博碩士論文 111328601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.117.78.145
姓名 費瓦倫(Ferraz Donatien)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以氫氣和甲醇為燃料之高溫質子交換膜燃料電池混合系統分析
(Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Hybrid Systems Fed by Hydrogen and Methanol)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-1以後開放)
摘要(中) 本研究旨在探討與外部甲醇蒸氣重組器(Methanol Steam Reformer, MSR)結合的高溫質子交換膜燃料電池(high temperature proton exchange membrane fuel cell, HT-PEMFC)和有機朗肯循環(Organic Rankine Cycle, ORC)、聯合熱電(Combined-Heat-and-Power, CHP)、微型燃氣渦輪(micro-Gas Turbine, micro-GT)混合系統。本研究分析了三種系統配置:第1種系統配置只有HT-PEMFC、ORC、CHP和MSR;第2種系統配置結合了HT-PEMFC、ORC、CHP、MSR和micro-GT;第3種系統配置結合了HT-PEMFC、ORC、CHP和micro-GT。在每個系統中,目的是重複利用HT-PEMFC未使用的氣體,以提供每個組件所需的熱量,而無需外部的熱供應。研究目標是提高系統能量(Energy)和可用能(Exergy)效率,特別是micro-GT,過去研究從未在HT-PEMFC系統中使用過。研究將針對不同的參數進行變化以觀察其對系統的影響:HT-PEMFC的燃料利用因子、燃料流量、空氣流量和水蒸氣對燃料的比率。對於每個變量,系統中使用的不同分流器都會進行調整,以獲得相同的運行條件。每個系統都將與“基礎參數”和文獻進行比較。這些系統是使用MATLAB(用於HT-PEMFC建模)和Thermolib插件(用於系統建模)所構建的。
基於基礎參數的結果顯示,包括MSR和GT的配置2性能最佳。系統能量效率達到53.75%,而配置1(有MSR,無micro-GT)為49.24%,配置3(使用micro-GT,純氫作為燃料)為52.93%。配置1還顯示出54.44%的最可用能效率。根據基本參數,此配置能產生2403W的淨功率,其中177W由HT-PEMFC提供,543W由微型GT提供,303.4W由ORC系統提供,89.9W由CHP系統提供。改變參數的結果顯示,增加燃料流量會增加所有系統的功率產出,但會降低效率。為了達到最大的系統效率,燃料使用因子必須盡可能地低,這樣可以增加CHP和micro-GT的功率產出。增加蒸汽對燃料的比率對系統的功率產出和效率沒有太大的影響。增加空氣流量和燃料使用因子表明,該系統在其自身的熱供應方面存在一些限制。超過某些值,系統將無法為自己提供所需的全部熱量。
總而言之,本研究揭示燃料使用因子和燃料流量是兩個關鍵參數,可以提高HT-PEMFC或CHP的功率產出。藉由調整這些參數可允許系統應用不同的應用場景,例如在"夏季"可選擇產生更多的電力,而"冬季"可產生更多的熱能。本研究的進步性與新穎性包括:(i)設計了一個包含micro-GT的HT-PEMFC混合系統,(ii)提升的系統的能量和可用能效率,(iii)詳細揭露了不同參數對系統性能的影響。
摘要(英) This study aims to investigate the high-temperature proton exchange membrane fuel cell (HT-PEMFC) combined with organic Rankine cycle (ORC), combined-heat-and-power (CHP), micro gas turbine (GT) hybrid systems with an external methanol steam reformer (MSR). Three systems systems are analysed in this study: one with only HT-PEMFC, ORC, CHP, and MSR, the second one with HT-PEMFC, ORC, CHP, MSR, and GT, and the last one with HT-PEMFC, ORC, CHP, and GT. In each system, the idea is to reutilize the unused gas of the HT-PEMFC to supply the heat needed by each component without any external heat production. The objective is to increase the system energy and exergy efficiencies, particularly the GT, which has never been included in a HT-PEMFC system. Then, different parameters are varied to see their influence on the system: HT-PEMFC fuel utilisation factor, fuel flow rate, air flow rate, and steam-to-fuel ratio. For each variation, the different splitters used in the systems are evolving to obtain the same operating conditions. Each system will be compared with the base parameters and the literature. These systems are built using MATLAB (HT-PEMFC modelling) and THERMOLIB (systems modelling).
The results with the base parameters show that system 2 (including MSR and GT) has the best performance compared to the other systems. The system energy efficiency reaches 53.75% against 49.24% in system 1 (MSR, no GT) and 52.93% in system 3 (GT, pure H2 as fuel). This system also shows the best exergy efficiency with 54.44%. With the base parameters, this system produces 2403W of net power, including 1777 W by the HT-PEMFC, 543 W by the GT, 303.4 W by the ORC system, and 89.9 W by the CHP system.
The parameter variations results reveal that a higher fuel flow rate increases all the power production but lowers the efficiency. The fuel utilisation factor must be as low as possible to maximize systems efficiency and increase CHP and GT power production. Increasing the steam-to-fuel ratio does not significantly influence power production and system efficiencies. Increasing the air flow rate and fuel utilisation factor shows that the system has some limits regarding its heat supply. Above specific values, the system cannot supply itself with all the heat required.
Finally, this study reveals that the fuel utilisation factor and fuel flow rate are two critical parameters that can improve either HT-PEMFC or CHP power production. These parameters allow us to choose and alternate between a summer use by generating more electrical than heat power and winter use by generating more heat and less electrical power.
This work contributes to the actual scientific research by (i) designing a new system in a HT-PEMFC hybrid system by including a GT, (ii) improving the system energy and exergy efficiency, and (iii) understanding the effect of different parameters on the systems performance.
關鍵字(中) ★ 高溫質子交換膜燃料電池
★ 微型燃氣渦輪
★ 有機朗肯循環
★ 熱電聯供
★ 混合系統建模
★ MATLAB Simulink
關鍵字(英) ★ High-Temperature Proton Exchange Membrane Fuel Cell
★ Gas Turbine
★ Organic Rankine Cycle
★ Combined-Heat-and-Power
★ Hybrid Systems Modelling
★ MATLAB Simulink
論文目次 ABSTRACT (Chinese) i
ABSTRACT (English) iii
ACKNOWLEGMENTS v
LIST OF TABLES ix
LIST OF FIGURES x
NOMENCLATURE xiii
1. INTRODUCTION 1
1.1. Background 1
1.2. Literature review 2
1.3. Motivations 5
2. MODEL AND THEORY 6
2.1. HT-PEMFC electrochemistry 6
2.2. HT-PEMFC modelling 7
2.3. HT-PEMFC thermal mass 10
2.4. Reactant consumption and feed 11
2.5. Energy analysis 12
2.6. Exergy analysis 13
2.7. Chemical reactions equations 14
3. METHODOLOGY 15
3.1. Procedure 15
3.2. Validation of the HT-PEMFC IV-curve 16
3.3. Modelling assumptions and operating conditions 18
3.4. Different systems 19
3.4.1. System 1: HT-PEMFC – ORC – CHP – MSR fuelled by methanol 19
3.4.2. System 2: HT-PEMFC – ORC – CHP – MSR – GT fuelled by methanol 21
3.4.3. System 3 HT-PEMFC/ORC/CHP/GT fuelled by pure H2 24
4. RESULTS AND DISCUSSION 26
4.1. System 1 26
4.1.1. Results with the base parameters 27
4.1.2. Energy and exergy analysis 29
4.1.3. Influence of the fuel utilisation factor (Uf) 32
4.1.4. Influence of the fuel flow rate ṅMeOH 36
4.1.5. Influence of the air flow rate ṅair 41
4.1.6. Influence of the steam-to-fuel ratio S/F 45
4.2. System 2 50
4.2.1. Results with the base parameters 50
4.2.2. Energy and exergy analysis 52
4.2.3. Influence of the fuel utilisation factor Uf 55
4.2.4. Influence of fuel flow rate 60
4.2.5. Influence of the air flow rate 65
4.2.6. Influence of the steam-to-fuel ratio 69
4.3. System 3 75
4.3.1. Results with the base parameters 75
4.3.2. Energy and exergy analysis 76
4.3.3. Influence of the fuel utilisation factor Uf 79
4.3.4. Influence of fuel flow rate 83
4.3.5. Influence of air flow rate 88
4.4. Comparison of the systems 93
4.4.1. Results with the base parameters 93
4.4.2. Exergy analysis 95
4.4.3. Influence of different parameters 97
4.4.4. Comparison with the literature 98
5. CONCLUSION AND SUGGESTIONS 100
5.1. Conclusion 100
5.2. Suggestions 100
6. REFERENCES 101
7. TABLE OF APPENDIX 107
參考文獻 [1] S. Authayanun and V. Hacker, “Energy and exergy analyses of a stand-alone HT-PEMFC based trigeneration system for residential applications,” Energy Conversion and Management, vol. 160, pp. 230-242, 2018.
[2] R. K. A. Rasheed, Q. Liao, Z. Caizhi and S. H. Chan, “A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs),” International Journal of Hydrogen Energy, vol. 42, no. 5, pp. 3142-3165, 2017.
[3] Y. Li, D. Li, Z. Ma, M. Zheng and Z. Lu, “Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System,” Membranes, vol. 12, no. 1, 2022.
[4] A. Jo, K. Oh, J. Lee, D. Han, D. Kim, J. Kim, B. Kim, J. Kim, D. Park, M. Kim, Y.-J. Sohn, D. Kim, H. Kim and H. Ju, "Modeling and analysis of a 5 kWe HT-PEMFC," International Journal of Hydrogen Energy, vol. 42, no. 13, pp. 1698-1714, 2016.
[5] A. Arsalis, M. P. Nielsen and S. K. Kær, “Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system,” International Journal of Hydrogen Energy, vol. 37, no. 3, pp. 2470-2481, 2012.
[6] H. S. Kang, M.-H. Kim and Y. H. Shin, “Thermodynamic Modeling and Performance Analysis of a Combined Power Generation System Based on HT-PEMFC and ORC,” Energies, vol. 13 (23), p. 6163, 2020.
[7] H. Chang, Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, S. H. Chan, R. Chen and X. Wang, “Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system,” Applied Energy, vol. 204, pp. 446-458, 2017.
[8] W.-Y. Lee, M. Kim, Y.-J. Sohn and S.-G. Kim, “Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system,” Energy, vol. 113, pp. 1062-1070, 2016.
[9] G. Liu, Y. Qin, J. Wang, C. Liu, Y. Yin, J. Zhao, Y. Yin, J. Zhang and O. N. Otoo, “Thermodynamic modeling and analysis of a novel PEMFC-ORC combined power system,” Energy Conversion and Management, vol. 217, 2020.
[10] A. R. Korsgaard, R. Refshauge, M. P. Nielsen, M. Bang and S. K. Kær, “Experimental characterization and modeling of commercial polybenzimidazole-based MEA performanc,” Journal of Power Sources, vol. 162, no. 1, pp. 239-245, 2006.
[11] A. R. Korsgaard, M. P. Nielsen, M. Bang and M. Bang, “Modeling of CO influence in PBI electrolyte PEM Fuel Cells,” in Proceedings of Fuel Cell, Irvine, 2006.
[12] Q. Li, D. Aili, H. A. Hjuler and J. O. Jensen, “Approaches for the Modeling of PBI/H3PO4 Based HT-PEM Fuel Cells,” in High Temperature Polymer Elecrtolyte Membrane Fuel Cells ; Approaches, Status and Perspectives, Springer, 2016, pp. 387 - 424.
[13] B. Xu, D. Li, Z. Ma, M. Zheng and Y. Li, “Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications,” Mathematics, vol. 9, no. 15, 2021.
[14] D. Li, S. Li, Z. Ma, B. Xu, Z. Lu, Y. Li and M. Zheng, “Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell,” Mathematics, vol. 9, 2021.
[15] P. Ribeirinha, M. Abdollahzadeh, J. Sousa, M. Boaventura and A. Mendes, “Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell,” Applied energy, 2017.
[16] X. Guo, B. Xu, Z. Ma, Y. Li and D. Li, “Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell,” International Journal of Molecular Sciences, vol. 23, no. 17, 2022.
[17] D. Baker, C. Wieser, K. Neyerlin and M. Murphy, “The Use of Limiting Current to Determine Transport Resistance in PEM Fuel Cells,” ECS Transactions, 2006.
[18] S. Li, C. Peng, Q. Shen, Y. Cheng, C. Wang and G. Yang, “Numerical Study on Thermal Stress of High Temperature Proton Exchange Membrane Fuel Cells during Start-Up Process,” Membranes, vol. 13, p. 215, 2023.
[19] S. Li, C. Peng, Q. Shen, Y. Cheng, C. Wang and G. Yang, “Numerical Study on Thermal Stress of High Temperature Proton Exchange Membrane Fuel Cells during Start-Up Process,” Membranes, vol. 13, no. 2, 2023.
[20] Y. Nalbant, O. Colpan and Y. Devrim, "Energy and exergy performance assessments of a high temperature-proton exchange," International Journal of Hydrogen Energy, 2019.
[21] M. Z. Malik, F. Musharavati, S. Khanmohammadi, A. Pakseresht, S. Khanmohammadi and D. Duc, “Design and comparative exergy and exergo-economic analyses of a novel integrated Kalina cycle improved with fuel cell and thermoelectric module,” Energy Conversion and Management, vol. 220, p. 113081, 2020.
[22] Y. Li, D. Li, Z. Ma, M. Zheng, Z. Lu, H. Song, X. Guo and W. Shao, “Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC,” Energy, vol. 257, 2022.
[23] G. Schuller, F. V. Vázquez, W. Waiblinger, S. Auvinen and P. Ribeirinha, “Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer,” Journal of Power Sources, vol. 347, pp. 47-56, 2017.
[24] A. M. Ranjekar and G. D. Yadav, “Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope,” Industrial & Engineering Chemistry Research, vol. 60, no. 1, pp. 89-113, 2021.
[25] Z. Li, X. Zhang, X. He, G. Wu, S. Tian, D. Zhang, Q. Zhang and Y. Liu, “Comparative analysis of thermal economy of two SOFC-GT-ST triple hybrid power systems with carbon capture and LNG cold energy utilization,” Energy Conversion and Management, p. 115385, 2022.
[26] S. Cicconardi, J. Elio, M. M. and P. Alessandra, “Thermal coupling of a high temperature PEM fuel cell with an Organic Rankine Cycle: plant configuration and performance analysis,” in 7th International Conference on Sustainable Energy and Environmental, Dubai, 2014.
[27] B. Zohuri, “Chapter 5 - Advanced Nuclear OpenAir-Brayton Cycles for Highly Efficient Power Conversion,” in Molten Salt Reactors and Integrated Molten Salt Reactors, B. Zohuri, Ed., Academic Press, 2021, pp. 171-196.
[28] R. Pal, “Chemical exergy of ideal and non-ideal gas mixtures and liquid solutions with applications,” International Journal of Mechanical Engineering Education, vol. 47, no. 1, pp. 44-72, 2019.
[29] R. A. M. and Y. G. D., “Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope,” Industrial & Engineering Chemistry Research, vol. 60, no. 1, pp. 89-113, 2021.
[30] Y. Wang, X. Yang and C.-Y. Wang, “Ultrahigh fuel utilization in polymer electrolyte fuel cells – Part II: A modeling study,” International Journal of Green Energy, vol. 19, no. 2, pp. 166-174, 2022.
[31] H. Chang, Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, S. H. Chan, R. Chen and X. Wang, “Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system,,” Applied Energy, vol. 204, pp. 446-458, 2017.
[32] L. Xia, Q. Xu, Q. He, M. Ni and M. Seng, “Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design,” International Journal of Hydrogen Energy, vol. 46, no. 40, pp. 21098-21111, 2021.
[33] W.-M. Yan, C.-Y. Chen and C.-H. Liang, “Comparison of performance degradation of high temperature PEM fuel cells with different bipolar plates,” Energy, vol. 186, 2019.
[34] H. Rizwan, W. Yichan, M. Zi-Feng, W. D. P., Z. Lei, Y. Xianxia, S. Shuqin and Z. Jiujun, “High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies,” Chem. Soc. Rev., vol. 50, no. 2, pp. 1138-1187, 2021.
[35] A. H. Mamaghani, B. Najafi, A. Casalegno and F. Rinaldi, “Long-term economic analysis and optimization of an HT-PEM fuel cell based micro combined heat and power plant,” Applied Thermal Engineering, vol. 99, pp. 1201-1211, 2016.
[36] A. Arsalis, M. P. Nielsen and S. K. Kær, “Modeling and off-design performance of a 1kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households,” Energy, vol. 36, pp. 993-1002, 2011.
[37] A. Arsalis, M. P. Nielsen and S. K. Kær, “Modeling and parametric study of a 1kWe HT-PEMFC-based residential micro-CHP system,” International Journal of Hydrogen Energy, vol. 36, pp. 5010-5020, 2011.
[38] Y. Yang, H. Zhang, P. Yan and K. Jermsittiparsert, “Multi-objective optimization for efficient modeling and improvement of the high temperature PEM fuel cell based Micro-CHP system,” International Journal of Hydrogen Energy, vol. 45, no. 11, pp. 6970-6981, 2020.
[39] S. Ansari, M. Khalid, K. Kamal, T. Abdul Hussain Ratlamwala, G. Hussain and M. Alkahtani, “Modeling and Simulation of a Proton Exchange Membrane Fuel Cell Alongside a Waste Heat Recovery System Based on the Organic Rankine Cycle in MATLAB/SIMULINK Environment.,” Sustainability, vol. 13, no. 3, 2021.
[40] A. H. Mamaghani, B. Najafi, A. Casalegno and F. Rinaldi, “Predictive modelling and adaptive long-term performance optimization of an HT-PEM fuel cell based micro combined heat and power (CHP) plant,” Applied Energy, vol. 192, pp. 519-529, 2017.
[41] Y. Li, M. Yang, Z. Ma, M. Zheng, H. Song and X. Guo, “Thermodynamic Modeling and Exergy Analysis of A Combined High-Temperature Proton Exchange Membrane Fuel Cell and ORC System for Automotive Applications,” International Journal of Molecular Sciences, vol. 23, no. 24, 2022.
[42] N. M. Z. Malik, F. Musharavati, S. Khanmohammadi, A. Pakseresht, S. Khanmohammadi and D. Duc, “Design and comparative exergy and exergo-economic analyses of a novel integrated Kalina cycle improved with fuel cell and thermoelectric module,” Energy Conversion and Management, vol. 220, p. 113081, 2020.
指導教授 曾重仁 審核日期 2023-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明