobic membrane bioreactor (AnMBR) for treating pharmaceutical wastewater containing m-cresol (MC) and iso-propyl alcohol (IPA). Chemosphere, 206, 750-758.
https://doi.org/10.1016/j.chemosphere.2018.05.008
Chen, Z., & Mathur, V. (2002). Nonthermal plasma for gaseous pollution control. Industrial & Engineering Chemistry Research, 41(9), 2082-2089. https://doi.org/10.1021/ie010459h
Cheng, K.Y., Hsieh, L.L., Yao, K.S., Lin, C.H., Chang, E.J., & Chang, C.Y. (2010). Decomposition of wastewater containing isopropyl alcohol using the gamma-ray/hydrogen peroxide process. Environmental Engineering and Management Journal, 20(3), 151-156.
https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A10022991
Choi, J., Jeong, J.H., & Chung, J. (2013). Degradation of acetone and isopropylalcohol in electronic wastewater using Fe-and Al-immobilized catalysts. Chemical Engineering Journal, 218, 260-266.
https://doi.org/10.1016/j.cej.2012.11.004
Chung, K.H., Jeong, S., Kim, B.J., Kim, J.S., Park, Y.K., & Jung, S.C. (2018). Development of hydrogen production by liquid phase plasma process of water with NiTiO2/carbon nanotube photocatalysts. International Journal of Hydrogen Energy, 43(11), 5873-5880.
https://doi.org/10.1016/j.ijhydene.2017.09.065
Coutanceau, C., & Baranton, S. (2016). Electrochemical conversion of alcohols for hydrogen production: a short overview. Wiley Interdisciplinary Reviews: Energy and Environment, 5(4), 388-400. https://doi.org/10.1002/wene.193
Cui, Y., Shi, X., Guang, C., Zhang, Z., Wang, C., & Wang, C. (2019). Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Safety and Environmental Protection, 122, 1-12.
https://doi.org/10.1016/j.psep.2018.11.017
Ding, J., Sun, X., Wang, Q., Li, D. S., Li, X., Li, X., Chen, L., Zhang, X., Tian, X., & Ostrikov, K. K. (2021). Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds, 873, 159871. https://doi.org/10.1016/j.jallcom.2021.159871
Dong, B., Wang, P., Li, Z., Tu, W., & Tan, Y. (2022). Degrading hazardous benzohydroxamic acid in the industrial beneficiation wastewater by dielectric barrier discharge reactor. Separation and Purification Technology, 299, 121644. https://doi.org/10.1016/j.seppur.2022.121644
Fernandes, A., Mako?, P., Khan, J. A., & Boczkaj, G. (2019). Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. Journal of Cleaner Production, 208, 54-64. https://doi.org/10.1016/j.jclepro.2018.10.081
Fridman, G., Friedman, G., Gutsol, A., Shekhter, A. B., Vasilets, V. N., & Fridman, A. (2008). Applied plasma medicine. Plasma Processes and Polymers, 5(6), 503-533. https://doi.org/10.1002/ppap.200700154
Galdamez-Martinez, A., Bai, Y., Santana, G., Sprick, R. S., & Dutt, A. (2020). Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: Role of structural properties. International Journal of Hydrogen Energy, 45(56), 31942-31951. https://doi.org/10.1016/j.ijhydene.2020.08.247
Ganesh, I., Gupta, A., Kumar, P., Sekhar, P., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and Characterization of Ni?Doped TiO2 Materials for Photocurrent and Photocatalytic Applications. The Scientific World Journal, 2012(1), 127326. https://doi.org/10.1100/2012/127326
Grabowski, L., Van Veldhuizen, E., Pemen, A., & Rutgers, W. (2006). Corona above water reactor for systematic study of aqueous phenol degradation. Plasma Chemistry and Plasma Processing, 26, 3-17. https://doi.org/10.1007/s11090-005-8721-8
Hasani, M., Khani, M. R., Karimaei, M., Yaghmaeian, K., & Shokri, B. (2019). Degradation of 4-chlorophenol in aqueous solution by dielectric barrier discharge system: effect of fed gases. Journal of Environmental Health Science and Engineering, 17, 1185-1194. https://doi.org/10.1007/s40201-019-00433-3
He, D., Sun, Y., Xin, L., & Feng, J. (2014). Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2. Chemical Engineering Journal, 258, 18-25. https://doi.org/10.1016/j.cej.2014.07.089
Hsu, Y. L., Wu, H. Z., Ye, M. H., Chen, J. P., Huang, H. L., & Lin, P. H. P. (2009). An industrial-scale biodegradation system for volatile organics contaminated wastewater from semiconductor manufacturing process. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 70-76.
https://doi.org/10.1016/j.jtice.2008.07.008
Ibrahim, S., El-Liethy, M. A., Abia, A. L. K., Abdel-Gabbar, M., Al Zanaty, A. M., & Kamel, M. M. (2020). Design of a bioaugmented multistage biofilter for accelerated municipal wastewater treatment and deactivation of pathogenic microorganisms. Science of the Total Environment, 703, 134786.
https://doi.org/10.1016/j.scitotenv.2019.134786
Iervolino, G., Vaiano, V., Pepe, G., Campiglia, P., & Palma, V. (2020). Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process. Catalysts, 10(8), 888.
https://doi.org/10.3390/catal10080888
Ihara, T., Nagata, H., Yagyu, Y., Ohshima, T., Kawasaki, H., & Suda, Y. (2015). Hydrogen production from water by using hybrid gas-liquid nanosecond pulsed discharge. 2015 IEEE Pulsed Power Conference (PPC),
https://doi.org/10.1109/PPC.2015.7296915
Ikoma, S., Satoh, K., & Itoh, H. (2009). Decomposition of methylene blue in an aqueous solution using a pulsed-discharge plasma at atmospheric pressure. IEEJ Transactions on Fundamentals and Materials, 129(4), 237-244.
https://doi.org/10.1541/ieejfms.129.237
Kabashima, H., Einaga, H., & Futamura, S. (2003). Hydrogen generation from water, methane, and methanol with nonthermal plasma. IEEE Transactions on Industry Applications, 39(2), 340-345.
https://doi.org/10.1109/TIA.2003.808968
Katsoyiannis, I. A., Canonica, S., & Silvon Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 45(13), 3811-3822.
https://doi.org/10.1016/j.watres.2011.04.038
Kim, S. C., Park, Y. K., & Jung, S. C. (2021). Recent applications of the liquid phase plasma process. Korean Journal of Chemical Engineering, 38(5), 885-898. https://doi.org/10.1007/s11814-020-0739-3
Kirkpatrick, M. J., & Locke, B. R. (2005). Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Industrial & Engineering Chemistry Research, 44(12), 4243-4248.
https://doi.org/10.1021/ie048807d
Lee, H., Park, Y. K., Kim, J. S., Park, Y. H., & Jung, S. C. (2019). Degradation of dimethyl phthalate using a liquid phase plasma process with TiO2 photocatalysts. Environmental Research, 169, 256-260.
https://doi.org/10.1016/j.envres.2018.11.025
Li, R., Zhu, X., Yan, X., Kobayashi, H., Yoshida, S., Chen, W., Du, L., Qian, K., Wu, B., & Zou, S. (2017). Oxygen-controlled hydrogen evolution reaction: molecular oxygen promotes hydrogen production from formaldehyde solution using Ag/MgO nanocatalyst. ACS Catalysis, 7(2), 1478-1484.
https://doi.org/10.1021/acscatal.6b03370
Li, X., & Li, F. (2001). Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology, 35(11), 2381-2387. https://doi.org/10.1021/es001752w
Li, Y., Bao, X., Chen, D., Wang, Z., Dewangan, N., Li, M., Xu, Z., Wang, J., Kawi, S., & Zhong, Q. (2019). A minireview on nickel?based heterogeneous electrocatalysts for water splitting. ChemCatChem, 11(24), 5913-5928.
https://doi.org/10.1002/cctc.201901682
Liang, R., Huang, R., Ying, S., Wang, X., Yan, G., & Wu, L. (2018). Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100 (Fe) for the degradation of pharmaceuticals and personal care products under visible light. Nano Research, 11, 1109-1123.
https://doi.org/10.1007/s12274-017-1730-0
Lin, S. H., & Kiang, C. D. (2003). Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. Journal of Hazardous Materials, 97(1-3), 159-171.
https://doi.org/10.1016/S0304-3894(02)00257-1
Lin, S. H., & Wang, C. S. (2004). Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials, 106(2-3), 161-168. https://doi.org/10.1016/j.jhazmat.2003.11.012
Lin, Y. T., Wang, Y. H., Wu, J. C., & Wang, X. (2021). Photo-Fenton enhanced twin-reactor for simultaneously hydrogen separation and organic wastewater degradation. Applied Catalysis B: Environmental, 281, 119517.
https://doi.org/10.1016/j.apcatb.2020.119517
Liu, Q., Ouyang, W., Yang, X., He, Y., Wu, Z., & Ostrikov, K. K. (2023). Plasma-microbubble treatment and sustainable agriculture application of diclofenac-contaminated wastewater. Chemosphere, 334, 138998.
https://doi.org/10.1016/j.chemosphere.2023.138998
Malik, M. A. (2010). Water purification by plasmas: which reactors are most energy efficient? Plasma Chemistry and Plasma Processing, 30, 21-31.
https://doi.org/10.1007/s11090-009-9202-2
Melian, E. P., Suarez, M. N., Jardiel, T., Calatayud, D. G., Del Campo, A., Dona-Rodriguez, J. M., Arana, J., & Diaz, O. G. (2019). Highly photoactive TiO2 microspheres for photocatalytic production of hydrogen. International Journal of Hydrogen Energy, 44(45), 24653-24666.
https://doi.org/10.1016/j.ijhydene.2019.07.230
Miichi, T. (2006). Decolorization of indigo carmine solution using discharge on surface of a gas-layer in water. IEEJ Trans. FM, 126(8), 851-856. https://doi.org/10.1541/ieejfms.126.851
Minami, E., Miyamoto, T., & Kawamoto, H. (2022). Decomposition of Saccharides and Alcohols in Solution Plasma for Hydrogen Production. Hydrogen, 3(3), 333-347. https://doi.org/10.3390/hydrogen3030020
Miotk, R., Hrycak, B., Czylkowski, D., Dors, M., Jasinski, M., & Mizeraczyk, J. (2016). Liquid fuel reforming using microwave plasma at atmospheric pressure. Plasma Sources Science and Technology, 25(3), 035022. https://doi.org/10.1088/0963-0252/25/3/035022
Mutaf-Yardimci, O., Saveliev, A., Fridman, A., & Kennedy, L. (1998). Employing plasma as catalyst in hydrogen production. International Journal of Hydrogen Energy, 23(12), 1109-1111.
Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189. https://doi.org/10.1016/S0360-3199(98)00005-
Ognier, S., Iya-Sou, D., Fourmond, C., & Cavadias, S. (2009). Analysis of mechanisms at the plasma–liquid interface in a gas–liquid discharge reactor used for treatment of polluted water. Plasma Chemistry and Plasma Processing, 29, 261-273. https://doi.org/10.1007/s11090-009-9179-x
Ohsawa, A., Morrow, R., & Murphy, A. (2000). An investigation of a DC dielectric barrier discharge using a disc of glass beads. Journal of Physics D: Applied Physics, 33(12), 1487. https://doi.org/10.1088/0022-3727/33/12/310
Park, Y. K., Chung, K. H., Park, I. S., Kim, S. C., Kim, S. J., & Jung, S. C. (2020). Photocatalytic degradation of 1, 4-dioxane using liquid phase plasma on visible light photocatalysts. Journal of Hazardous Materials, 399, 123087.
https://doi.org/10.1016/j.jhazmat.2020.123087
Pekarek, S., Mike?, J., & Krysa, J. (2015). Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General, 502, 122-128.
https://doi.org/10.1016/j.apcata.2015.06.003
Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kroesen, G., Whitehead, J. C., Murphy, A. B., Gutsol, A. F., & Starikovskaia, S. (2012). The 2012 plasma roadmap. Journal of Physics D: Applied Physics, 45(25), 253001. https://doi.org/10.1088/0022-3727/45/25/253001
Shih, K. Y., & Locke, B. R. (2011). Optical and electrical diagnostics of the effects of conductivity on liquid phase electrical discharge. IEEE Transactions on Plasma Science, 39(3), 883-892. https://doi.org/10.1109/TPS.2010.2098052
?imon?icova, J., Kry?tofova, S., Medvecka, V., ?uri?ova, K., & Kali?akova, B. (2019). Technical applications of plasma treatments: current state and perspectives. Applied Microbiology and Biotechnology, 103, 5117-5129. https://doi.org/10.1007/s00253-019-09877-x
Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., Yang, X., He, B., & Li, C. (2012). Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Applied Surface Science, 258(12), 5031-5037.
https://doi.org/10.1016/j.apsusc.2012.01.075
Sun, T., Liu, E., Liang, X., Hu, X., & Fan, J. (2015). Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Applied Surface Science, 347, 696-705. https://doi.org/10.1016/j.apsusc.2015.04.162
Takahashi, M., Chiba, K., & Li, P. (2007). Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B, 111(6), 1343-1347. https://doi.org/10.1021/jp0669254
Tran, N., Drogui, P., & Brar, S. K. (2015). Sonochemical techniques to degrade pharmaceutical organic pollutants. Environmental Chemistry Letters, 13, 251-268. https://doi.org/10.1007/s10311-015-0512-8
Tran, Q. T. P., Chuang, Y.H., Tan, S., Hsieh, C.H., Yang, T.Y., & Tung, H.H. (2021). Degradation kinetics and pathways of isopropyl alcohol by microwave-assisted oxidation process. Industrial & Engineering Chemistry Research, 60(34), 12461-12473. https://doi.org/10.1021/acs.iecr.1c01464
Vaiano, V., Iervolino, G., Rizzo, L., & Sannino, D. (2017). Advanced oxidation processes for the removal of food dyes in wastewater. Current Organic Chemistry, 21(12), 1068-1073.
https://doi.org/10.2174/1385272821666170102163307
Vanraes, P., & Bogaerts, A. (2018). Plasma physics of liquids—A focused review. Applied Physics Reviews, 5(3). https://doi.org/10.1063/1.5020511
Wang, J., Liu, H., Ma, D., Wang, Y., Yao, G., Yue, Q., Gao, B., Wang, S., & Xu, X. (2021). Degradation of organic pollutants by ultraviolet/ozone in high salinity condition: Non-radical pathway dominated by singlet oxygen. Chemosphere, 268, 128796. https://doi.org/10.1016/j.chemosphere.2020.128796
Wang, K., Xin, L., Zhang, Y., Qi, J., Zhu, Z., Wang, Y., Zhong, L., & Cui, P. (2024). Sustainable and efficient process design for wastewater recovery of cyclohexane/isopropyl alcohol azeotrope by extractive distillation based on multi-objective genetic algorithm optimization. Chemical Engineering Research and Design, 201, 593-602.
https://doi.org/10.1016/j.cherd.2023.12.004
Wang, W., Liu, S., Nie, L., Cheng, B., & Yu, J. (2013). Enhanced photocatalytic H 2-production activity of TiO2 using Ni(NO3)2 as an additive. Physical Chemistry Chemical Physics, 15(29), 12033-12039. https://doi.org/10.1039/c2cp43628k
Wang, X., Huang, Q., Ding, S., Liu, W., Mei, J., Luo, J., Lei, L., & He, F. (2020). Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment. Separation and Purification Technology, 240, 116659.
https://doi.org/10.1016/j.seppur.2020.116659
Williamson, J. M., Trump, D. D., Bletzinger, P., & Ganguly, B. N. (2006). Comparison of high-voltage AC and pulsed operation of a surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 39(20), 4400. https://doi.org/10.1088/0022-3727/39/20/016
Wu, C., Wang, X., Tang, Y., Zhong, H., Zhang, X., Zou, A., Zhu, J., Diao, C., Xi, S., & Xue, J. (2023). Origin of Surface Reconstruction in Lattice Oxygen Oxidation Mechanism Based?Transition Metal Oxides: A Spontaneous Chemical Process. Angewandte Chemie, 135(21), e202218599.
https://doi.org/10.1002/ange.202218599
Wu, H., Fan, J., Sun, Y., Liu, R., Jin, J., & Li, P. (2021). Removal of ammonia nitrogen and phenol by pulsed discharge plasma combined with modified zeolite catalyst. Journal of Environmental Management, 299, 113590. https://doi.org/10.1016/j.jenvman.2021.113590
Wu, L., Shi, S., Li, Q., Zhang, X., & Cui, X. (2019). TiO2 nanoparticles modified with 2D MoSe2 for enhanced photocatalytic activity on hydrogen evolution. International Journal of Hydrogen Energy, 44(2), 720-728.
https://doi.org/10.1016/j.ijhydene.2018.10.214
Xu, Y., Wu, Y., Zhang, W., Fan, X., Wang, Y., & Zhang, H. (2018). Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates. Chemical Engineering Journal, 353, 626-634. https://doi.org/10.1016/j.cej.2018.07.090
Xu, Y., & Xu, R. (2015). Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 351, 779-793.
https://doi.org/10.1016/j.apsusc.2015.05.171
Yang, A., Kong, Z. Y., & Sunarso, J. (2023). Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater. Chemical Engineering Journal, 451, 138563. https://doi.org/10.1016/j.cej.2022.138563
Zammit, I., Vaiano, V., Iervolino, G., & Rizzo, L. (2018). Inactivation of an urban wastewater indigenous Escherichia coli strain by cerium doped zinc oxide photocatalysis. RSC Advances, 8(46), 26124-26132.
https://doi.org/10.1039/c8ra05020a
Zhang, B., Wang, S., Ma, Z., & Qiu, Y. (2019). Ni0-rich Ni/NiO nanocrystals for efficient water-to?hydrogen conversion via urea electro-oxidation. Applied Surface Science, 496, 143710. https://doi.org/10.1016/j.apsusc.2019.143710
Zhang, J., Zhang, W., Wang, J., Wu, T., Wang, J., Shuang, S., Zhang, Y., & Dong, M. (2024). Enhanced hydrogen production from methanol by liquid-phase array electrode plasma discharge. Energy Conversion and Management, 312, 118544. https://doi.org/10.1016/j.enconman.2024.118544
Zhang, X., Wang, J., Dong, X. X., & Lv, Y. K. (2020). Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 242, 125144.
https://doi.org/10.1016/j.chemosphere.2019.125144
Zhang, Y., Xin, Q., Cong, Y., Wang, Q., & Jiang, B. (2013). Application of TiO2 nanotubes with pulsed plasma for phenol degradation. Chemical Engineering Journal, 215, 261-268. https://doi.org/10.1016/j.cej.2012.11.045
Zhao, L., Sun, Y., Qiu, R., Sun, H., & Feng, J. (2022). Application of liquid film dielectric barrier discharge plasma reactor in the degradation of rhodamine B: Performance optimization, mechanism and pathways. Journal of Water Process Engineering, 50, 103231. https://doi.org/10.1016/j.jwpe.2022.103231
王昭權,「薄膜生物系統應用於光電產業廢水處理之研究」,嘉南藥理大學,民國102年。 https://ir.cnu.edu.tw/handle/310902800/27282
李昀恩,「以 LaFeO3/Black-TiO2 行光催化反應以去除甲苯及異丙醇之可行性探討」,國立中央大學,碩士論文,民國107年。
http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105326022
李豫弘,「探討半導體業之水資源回收再利用及處理分析-NDL 為例」,國立陽明交通大學,碩士論文,民國95年。
http://140.113.39.130/cdrfb3/record/nctu/#GT009366508
許欣潔,「 沸石吸附材料製備及其運用於水中有機污染物之去除」,嘉南藥理大學,碩士論文,民國97年。 https://ir.cnu.edu.tw/handle/310902800/9254
黃富昌,李俊福,謝福環,陳德鴻,張侑昌,蔡崇平和李昇雨,特殊有機廢溶劑純化再利用之研究,2008 台灣環境資源永續發展研討會論文集,2008年10月。http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=943306021
黃耀輝,「以光電化學反應處理含氯有機廢水之技術開發與應用」,國立成功大學,碩士論文,民國101年。
http://140.116.207.99/handle/987654321/129341
劉振揚,「 UASB 結合 BioNET 處理氨氮廢水之研究-以某光電廠有機廢水為例 」, 國立中央大學,碩士論文,民國110年。
http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=107356010
盧明俊,何冠賢,王淑宜和徐哲敏,利用電-芬頓程序處理含有機酸之廢水,嘉南學報 (科技類) 30 期: p. 75-84,2004。
https://ir.cnu.edu.tw/handle/310902800/21332
羅卓卿,「 應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究」,國立中山大學,碩士論文,民國97年。https://hdl.handle.net/11296/2jn9d3 |