博碩士論文 111328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:148 、訪客IP:18.190.239.30
姓名 汪建成(Chien-Cheng Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 通訊衛星低溫熱管性能研究
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 低溫熱管設計及性能研究★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究
★ 平板震盪型熱管均熱片研究★ 薄矽膠層吸附床之性能研究
★ 小型吸附式空調系統研究★ 變頻空調機在不同環境下之控制策略
★ 水-空氣在板式熱交換器內的流動觀察★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能
★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究★ 梯形流道表面之池沸騰熱傳性能研究
★ 石墨烯塗佈銅管外凝結熱傳性能研究★ 超臨界R-410A與R-32熱傳及壓降性能之研究
★ 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管★ 不同性能風扇對熱傳增強鰭片之性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著衛星航太技術、移動通訊和電子元件技術的快速發展,低軌衛星通訊的應用時機已然成熟。然而,在低軌衛星在軌道上運作時,工作溫度相差甚大,在面陽側溫度高達80 oC,而在背陽側溫度則會低至-40 oC。鋁氨溝槽熱管常用於衛星的熱管理,但接近該工作溫度範圍的研究不多。因此本研究透過實驗量測了鋁氨熱管工作溫度-40到80 oC之性能,並比較不同冷卻與加熱方式的性能變化,以及熱管在蒸發段高於冷凝段時,傾斜角10 °到水平之間的性能變化。結果顯示雙面加熱雙面冷卻有最好的性能表現。而在傾斜測試中,隨著角度增加,熱管最大熱傳量與最低熱阻也隨之變差,因為溝槽能提供的毛細力少,對重力的抗拒小,液體無法抵抗重力流動到蒸發段,造成燒乾提早熱阻增加。
銅水熱管目前在地面應用已是相當成熟的技術,若能應用於低軌衛星中,具有低成本、高彎曲性與傳輸高熱通量的優勢,可用於衛星內部發熱元件到機殼之間的熱傳輸,但在太空低溫應用中,低於冰點的溫度可能會導致熱管內部流體結凍、膨脹破壞蕊材,造成性能變差。目本實驗透過實驗調查銅水燒結熱管,在蕊材層厚(0.9、0.5 mm)、三種填充率(60、70、80%),冷凝段-40 oC時觀察冷凝段結凍時的最大熱傳量與最低熱阻,並透過控制冷凝段-40 oC與80 oC的循環測試觀察熱管是否在反覆的凍融下性能是否下降。結果顯示燒結厚度0.9mm、填充率80%有較低的熱阻,因為較厚的蕊材與較多的填充,有較多的液體處於流動狀態,使熱管能啟動工作。此外,熱管在172次凍融循環後並沒有發現性能下降。
摘要(英) With the rapid development of satellite aerospace technology, mobile communications, and electronic components, the application of low-earth orbit (LEO) satellite communications has become feasible. However, during the operation of LEO satellites, the working temperatures vary significantly, ranging from 80°C on the sun-facing side to -40°C on the shadow side. Aluminum-ammonia grooved heat pipes are commonly used for satellite thermal management, but there is limited research near this temperature range. Therefore, this study experimentally measured the performance of aluminum-ammonia heat pipes within a working temperature range of -40°C to 80°C. It compared the performance variations under different cooling and heating methods, and examined the performance changes with tilt angles from 10° to horizontal when the evaporating section was higher then condensing section. The results showed that 2-side heating with 2-side cooling had the best performance. In the tilt test, as the angle increased, the maximum heat transfer rate and minimum thermal resistance of the heat pipe worsened. This is because the capillary force provided by the grooves is insufficient to counteract gravity, causing the liquid to fail to return to the evaporator section, leading to early dry-out and increased thermal resistance.

Currently, copper-water heat pipes are a well-established technology for ground applications. If applied to LEO satellites, they offer low cost, high flexibility, and high heat flux transfer capabilities. It can be used for heat transfer from internal heating elements to the component box. However, in low-temperature space applications, temperatures below 0 oC can cause water to freeze and expand, potentially damaging the wick structure and degrading performance. This study experimentally investigated the performance of copper-water sintered heat pipes with wick thicknesses of 0.9 mm and 0.5 mm, and three filling rate (60%, 70%, 80%). It observed the maximum heat transfer rate and minimum thermal resistance when the condensing section was at -40°C, and tested whether performance declined after repeated freeze-thaw cycles between -40°C and 80°C. The results showed that a wick thickness of 0.9 mm and a filling rate of 80% had the lowest thermal resistance. The thicker wick and higher filling rate provided more liquid in a flowing state, and enabling the heat pipe to operate. Furthermore, no performance degradation is observed after 172 freezing-thawing cycles.
關鍵字(中) ★ 鋁氨熱管
★ 銅水熱管
★ 低溫
★ 傾斜
★ 結凍解凍
★ 低軌衛星
關鍵字(英) ★ Aluminum ammonia heat pipe
★ copper water heat pipe
★ low temperature
★ tilt
★ freezing and thawing
★ low orbit satellite
論文目次 摘要 I
Abstract II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI
第一章、前言 1
1.1. 研究背景與動機 1
1.2. 研究目的 5
第二章、文獻回顧 6
2.1. 鋁氨熱管 6
2.2. 銅水熱管 27
2.2.1. 凍結狀態啟動 27
2.2.2. 不同填充量的影響 29
2.2.3. 循環測試 31
第三章、研究方法 35
3.1. 測試段 35
3.1.1. 鋁氨熱管 35
3.1.2. 銅水熱管 40
3.2. 實驗系統 44
3.2.1. 鋁氨熱管 44
3.2.2. 銅水熱管 47
3.2.3. 恆溫水槽與水套 49
3.2.4. 冷凍系統 49
3.2.5. 量測儀器與實驗設備 51
3.3. 實驗步驟 52
3.3.1. 鋁氨熱管熱傳性能測試 52
3.3.2. 銅水熱管性能測試 53
3.4. 實驗數據換算 56
第四章、結果與討論 58
4.1. 鋁氨溝槽熱管測試結果 58
4.1.1. 比較不同工作溫度 58
4.1.2. 比較不同加熱與冷卻配置的性能 60
4.1.3. 鋁氨熱管傾斜的性能 62
4.2. 銅水燒結熱管測試結果 67
4.2.1. 熱管冷凝段溫度-40 oC時之性能 67
4.2.2. 銅水熱管循環測試 72
第五章、結論與建議 75
參考文獻 76
附錄 80
參考文獻 [1] Amir Faghri, “Heat pipes: review, opportunities and challenges”, Frontiers in Heat Pipes, Pages 1-48, April, 2014.
[2] National Aeronautics and Space Administration: Echo, NASA′s First Communications Satellite, 取自:https://www.nasa.gov/image-article/echo-nasas-first-communications-satellite/
[3] Wikipedia: Low Earth Orbit, 取自:https://en.wikipedia.org/wiki/Low_Earth_orbit
[4] Boston Consulting Group: LEO Satellites Unlock Connectivity Opportunity, 取自:https://www.bcg.com/publications/2021/leo-satellites-unlock-connectivity-opportunity
[5] J. Doe and A. Smith, "Faster than fiber: Advantages and challenges of LEO satellites," Advances in Physics, vol. 325, no. 1, pp. 39-52, 2023
[6] Starlink: Updates, 取自:https://www.starlink.com/updates
[7] OneWeb: Connectivity from the Sky: Reinventing the Final Frontier, 取自:https://oneweb.theastgroup.com/wp-content/uploads/2022/06/Connectivity-from-the-sky-reinventing-the-final-frontier.pdf
[8] 資策會產業情報研究所:低軌衛星的服務模式演進與想像, 取自:https://mic.iii.org.tw/aisp/CEOS?docid=CDOC2022090600
[9] NASA: Environmental Conditions for Space Flight Hardware –A Survey, 取自:https://nepp.nasa.gov/docuploads/C5E0869C-0469-4D11-9FAA8012C8F52351/environmental%20Testing%20Survey.doc
[10] Advanced Cooling Technologies, Inc: Smallsat-thermal-management, 取自:https://info.1-act.com/ebook-smallsat-thermal-management
[11] Advanced Cooling Technologies, Inc: Space thermal control, 取自:https://www.1-act.com/thermal-solutions/space/
[12] A.R. Anand, "Effect of various parameters on heat transport capability of axially grooved heat pipes," Thermal Science and Engineering Progress, Volume 24, August 2021.
[13] Applied Aerospace Structures Corporation: Spacecraft Thermal Radiators, 取自:https://www.aascworld.com/portfolio/thermal-radiator/
[14] Advanced Cooling Technologies, Inc: Space copper-water heat-pipes, 取自:https://www.1-act.com/wp-content/uploads/2023/05/ACT-Space-Copper-Water-Heat-Pipes.pdf
[15] A.R. Anand, “Investigations on effect of evaporator length on heat transport of axially grooved ammonia heat pipe”, Applied Thermal Engineering, Volume 150, 5, Pages 1233-1242, March 2019.
[16] Z. Lataoui, C. Romestant, Y. Berti, A. Jemni and D. Petit, “Inverse thermal analysis of the drying zone of the evaporator of an axially grooved heat pipe”, Experimental Thermal and Fluid Science, Volume 34, no. 5, pp. 562-574, July 2010.
[17] J. B. Junior, V. Vlassov, P.A. Cândido, G. Genaro, “Experimental performance comparison of axially grooved heat pipes charged with acetone and ammonia”, 16th International Heat Pipe Conference, Lyon, France, May 20-24, 2012.
[18] K.M. Yang, N.H. Wang, C.H. Jiang and L. Cheng, “Study on Heat Transfer Characteristics of Heat Pipe with Axial “Ω”-Shaped Microgrooves”, Advanced Materials Research, Volume 580, pp. 297-300, October 2012.
[19] E.N. Pis’mennyi , S.M. Khayrnasov and B.M. Rassamakin, “Heat transfer in the evaporation zone of aluminum grooved heat pipes”, International Journal of Heat and Mass Transfer, Volume 127, Part C, Pages 80-88, December 2018.
[20] V. Barantsevich , K. Goncharov, A. Orlov and O. Golovin, “Investigation Results of Axial Grooved Heat Pipes with High Thermal Capacity”, 31st International Conference on Environmental Systems, Orlando, USA, July 9-12, 2001
[21] A.L. Sriram Sudhan, A. Brusly Solomon and Shyam Sunder, “Heat transport limitations and performance enhancement of anodized grooved heat pipes charged with ammonia under gravity and anti-gravity condition”, Applied Thermal Engineering, Volume 200, 5 January 2022.
[22] Xuan Zhang, Dingyi Jiang, He Wang, Xiangdong Liu, “Experimental analysis on the evaporator startup behaviors in a trapezoidally grooved heat pipe”, Applied Thermal Engineering, Volume 199, 25 November 2021.
[23] Valeri Vlassov, Jorge Bertoldo Junior and Nadjara dos Santos, “A comparative study of performance of heat pipes with rectangular and omega-type grooves”, The Joint 19th International Heat Pipe Conference, Pisa, Italy, June 10-14, 2018.
[24] Boris Rassamakin, Sergii Khairnasov, Anna Anisimova, “Thermal performance of aluminium grooved heat pipes”, 2016 International Conference on Electronics and Information Technology, Odessa, Ukraine, May 2016.
[25] A.R. Anand, “Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe”, International Journal of Thermal Sciences, Volume 139, pp. 269-281, May 2019.
[26] A. R. Anand, A. J. Vedamurthy, S. R. Chikkala, S. Kumar, D. Kumar, P. P. Gupta “Analytical and Experimental Investigations on Axially Grooved Aluminum-Ethane Heat Pipe”, Heat Transfer Engineering, Volume 29, pp. 410-416, July 2010.
[27] Amir Faghri, “Frozen start-up behavior of low-temperature heat pipes”, International Journal of Heat and Mass Transfer, Volume 35, Issue 7, Pages 1681-1694, July 1992.
[28] Jong Hoon Jang, “Cool-down and frozen start-up behavior of a grooved water heat pipe”, NASA Lewis Research Center, Cleveland, United States, November 1990.
[29] O. Sologubenko, D. Torresin, A.W. Petrov, B. Agostini, “Wall damage of cylindrical heat pipes caused by water freezing”, Applied Thermal Engineering, Volume 232, 120986, September 2023.
[30] H J van Gerner, H Brouwer, Z de Groot and J Guo, “Water-filled heat pipes for CubeSat thermal control”, 19th International Heat Pipe Conference and 13th International Heat Pipe Symposium, Pisa, Italy, 10th-14th June 2018.
[31] Kwok Cheung, “Flight Qualification of Copper Water Heat Pipes at Naval Research Laboratory”, 38th AIAA Thermophysics Conference, Toronto, Ontario, Canada, 06 - 09 June 2005.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明