博碩士論文 111327022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.191.137.190
姓名 蔡政宏(TSAI,CHENG-HUNG)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 基於影像前處理之聚焦成形技術 應用於藍寶石加工孔形貌量測
(Shape From Focus Based on Image Preprocessing for Sapphire Machining Hole Morphology Measurement)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 本研究目的為克服藍寶石基板加工後之孔洞量測困境,並提出結合影像前處理與聚焦成形(Shape From Focus, SFF)技術的三維形貌量測方法。藍寶石由高純度單晶氧化鋁(Al?O?)構成,硬度僅次於鑽石,熱穩定性與耐磨損性優異,透過率涵蓋深紫外至中紅外波段,廣泛應用於光電、微電子及航空航天領域。
現有差分干涉對比(DIC)、白光干涉(WLI)與雷射掃描共焦(LSC)等量測技術,各自適用於不同的形貌檢測需求。DIC 能觀察透明材料細微結構卻缺乏深度資訊,WLI 具非接觸式高精度三維量測優勢,然而高度劇變時易有誤差;LSC 處理解析度高、三維重建能力強,但設備成本較高。為在不大幅增加設備負擔的前提下取得可靠的三維量測結果,本研究選用 SFF 技術,以多焦點影像判斷各區域焦點,重建孔洞深度。藍寶石本身的高透明度與反射性會導致眩光及亮斑,故在 SFF 前必須先進行有效的影像前處理。
本研究首先運用灰階等化、高斯濾波及型態學運算,降低雜訊並強化對比度,修正光照不均及反射造成的影像失真。隨後,透過多張不同焦面影像之融合,藉由演算法精準辨識各像素位置的最佳聚焦高度,重建方孔的三維形貌。實驗結果顯示,縱向的解析度均約為 0.8 μm,橫向解析度0.4 μm,其中縱向量測範圍可達 20 mm,而橫向範圍約為 1.96 mm × 1.64 mm。此方法有效突顯孔壁形狀與細節,並能準確量測孔洞深度與形貌特徵,為藍寶石製程優化及外延層品質檢測提供了可行的技術路徑。
本研究不但驗證了 SFF 在透明、高反光性材質上的應用價值,也展現了結合影像前處理所能達成的精度與穩定度。透過提升影像銳利度、抑制眩光與雜訊,能大幅強化對孔洞形貌的辨識力,進而協助後續製程參數調整與器件品質提升。由於此量測方法成本相對低廉、系統組裝彈性高,未來若能在照明與硬體配置上持續優化,勢必能進一步深化在光電與微電子領域的實際應用。
摘要(英) This study aims to overcome the measurement challenges of sapphire substrates after machining and proposes a three-dimensional morphology measurement method that integrates image preprocessing with the Shape From Focus (SFF) technique. Sapphire is composed of high-purity single-crystal aluminum oxide (Al?O?), with a hardness second only to diamond, excellent thermal stability, and high wear resistance. It also exhibits a broad transmission range from deep ultraviolet to mid-infrared wavelengths, making it widely used in optoelectronics, microelectronics, and aerospace fields.
Existing techniques such as Differential Interference Contrast (DIC), White Light Interferometry (WLI), and Laser Scanning Confocal (LSC) each cater to different measurement demands. While DIC can observe fine structures in transparent materials, it lacks accurate depth information. WLI offers non-contact, high-precision 3D measurements but can suffer from errors when measuring steep height transitions. LSC provides high-resolution data and strong 3D reconstruction capabilities, but at a relatively high equipment cost. To achieve reliable 3D measurement without significantly increasing costs, this study employs SFF, which reconstructs depth by determining the focal position for different areas across multiple focal-plane images. However, the high transparency and reflectivity of sapphire can lead to glare and bright spots, necessitating effective image preprocessing prior to SFF.
In this research, grayscale equalization, Gaussian filtering, and morphological operations are initially performed to reduce noise and enhance contrast, thereby correcting uneven illumination and reflection-induced distortions. Subsequently, multiple focal-plane images are fused, and an algorithm precisely determines the optimal focal height for each pixel, reconstructing the 3D morphology of a square hole. Experimental results indicate that both vertical and horizontal resolutions are approximately 0.8 μm, with the vertical measurement range extending up to 20 mm, and a horizontal range of about 1.96 mm × 1.64 mm. This approach effectively highlights hole-wall geometry and detail, enabling accurate depth measurement and comprehensive morphological analysis—offering a feasible pathway for optimizing sapphire processing and evaluating epitaxial layer quality.
Furthermore, this study demonstrates that SFF is applicable to transparent, highly reflective materials and showcases the accuracy and stability achieved by integrating image preprocessing. By enhancing image sharpness and mitigating glare and noise, it significantly improves the detection of hole morphology, aiding subsequent adjustments in manufacturing parameters and improving device quality. Given its relatively low cost and flexible system configuration, this measurement method could be further refined in illumination and hardware setups, making it even more advantageous for practical use in optoelectronics and microelectronics.
關鍵字(中) ★ 聚焦成形
★ 三維形貌重建
★ 藍寶石基板
★ 深孔量測
關鍵字(英) ★ Shape From Focus
★ three-dimensional morphology reconstruction
★ sapphire substrate
★ deep hole measurement
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1現今藍寶石基板形貌量測技術 2
1-2-2 聚焦成形技術回顧 5
1-3 研究動機、目的與方法 7
1-4 論文架構 8
第二章 實驗原理 9
2-1 聚焦成形原理 9
2-1-1聚焦與失焦 9
2-1-2場曲現象 10
2-1-3照明 11
2-1-4聚焦度曲線與深度重建 12
2-3 聚焦度值演算法 13
2-3-1 Prewitt運算子 13
2-3-2 Robert運算子 14
2-3-3 Scharr運算子 15
2-3-4 Laplacian運算子 16
2-4 影像增強 16
2-4-1 灰階等化運算 17
2-4-2 高斯濾波 18
2-4-3形態學 18
2-5 小結 20
第三章 系統架構 21
3-1 量測樣品 21
3-2 系統設備 21
3-2-1 系統硬體設備 23
3-2-2 軟體設備 26
3-2-3 無限遠顯微鏡頭 27
3-3 系統流程 28
3-3-1 影像擷取流程 28
3-3-2 形貌重建流程 29
3-4 小結 30
第四章 實驗結果與討論 31
4-1 SFF技術量測方形通孔橫切面 31
4-1-1 Prewitt運算子 32
4-1-2 Robert運算子 33
4-1-3 Scharr算子 33
4-1-4 Laplacian運算子 34
4-2 加入影像前處理 35
4-2-1灰階等化運算 35
4-2-2 高斯濾波 42
4-2-3 形態學 50
4-3 系統性能 57
4-3-1 系統解析度 58
4-3-2 系統範圍 59
4-3-2 重複性量測 60
4-4 商用機台量測 62
4-5 方孔形貌重建 68
4-6 小結 69
第五章 誤差分析 71
5-1 系統誤差 71
5-1-1電控位移平台之位移誤差 71
5-1-2眩光誤差 72
5-1-2數值孔徑誤差 73
5-2 隨機誤差 73
5-2-1 機械震動 74
5-3 小結 75
第六章 結論與未來展望 76
6-1 結論 76
6-2 未來展望 77
參考文獻 78
參考文獻 [1] Aggarwal, R. L., & Ramdas, A. K. (2019). Physical properties of diamond and sapphire. CRC Press.
[2] Sinani, A. B., Shilova, L. L., Bazhenov, V. E., Dementieva, N. V., & Shevlev, S. Y. (2009). Sapphire hardness in different crystallographic directions. Bulletin of the Russian Academy of Sciences: Physics, 73, 1380–1382.
[3] Wolfmeyer, M. W., & Dillinger, J. R. (1971). The thermal conductivity of sapphire between 0.4 and 4 K. Physics Letters A, 34(4), 247–248.
[4] Abramov, V. N., Milovzorov, V. N., Sokolov, M. M., Muravyova, G. A., & Potokin, A. G. (1978). On the vacuum ultraviolet transparency of sapphire. Physica Status Solidi (a), 48(2), 287–292.
[5] Thomas, M. E., Tropf, W. J., Gauvin, W. H., & Gallagher, N. C. (1998). Frequency and temperature dependence of the refractive index of sapphire. Infrared Physics & Technology, 39(4), 235–249.
[6] 游雅鈞(20023)。氧化鋁陶瓷包覆之摻鈦藍寶石晶體光纖材料分析(碩士論文)。國立台灣大學,台灣。
[7] 呂理召,林富松(2004)。發光二極體中游後製程代工模式利基之研究—以氮化鎵藍寶石晶圓為例(碩士論文)。國立陽明交通大學,台灣。
[8] 謝承佑(2012)。利用奈米圖案化藍寶石基板改善氮化鎵品質以及成長半極性氮化鎵於 a 面圖案化藍寶石基板(碩士論文)。國立陽明交通大學,台灣。
[9] Andreou, A. G., Strohbehn, K., Eichmann, G., Uttamchandani, D., & Wyatt, P. (2001). Silicon on sapphire CMOS for optoelectronic microsystems. IEEE Circuits and Systems Magazine, 1(3), 22–30.
[10] Zhou, H., Mills, D. A., Vera, A., Garraud, A., Oates, W., & Sheplak, M. (2019). A high-temperature optical sapphire pressure sensor for harsh environments. In AIAA Scitech 2019 Forum (p. 2044).
[11] Ashkenasi, D., Lorenz, K., & Krausz, F. (1997). Laser processing of sapphire with picosecond and sub-picosecond pulses. Applied Surface Science, 120(1–2), 65–80.
[12] Muttamara, A., McGeough, J. A., Choon, F. S., & Karthikeyan, B. (2004). Effects of structural orientation on EDM properties of sapphire. Materials Transactions, 45(7), 2486–2488.
[13] Nomarski, G. (1955). Microinterferometre differentiel a ondes polarisees. Journal de Physique et le Radium, 16, 9S–13S.
[14] Renfro, N. (2015). The application of differential interference contrast microscopy to gemmology. Journal of Gemmology, 34(7)
[15] De Groot, P., & Deck, L. (1995). Surface profiling by analysis of white-light interferograms in the spatial frequency domain. Journal of Modern Optics, 42(2), 389–401.
[16] Blunt, R. T. (2006, April). White Light Interferometry–a production worthy technique for measuring surface roughness on semiconductor wafers. In Proceedings of CS MANTECH Conference (pp. 59-62).
[17] Petra?, M., Hadravsky, M., Benesch, E., & Boyde, A. (1968). Tandem-scanning reflected-light microscope. Journal of the Optical Society of America, 58(5), 661–664.
[18] Lopez-Cepero, J. M., Berhan, L., Fecko, M., & Narayan, R. J. (2005). Fractographic studies of sapphire fibers using laser scanning confocal microscopy. Key Engineering Materials, 290, 280–283.
[19] Nayar, S. K., & Nakagawa, Y. (1994). Shape from focus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8), 824-831.
[20] Subbarao, M., & Choi, T. (1995). Accurate recovery of three-dimensional shape from image focus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(3), 266-274.
[21] Muhammad, A., & Choi, T. S. (1999, September). Learning shape from focus using multilayer neural networks. In Vision Geometry VIII (Vol. 3811, pp. 366-375). SPIE.
[22] Yun, J., & Choi, T. S. (1999, October). Accurate 3-D shape recovery using curved window focus measure. In Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348) (Vol. 3, pp. 910-914). IEEE.
[23] Pertuz, S., Puig, D., & Garcia, M. A. (2013). Analysis of focus measure operators for shape-from-focus. Pattern Recognition, 46(5), 1415-1432.
[24] 郭育誠(2024)。基於聚焦成形技術之碳化矽內部改質層厚度量測(碩士論文)。國立中央大學,台灣。
[25] 邱盟賀(2021)。以指數校正法改善陰影對聚焦成形術的影響(碩士論文)。國立中央大學,台灣。
[26] 林言叡(2024)。基於聚焦成形技術之藍寶石玻璃孔洞自動化量測系統開發(碩士論文)。國立中央大學,台灣。
指導教授 李朱育(Lee, Ju-Yi) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明