博碩士論文 111327014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.16.48.173
姓名 林妤謙(YU-CHIAN LIN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 最佳化邊緣保持正則反算之擴散光造影及驗證
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-31以後開放)
摘要(中) 擴散光斷層造影(Diffuse optical imaging, DOI)為利用近紅外光射入生理組織,並由光偵測器蒐集離開組織光資訊來進行組織光學係數分佈影像重建,影像重建分為前向計算與逆向問題兩個部分。前向計算藉由擴散方程式呈現近紅外光在組織中的傳遞情形,並利用限元素法(Finite element method, FEM)來獲得不同位置的光資訊;逆向問題則通過牛頓法進行疊代,藉由將量測資料與前向計算的差值最小化來重建組織光學係數分佈,進而判斷腫瘤大小及位置,因其屬於非線性(Nonlinear)且病態(Ill-posed)的問題,在處理時需加入正則化項改善解不唯一導致求解過程數值不穩定的問題,因此正則化法與正則參數(λ)的選擇對於計算來說極為重要。本研究在影像重建時使用邊緣保留正則化(Edge-preserving regularization, EPR)來限制並縮小解的範圍,將其與先前已有的吉洪諾夫正則化(Tikhonov regularization, TR)做比較,透過在EPR及TR中加入U曲線準則使其能夠自動決定最佳化λ,以客觀決定正則化計算參數,不會因為使用者對影像反算熟悉程度不同而計算結果有差異,作為團隊先前已開發的DOpIm造影軟體系統影像重建的不同選擇;並透過在原RCSD中對Rcontrast分別加入置入物及背景的標準差,來修正原本對比及尺寸辨識率(CSD)僅考慮光學係數平均值所造成的過擬合問題,並在Rsize中加入背景區域光學係數的均方誤差修正僅考慮到置入物區域光學係數的均方誤差的問題,使RCSD數值更貼近主觀判斷的二維重建影像。
研究中設計不同置入物大小、個數、離心距及光學係數對比度的仿體分別進行8組數值模擬和6組實驗數據量測,使用EPR來比較三種所選擇固定的正則參數50、1、0.02與U曲線準則所選擇之最佳化λ其重建影像差異;進一步比較同樣使用U曲線準則時,使用EPR及TR兩種正則化法的重建影像品質差異。從二維重建影像及解析度結果可發現,相較於自定義之λ值,使用U曲線準則重建影像在各案例中均能得到較佳的結果;而由CSD計算可發現使用U曲線準則在模擬中有25%(模擬8組中的2組)獲得最佳吸收係數解析度,為上述五種正則參數及正則化法中第三佳的計算方式,在最佳散射係數解析度則有87.5%(模擬8組中的7組),為上述五種正則參數及正則化法中最佳計算方式,在實驗中則有33.3%(實驗6組中的2組)獲得最佳吸收係數解析度,為上述五種正則參數及正則化法中第二佳的計算方式,在最佳散射係數解析度則有83.3%(實驗6組中的5組),為上述五種正則參數及正則化法中最佳計算方式。由計算結果可發現,當模擬案例設計越複雜時所需的CPU計算時間越久,但使用U曲線準則時在不同案例中的CPU計算效率並無明顯變化,相較於自定義之λ值,能在較短的計算時間內獲得較佳的重建影像。比較U曲線EPR-λ與自定義λ可知,在逆向計算中其光學係數更新值會依每次疊代而不同,當以指定λ運算時不論光學係數更新值為何,在正則化計算中皆以相同正則參數作計算;而U曲線準則所選擇的λ則會依照每次疊代的光學係數更新值,來決定該次運算時的最佳λ,因此無法透過指定U曲線準則所決定的最佳λ值,來重現出與U曲線準則相同的重建結果。
進一步比較使用EPR與TR之U曲線準則影像重建可發現,TR的重建結果在散射係數解析度上較容易取得較佳的重建結果(50%,實驗6組中的3組),且在重建影像背景中較無雜訊假影,但在置入物邊界判別能力上沒有EPR清晰,適用於追求穩定性且對特徵細節要求較低的狀況;反之,EPR在重建影像上雖相較TR有較多的雜訊假影,但在置入物影像位置及大小的辨別上更為清晰,且在實驗數據量測案例中,使用EPR之U曲線準則能在二維重建影像的吸收及散射係數特徵上獲得兩者平均較佳的結果,在三置入物的案例中也能重建的比TR清晰,適用於需高精度置入物特徵且對雜訊要求較低的狀況。
摘要(英) Diffuse Optical Imaging (DOI) utilizes near-infrared light to probe biological tissues, with detectors collecting the transmitted light to reconstruct the spatial distribution of optical coefficients. The image reconstruction process consists of two main components: forward modeling and the inverse problem. Forward modeling describes the propagation of near-infrared light in tissue using the diffusion equation and employs the Finite Element Method (FEM) to obtain light distribution at different locations. The inverse problem, solved iteratively using Newton’s method, minimizes the difference between measured data and forward model predictions to reconstruct the optical coefficient distribution, enabling tumor size and location estimation. Since the inverse problem is inherently nonlinear and ill-posed, regularization is required to stabilize the solution and mitigate numerical instability caused by non-uniqueness. Thus, selecting an appropriate regularization method and parameter (λ) is crucial for accurate reconstruction. This study incorporates Edge-Preserving Regularization (EPR) to constrain and refine the solution space during image reconstruction and compares its performance with Tikhonov Regularization (TR). To objectively determine the optimal λ and minimize user-dependent variability in reconstruction outcomes, the U-curve criterion is integrated into both EPR and TR. This enhancement provides an alternative reconstruction approach for the DOpIm imaging software system developed by our team. Additionally, modifications were made to the Contrast and Size Detection Rate (CSD) metric to address overfitting issues caused by considering only the mean optical coefficient values. Specifically, standard deviations of the optical coefficients in the inclusion and background regions were incorporated into the original Rcontrast metric, while Rsize was refined by including the mean square error of background optical coefficients to correct for previous evaluations that only considered inclusion regions. These refinements ensure that the Revised CSD (RCSD) metric better aligns with subjective visual assessments of 2D reconstructed images.
In this study, eight numerical simulations and six experimental measurements were conducted using phantoms with varying inclusion sizes, numbers, eccentricities, and optical contrast ratios. EPR was employed to compare the reconstructed image quality using three fixed regularization parameters (50, 1, and 0.02) versus the optimal λ determined by the U-curve criterion. Furthermore, image reconstruction results using the U-curve criterion were compared between EPR and TR. Analysis of the 2D reconstructed images and resolution results indicates that the U-curve-based reconstruction consistently outperforms predefined λ values across all cases. According to CSD calculations, in simulations, the U-curve criterion yielded the best absorption coefficient resolution in 25% (2 out of 8 cases) and the best scattering coefficient resolution in 87.5% (7 out of 8 cases). In experiments, it achieved the best absorption coefficient resolution in 33.3% (2 out of 6 cases) and the best scattering coefficient resolution in 83.3% (5 out of 6 cases). The results further show that as the complexity of simulation cases increases, the required computation time also increases. However, when using the U-curve criterion, computational efficiency remains stable across different cases. Compared to fixed λ values, the U-curve criterion enables faster computation while achieving superior reconstruction quality. Additionally, comparing U-curve EPR-λ with manually specified λ values reveals that in the inverse problem, the optical coefficient update varies at each iteration. With a fixed λ, the same regularization parameter is applied throughout all iterations regardless of coefficient updates. In contrast, the U-curve criterion dynamically adjusts λ in each iteration based on the current optical coefficient update, ensuring optimal regularization at each step. Consequently, it is not possible to replicate the U-curve-based reconstruction results solely by manually specifying the final λ value determined by the U-curve criterion.
Further comparison of image reconstruction using the U-curve criterion with EPR and TR reveals distinct performance characteristics. TR achieves superior scattering coefficient resolution in 50% (3 out of 6 experimental cases) and exhibits lower noise artifacts in reconstructed image backgrounds. However, it lacks the boundary delineation clarity of EPR, making it more suitable for applications prioritizing stability over fine structural details. Conversely, while EPR produces more noise artifacts compared to TR, it provides clearer identification of inclusion locations and sizes. In experimental measurements, the U-curve-based EPR reconstruction consistently achieves a more balanced performance in both absorption and scattering coefficient resolution across 2D reconstructed images. Moreover, in cases involving three inclusions, EPR reconstructs images with greater clarity than TR, making it the preferred choice for applications requiring high-precision inclusion characterization where some tolerance for noise is acceptable.
關鍵字(中) ★ 擴散光學斷層造影
★ 有限元素法
★ Edge-preserving正則化
★ Tikhonov正則化
★ 影像重建
★ 正則參數
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 vii
圖目錄 ix
表目錄 xii
專有名詞與符號說明 xiii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 乳房組織光學特性與醫學影像造影 3
1-2-1 乳房組織光學特性 3
1-2-2 醫學影像造影 6
1-3 文獻回顧 7
1-3-1 反算正則化與正則參數 7
1-3-2 實驗室先前基礎 9
1-4 論文架構 11
第二章 影像重建基礎及前向計算 12
2-1 組織擴散光學理論 12
2-1-1 擴散方程式 12
2-1-2 邊界條件 14
2-2 前向計算 15
第三章 影像重建逆向問題 18
3-1 影像反算 18
3-1-1 Jacobian矩陣 19
3-1-2 Jacobian正規化(normalization) 20
3-1-3 Tikhonov正則化 21
3-2 Edge-preserving正則化 21
3-2-1 正則化參數最佳化 23
3-2-2 U曲線準則及特性 25
3-3 DOpIm程式更新 26
3-3-1 DOpIm概述 26
3-3-2 介面修改與功能介紹 27
第四章 影像重建數值模擬 28
4-1 影像重建 28
4-2 模擬仿體設計 29
4-3 個別正則化參數之影像重建 31
4-4 影像品質分析與評估 45
4-5 結果與討論 50
4-6 U曲線EPR-λ與自定義λ比較 52
第五章 影像重建實驗驗證 57
5-1 光資訊量測實驗架構 57
5-2 實驗仿體設計 58
5-3 個別正則化參數影像重建 60
5-4 結果與討論 71
第六章 結論與未來展望 73
6-1 結論 73
6-2 未來展望 74
參考文獻 75
參考文獻 [1] 衛生福利部國民健康署, "110中華民國癌症登記報告," 2021.
[2] IARC. "Number of new cases and deaths in 2020, both sexes, all ages,WHO." https://www.iarc.who.int/.
[3] 台灣癌症防治網. "認識乳癌-乳癌的分類." 財團法人台灣癌症臨床研究發展基金會. http://web.tccf.org.tw/lib/addon.php?act=post&id=4383.
[4] 國衛院癌症研究組台灣癌症臨床研究合作組織. "乳癌診斷與治療共識." 國家衛生研究院, 2004.
[5] R. A. Lawrence, "Anatomy of the Breast," in Breastfeeding: Elsevier, 2022, pp. 38-57.
[6] E. Vandeweyer and D. Hertens, "Quantification of glands and fat in breast tissue: An experimental determination,," ScienceDirect, pp. 181-184, 2002.
[7] H. Q. Woodard and D. R. White, "The composition of body tissues," The British journal of radiology, vol. 59, no. 708, pp. 1209-1218, 1986.
[8] M. Varjonen, "Three-dimensional digital breast tomosynthesis in the early diagnosis and detection of breast cancer," in International Workshop on Digital Mammography, 2006: Springer, pp. 152-159.
[9] L. L. Humphrey, M. Helfand, B. K. Chan, and S. H. Woolf, "Breast cancer screening: a summary of the evidence for the US Preventive Services Task Force," Annals of internal medicine, vol. 137, pp. 347-360, 2002.
[10] F. De Silva and J. Alcorn, "A tale of two cancers: A current concise overview of breast and prostate cancer," Cancers, vol. 14, no. 12, p. 2954, 2022.
[11] G. Satat, "Imaging through scattering," Massachusetts Institute of Technology, 2015.
[12] S. Du, J. Yang, H. Zhang, B. Zhang, and Z. Su, "FVSR-Net: An end-to-end finger vein image scattering removal network," Multimedia Tools and Applications, vol. 80, pp. 10705-10722, 2021.
[13] L. Wang, X. Liang, P. Galland, P. Ho, and R. Alfano, "True scattering coefficients of turbid matter measured by early-time gating," Optics letters, vol. 20, no. 8, pp. 913-915, 1995.
[14] J. V. Garcia, F. Zhang, and P. C. Ford, "Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 371, no. 1995, p. 20120129, 2013.
[15] U. Kumarasamy, G. Shrichandran, and A. V. Srivatson, "Diffuse Optical Tomography System in Soft Tissue Tumor Detection," in Digital Image Processing Applications: IntechOpen, 2021.
[16] A. Cerussi et al., "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proceedings of the National Academy of Sciences, vol. 104, no. 10, pp. 4014-4019, 2007.
[17] 凱維勒斯, 楊玉齡, and B. H. Kevles, 露骨 : X射線檔案, 第一版 ed. (科學人文 ; 62). 臺北市: 天下遠見出版, 2000.
[18] T. Nagashima et al., "Ultrasound demonstration of mammographically detected microcalcifications in patients with ductal carcinoma in situ of the breast," Breast cancer, vol. 12, pp. 216-220, 2005.
[19] J. G. Elmore, K. Armstrong, C. D. Lehman, and S. W. Fletcher, "Screening for breast cancer," Jama, vol. 293, no. 10, pp. 1245-1256, 2005.
[20] S. R. Arridge and J. C. Schotland, "Optical tomography: forward and inverse problems," Inverse problems, vol. 25, no. 12, p. 123010, 2009.
[21] L. Blanc-Feraud and M. Barlaud, "Edge preserving restoration of astrophysical images," Vistas in Astronomy, vol. 40, no. 4, pp. 531-538, 1996.
[22] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Transactions on image processing, vol. 6, no. 2, pp. 298-311, 1997.
[23] P. Lobel, L. Blanc-Feraud, C. Pichot, and M. Barlaud, "A new regularization scheme for inverse scattering," Inverse problems, vol. 13, no. 2, p. 403, 1997.
[24] A. H. Delaney and Y. Bresler, "Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography," IEEE Transactions on image processing, vol. 7, no. 2, pp. 204-221, 1998.
[25] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia, "A variational model for image classification and restoration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 5, pp. 460-472, 2000.
[26] D. Yu and J. A. Fessler, "Three-dimensional non-local edge-preserving regularization for PET transmission reconstruction," in 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149), 2000, vol. 2: IEEE, pp. 15/66-15/70 vol. 2.
[27] M. Rivera and J. L. Marroquin, "Adaptive rest condition potentials: first and second order edge-preserving regularization," Computer Vision and Image Understanding, vol. 88, no. 2, pp. 76-93, 2002.
[28] A. Jalobeanu, L. Blanc-Feraud, and J. Zerubia, "Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method," Pattern Recognition, vol. 35, no. 2, pp. 341-352, 2002.
[29] N. Villain, Y. Goussard, J. Idier, and M. Allain, "Three-dimensional edge-preserving image enhancement for computed tomography," IEEE transactions on medical imaging, vol. 22, no. 10, pp. 1275-1287, 2003.
[30] R. Casanova, A. Silva, and A. Borges, "MIT image reconstruction based on edge-preserving regularization," Physiological measurement, vol. 25, no. 1, p. 195, 2004.
[31] R. Pan and S. J. Reeves, "Efficient Huber-Markov edge-preserving image restoration," IEEE Trans Image Process, vol. 15, no. 12, pp. 3728-35, Dec 2006.
[32] D. Lazzaro and L. Montefusco, "Edge-preserving wavelet thresholding for image denoising," Journal of Computational and Applied Mathematics, vol. 210, no. 1-2, pp. 222-231, 2007.
[33] H. Zhang, Z. Shang, and C. Yang, "A non?linear regularized constrained impedance inversion," Geophysical Prospecting, vol. 55, no. 6, pp. 819-833, 2007.
[34] H. Zhang, Z. Shang, and C. Yang, "Adaptive reconstruction method of impedance model with absolute and relative constraints," Journal of Applied Geophysics, vol. 67, no. 2, pp. 114-124, 2009.
[35] X. Gu and L. Gao, "A new method for parameter estimation of edge-preserving regularization in image restoration," Journal of Computational and Applied Mathematics, vol. 225, no. 2, pp. 478-486, 2009.
[36] R. Zanella, P. Boccacci, L. Zanni, and M. Bertero, "Efficient gradient projection methods for edge-preserving removal of Poisson noise," Inverse Problems, vol. 25, no. 4, p. 045010, 2009.
[37] V. S. Prasath and A. Singh, "A hybrid convex variational model for image restoration," Applied Mathematics and Computation, vol. 215, no. 10, pp. 3655-3664, 2010.
[38] J. M. Bardsley and J. Goldes, "An iterative method for edge-preserving MAP estimation when data-noise is Poisson," SIAM Journal on Scientific Computing, vol. 32, no. 1, pp. 171-185, 2010.
[39] T. Correia et al., "Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information," Biomedical optics express, vol. 2, no. 9, pp. 2632-2648, 2011.
[40] B. Omrane, Y. Goussard, and J.-J. Laurin, "Constrained inverse near-field scattering using high resolution wire grid models," IEEE transactions on antennas and propagation, vol. 59, no. 10, pp. 3710-3718, 2011.
[41] L. Zhang, H. Shen, W. Gong, and H. Zhang, "Adjustable model-based fusion method for multispectral and panchromatic images," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 6, pp. 1693-1704, 2012.
[42] M. M. Khattab, A. M. Zeki, A. A. Alwan, and A. S. Badawy, "Regularization-based multi-frame super-resolution: a systematic review," Journal of King Saud University-Computer and Information Sciences, vol. 32, no. 7, pp. 755-762, 2020.
[43] D. Krawczyk-Sta?do and M. Rudnicki, "Regularization parameter selection in discrete ill-posed problems—the use of the U-curve," International Journal of Applied Mathematics and Computer Science, vol. 17, no. 2, pp. 157-164, 2007.
[44] Q. Yuan, L. Zhang, H. Shen, and P. Li, "Adaptive multiple-frame image super-resolution based on U-curve," IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3157-3170, 2010.
[45] J. Chamorro-Servent, J. Aguirre, J. Ripoll, J. J. Vaquero, and M. Desco, "Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies," Optics express, vol. 19, no. 12, pp. 11490-11506, 2011.
[46] J. Chamorro Servent, "Using state-of-the-art inverse problem techniques to develop reconstruction methods for fluorescence diffuse optical," 2013.
[47] M. Chen, H. Su, Y. Zhou, C. Cai, D. Zhang, and J. Luo, "Automatic selection of regularization parameters for dynamic fluorescence molecular tomography: a comparison of L-curve and U-curve methods," Biomedical Optics Express, vol. 7, no. 12, pp. 5021-5041, 2016.
[48] L. Wang, X. Zhao, and H. Gao, "A method for determining the regularization parameter and the relative weight ratio of the seismic slip distribution with multi-source data," Journal of Geodynamics, vol. 118, pp. 1-10, 2018.
[49] J. Tang and X. Gao, "Adaptive regularization method for 3-D GNSS ionospheric tomography based on the U-curve," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 6, pp. 4547-4560, 2020.
[50] L.-Y. Chen, "Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography," Applied Optics, vol. 51, no. 1, pp. 43-54, 2012.
[51] L.-Y. Chen, "Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization," Applied Optics, vol. 52, no. 6, pp. 1173-1182, 2013.
[52] L.-Y. Chen, "Reconstruction and Evaluation of Diffuse Optical Imaging," PhD thesis, Department of Mechanical Engineering, National Central University, 2013.
[53] 甘弘暐, "多頻率同步驅動光源之三維頻域式擴散光學斷層造影數值計算研究," 碩士論文, 機械工程研究所, 國立中央大學, 2020.
[54] 吳唸督, "最佳化正則參數於擴散光造影反算及驗證," 碩士論文, 機械工程研究所, 國立中央大學, 2023.
[55] 游釗銘, "頻域式擴散光學造影之乳房掃描暨量測系統研究," 博士論文, 光機電工程研究所, 國立中央大學, 2015.
[56] 劉沛霆, "外型輪廓順應量測之擴散光學成像比較研究," 碩士論文, 光機電工程研究所, 國立中央大學, 2020.
[57] 許彥揚, "多頻同步驅動光源之頻域式擴散光學造影研究," 碩士論文, 生醫科學與工程研究所, 國立中央大學, 2020.
[58] 嚴中成, "三維近紅外光擴散光學斷層影像重建之數值計算研究," 碩士論文, 機械工程研究所, 國立中央大學, 2016.
[59] V. V. H. MUDENG, "Computation of Three-Dimensional Diffuse Optical Image Reconstruction with Arbitrary Surface Models," Master′s thesis, National Central University, 2017.
[60] L.-Y. Chen, M.-C. Pan, C.-C. Yan, and M.-C. Pan, "Wavelength optimization using available laser diodes in spectral near-infrared optical tomography," Applied optics, vol. 55, no. 21, pp. 5729-5737, 2016.
[61] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, "Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis," Optical review, vol. 20, pp. 19-25, 2013.
[62] M.-C. Pan, C.-H. Chen, L.-Y. Chen, M.-C. Pan, and Y.-M. Shyr, "Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images," Journal of biomedical optics, vol. 13, no. 2, 2008.
[63] L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. John Wiley & Sons, 2012.
[64] E. Ambrocio, "A Self-Consistent Obstacle Scattering Theory for the Diffusion Approximation of the Radiative Transport Equation," Applied Mathematics. University of California, Merced. Master of Science, 2008.
[65] K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Medical Physics, vol. 22, no. 6, pp. 691-701, 1995.
[66] W. Egan, Optical properties of inhomogeneous materials: applications to geology, astronomy chemistry, and engineering. Elsevier, 2012.
[67] 李柏廷, "DOpIm:擴散光學造影軟體系統," 碩士論文, 機械工程研究所, 國立中央大學, 2022.
[68] S. R. Arridge, "Optical tomography in medical imaging," Inverse problems, vol. 15, no. 2, p. 41, 1999.
[69] A. Corlu et al., "Diffuse optical tomography with spectral constraints and wavelength optimization," Applied optics, vol. 44, no. 11, pp. 2082-2093, 2005.
[70] B. Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, "Diffuse optical tomographic reconstruction using multifrequency data," Journal of Biomedical Optics, vol. 11, no. 5, 2006.
指導教授 潘敏俊 審核日期 2025-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明