博碩士論文 111329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:18.222.167.153
姓名 黃鼎鈞(Ding-Jun Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 氫含量和銥添加對酸性和鹼性海水介質中 鈀析氫反應性能的影響
(The Effects of Hydrogen Content and Iridium Addition on the Hydrogen Evolution Reaction Performance of Palladium in Acidic and Alkaline Seawater Media)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 化石燃料的廣泛使用導致了嚴重的能源危機和環境挑戰,促使人們需要探索可持續和清潔的能源。氫氣因其高能量密度、運輸和儲存的可行性以及用於燃料電池時的能量轉換效率而受到高度重視。然而,用於電解水的陰極析氫反應(HER)和陽極析氧反應(OER)的緩慢反應動力學導致高過電位,對大規模產氫構成了重大障礙。因此,設計優異的電催化觸媒以實現最佳的過電位和高效的水電解是目前研究的主要目標。Pd 具有與Pt相似的電子結構,使其成為Pt最有利的替代品。然而,Pd 和氫原子之間的強相互作用通常會使氫脫附變得困難,導致 HER 表現較差。
本研究透過氫的引入和第二金屬的合金化,利用應變效應和配體效應有效削弱Pd和H之間的強親和力,改善HER過程。我們使用簡單的油胺法合成Pd基觸媒形成氫化物,且透過Ir的添加適當的調節觸媒的氫吸附能,除了提升觸媒在酸性環境中的HER效能,Ir優異的抗腐蝕能力也為觸媒在酸性HER穩定度中有良好表現。在酸性環境下(0.5 M H2SO4),PdIr0.1H0.2/C和PdIr0.15/C表現出優異的HER電化學效能,在電流密度為10 mA cm-2時的過電位為25和28 mV,Tafel斜率為14 和18 mV dec-1,質量活性為1025及1064 mA/mg Pd+Ir,經過5000圈循環加速測試的穩定度後,PdIr0.15/C的質量活性仍保留76%,而PdIr0.1H0.2/C的質量活性僅剩下33%。雖然PdIr0.1H0.2/C初始效能表現出較低的過電位和Tafel斜率,凸顯了 H 和Ir添加的提高 HER性能的關鍵作用。然而,與PdIr相比,PdIr氫化物並不穩定。此外,通過原位X光吸收光譜(In-situ X-ray absorption spectroscopy, XAS)和感應耦合電漿放射光譜儀(Inductively coupled plasma optical emission, ICP-OES)分析提供了對PdIr氫化物觸媒(PdIr0.1H0.2/C)穩定性的分析。In-situ XAS結果顯示穩定度測試後Pd-Pd和Pd-Ir配位數與初始狀態相比變得更大,且Pd-Pd鍵長變回與Pd箔一樣,表明最初存在的氫原子經過穩定度後會從Pd晶格中離開。從ICP結果得知,在PdIr中添加氫原子會了造成Ir溶解。從上述結果總結,H的添加導致PdIr觸媒結構不穩並造成Ir的溶解,使觸媒穩定度不好。
另一方面,H的添加除了減弱觸媒的氫吸附能,還能提高觸媒鹼性模擬海水電解質(1 M KOH+3.5wt% NaCl)中的穩定性,PdH0.4/C在電流密度為10 mA cm-2時的過電位為25 mV,Tafel斜率為40 mV dec-1,質量活性為207 mA/mg Pd`,經過5000圈循環加速測試的穩定度後,PdH0.4/C的質量活性仍保留96%,顯示出優異的效能和穩定性。本篇研究結合了Ir和H的引入改善Pd基觸媒在HER的效能,且透過進一步的分析了解了其出色性能背後的機制。為合理設計更有效率的電催化觸媒提供了新的見解。
摘要(英) The extensive use of fossil fuels has led to a severe energy crisis and environmental challenges, prompting the need to explore sustainable and clean energy sources. Hydrogen is highly valued for its high energy density, feasibility of transport and storage, and energy conversion efficiency in fuel cells. However, the slow reaction kinetics of the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER) in water electrolysis result in high overpotentials, posing significant barriers to large-scale hydrogen production. Therefore, designing superior electrocatalysts to achieve optimal overpotentials and efficient water electrolysis is a primary research goal. Pd, with an electronic structure similar to Pt, is a promising alternative to Pt. However, the strong interaction between Pd and hydrogen atoms usually makes hydrogen desorption difficult, leading to poor HER performance.
This study improves the HER process by introducing hydrogen and alloying with a second metal, effectively weakening the strong affinity between Pd and H through strain and ligand effects. We synthesized Pd-based catalysts using a simple oleylamine method to form hydrides, and by adding Ir, we appropriately tuned the catalyst′s hydrogen adsorption energy, enhancing HER performance in acidic environments and improving stability due to Ir′s excellent corrosion resistance. In an acidic environment (0.5 M H2SO4), PdIr0.1H0.2/C and PdIr0.15/C showed excellent HER electrochemical performance with overpotentials of 25 and 28 mV at a current density of 10 mA cm-2, Tafel slopes of 14 and 18 mV dec-1, and mass activities of 1025 and 1064 mA/mg Pd+Ir, respectively. After 5000 cycles of accelerated durability testing, PdIr0.15/C retained 76% of its mass activity, while PdIr0.1H0.2/C retained only 33%. Despite PdIr0.1H0.2/C showing lower initial overpotential and Tafel slope, highlighting the crucial role of H and Ir in enhancing HER performance, PdIr hydrides proved unstable compared to PdIr. Additionally, in-situ X-ray absorption spectroscopy (XAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) analyses provided insights into the stability of PdIr hydride catalysts (PdIr0.1H0.2/C). In-situ XAS results indicated that after stability testing, the coordination numbers of Pd-Pd and Pd-Ir increased compared to the initial state, and the Pd-Pd bond length reverted to that of Pd foil, indicating the departure of initially present hydrogen atoms from the Pd lattice. ICP results revealed that adding hydrogen to PdIr caused Ir dissolution. These findings suggest that hydrogen addition destabilizes the PdIr catalyst structure and leads to Ir dissolution, deteriorating the catalyst stability.
On the other hand, hydrogen addition not only reduces the catalyst′s hydrogen adsorption energy but also enhances stability in alkaline simulated seawater electrolyte (1 M KOH + 3.5 wt% NaCl). PdH0.4/C exhibited an overpotential of 25 mV at 10 mA cm-2, Tafel slope of 40 mV dec-1, and mass activity of 207 mA/mg Pd, retaining 96% of its mass activity after 5000 cycles, demonstrating excellent performance and stability. This study combines the introduction of Ir and H to improve the HER performance of Pd-based catalysts and provides insights into the mechanisms behind their superior performance, offering new perspectives for the rational design of more efficient electrocatalysts.
關鍵字(中) ★ 析氫反應
★ 氫化鈀
★ 鈀
★ 銥
★ (原位)X光吸收光譜
★ 酸性環境
★ 電解海水
★ 穩定性
關鍵字(英) ★ hydrogen evolution reaction
★ palladium hydride
★ palladium
★ iridium
★ (in-situ) X-ray absorption spectroscopy
★ acidic environment
★ seawater electrolysis
★ stability
論文目次 Table of Contents
摘要....i
Abstract........iii
致謝....v
Table of Contents....vii
List of Figures....ix
List of Tables....xi
Chapter 1 Introduction....1
1.1 Mechanism of HER....2
1.2 Modification of Pd Catalysts by Light Atoms....4
1.3 Modification of Pd Catalysts by Alloying....6
1.4 Motivation and Approach.... 7
Chapter 2 Experimental Section....8
2.1 Materials and Methods....8
2.1.1 Materials....8
2.1.2 Preparation of Pd and PdHx NPs....8
2.1.3 Preparation of PdH0.4 NPs....8
2.1.4 Preparation of PdxIrHy NPs....9
2.2 Characterization of Catalysts....10
2.3 Electrochemical Measurements....12
Chapter 3 Result and Discussion....15
3.1 The Characterizations of Pd-base Catalysts....15
3.2 Electrocatalytic Performance....25
3.2.1 Electrocatalytic performance in acidic electrolytes....25
3.2.2 Electrocatalytic performance in alkaline simulated seawater electrolytes....32
3.3 In-situ XAS during HER in Acidic Media....38
Chapter 4 Conclusion....42
Reference....44
參考文獻 [1] Chu, S., Cui, Y., Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[2] Prabhu, P., & Lee, J. M. Metallenes as functional materials in electrocatalysis. Chem. Soc. Rev. 2021, 50, 6700-6719.
[3] Yan, Z., Hitt, J. L., Turner, J. A., & Mallouk, T. E. Renewable electricity storage using electrolysis. Proc. Natl. Acad. Sci. 2020, 117, 12558-12563.
[4] Park, S., Liu, L., Demirkır, Ç., van der Heijden, O., Lohse, D., Krug, D., Koper, M. T. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat. Chem. 2023, 15, 1532-1540.
[5] Wu, H., Feng, C., Zhang, L., Zhang, J., Wilkinson, D. P. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 2021, 4, 473-507.
[6] Chen, H., Zhang, B., Liang, X., Zou, X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 2022, 43, 611-635.
[7] Wang, H., Chen, Z. N., Wu, D., Cao, M., Sun, F., Zhang, H., Cao, R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc. 2021, 143, 4639-4645.
[8] Zhai, P., Xia, M., Wu, Y., Zhang, G., Gao, J., Zhang, B., Hou, J. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.
[9] Wang, Z., Xiao, B., Lin, Z., Xu, Y., Lin, Y., Meng, F., Zhong, W. PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 23388-23393.
[10] Wang, Y., Hu, Z., Chen, W., Wu, S., Li, G., Chou, S. Non‐noble metal‐based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small Struct. 2021, 2, 2000135.
[11] Ding, Y., Cao, K. W., He, J. W., Li, F. M., Huang, H., Chen, P., Chen, Y. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 1535-1543.
[12] Zhang, C., Liu, W., Chen, C., Ni, P., Wang, B., Jiang, Y., Lu, Y. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. Nanoscale 2022, 14, 2915-2942.
[13] Wei, J., Zhou, M., Long, A., Xue, Y., Liao, H., Wei, C., Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 2018, 10, 1-15.
[14] Chen, Z., Yang, H., Kang, Z., Driess, M., Menezes, P. W. The Pivotal Role of s‐, p‐, and f‐Block Metals in Water Electrolysis: Status Quo and Perspectives. Adv. Mater. 2022, 34, 2108432.
[15] Song, H. J., Yoon, H., Ju, B., Kim, D. W. Highly efficient perovskite‐based electrocatalysts for water oxidation in acidic environments: a mini review. Adv. Energy Mater. 2021, 11, 2002428.
[16] Tang, T., Ding, L., Yao, Z. C., Pan, H. R., Hu, J. S., Wan, L. J. Synergistic electrocatalysts for alkaline hydrogen oxidation and evolution reactions. Adv. Funct. Mater. 2022, 32, 2107479.
[17] Li, X., Shen, P., Luo, Y., Li, Y., Guo, Y., Zhang, H., Chu, K. PdFe Single‐Atom Alloy Metallene for N2 Electroreduction. Angew. Chem., Int. Ed. 2022, 134, e202205923.
[18] Yin, Z., He, R., Zhang, Y., Feng, L., Wu, X., Wågberg, T., Hu, G. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy Chem. 2022, 69, 585-592.
[19] Li, H., Zeng, R., Feng, X., Wang, H., Xu, W., Lu, X., Abruña, H. D. Oxidative stability matters: A case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 2022, 144, 8106-8114.
[20] Shi, Y., Schimmenti, R., Zhu, S., Venkatraman, K., Chen, R., Chi, M., Xia, Y. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556-2568.
[21] Guo, R., Zhang, K., Ji, S., Zheng, Y., Jin, M. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chin.Chem. Lett. 2021, 32, 2679-2692.
[22] Wang, X., Zhu, Y., Li, H., Lee, J. M., Tang, Y., Fu, G. Rare‐earth single‐atom catalysts: a new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.
[23] Sun, H. Y., Ding, Y., Yue, Y. Q., Xue, Q., Li, F. M., Jiang, J. X., Chen, Y. Bifunctional palladium hydride nanodendrite electrocatalysts for hydrogen evolution integrated with formate oxidation. ACS Appl. Mater. Interfaces 2021, 13, 13149-13157.
[24] Wang, D., Jiang, X., Lin, Z., Zeng, X., Zhu, Y., Wang, Y., Fu, G. Ethanol‐induced hydrogen insertion in ultrafine IrPdH boosts pH‐universal hydrogen evolution. Small 2022, 18, 2204063.
[25] Lao, M., Rui, K., Zhao, G., Cui, P., Zheng, X., Dou, S. X., Sun, W. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 131, 5486-5491.
[26] Chen, Y. J., Chen, Y. R., Chiang, C. H., Tung, K. L., Yeh, T. K., Tuan, H. Y. Monodisperse ordered indium–palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction. Nanoscale 2019, 11, 3336-3343.
[27] Fan, J., Feng, Z., Mu, Y., Ge, X., Wang, D., Zhang, L., Cui, X. Spatially confined PdHX metallenes by tensile strained atomic Ru layers for efficient hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 5710-5717.
[28] Li, L., Xu, H., Zhu, Q., Meng, X., Xu, J., Han, M. Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions. Dalton Trans. 2023, 52, 13452-13466.
[29] Zhang, H., Jiang, Q., Hadden, J. H., Xie, F., Riley, D. J. Pd ion‐exchange and ammonia etching of a prussian blue analogue to produce a high‐performance water‐splitting catalyst. Adv. Funct. Mater. 2021, 31, 2008989.
[30] Wang, Q., Liu, J., Li, T., Zhang, T., Arbiol, J., Yan, S., Cabot, A. Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production. Chem. Eng. J. 2022, 446, 136878.
[31] Xu, B., Zhang, Y., Li, L., Shao, Q., Huang, X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord. Chem. Rev. 2022, 459, 214388.
[32] Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S. Z. Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52-65.
[33] Lv, F., Huang, B., Feng, J., Zhang, W., Wang, K., Li, N., Guo, S. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. Natl. Sci. Rev. 2021, 8, nwab019.
[34] Zhang, J., Lv, F., Li, Z., Jiang, G., Tan, M., Yuan, M., Guo, S. Cr‐doped Pd metallene endows a practical formaldehyde sensor new limit and high selectivity. Adv. Mater. 2022, 34, 2105276.
[35] Guo, J., Gao, L., Tan, X., Yuan, Y., Kim, J., Wang, Y., Huang, H. Template‐directed rapid synthesis of Pd‐based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 133, 11037-11044.
[36] Shi, J., Kao, C. W., Lan, J., Jiang, K., Peng, M., Luo, M., Tan, Y. Nanoporous PdIr alloy for high-efficiency and durable water splitting in acidic media. J. Mater. Chem. A 2023, 11, 11526-11533.
[37] Wang, B., Lu, M., Chen, D., Zhang, Q., Wang, W., Kang, Y., Feng, S. NixFey N@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A 2021, 9, 13562-13569.
[38] Cai, C., Wang, M., Han, S., Wang, Q., Zhang, Q., Zhu, Y., Gu, M. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2020, 11, 123-130.
[39] Jia, Y., Huang, T. H., Lin, S., Guo, L., Yu, Y. M., Wang, J. H., Dai, S. Stable Pd–Cu hydride catalyst for efficient hydrogen evolution. Nano Lett. 2022, 22, 1391-1397.
[40] Liu, S., Zhang, H., Yu, H., Deng, K., Wang, Z., Xu, Y., Wang, H. Defect‐Rich PdIr Bimetallene Nanoribbons with Interatomic Charge Localization for Isopropanol‐Assisted Seawater Splitting. Small 2023, 19, 2300388.
[41] Deng, Z., Mostaghimi, A. H. B., Gong, M., Chen, N., Siahrostami, S., Wang, X. Pd 4d Orbital Overlapping Modulation on Au@Pd Nanowires for Efficient H2O2 Production. J. Am. Chem. Soc. 2024, 146, 2816-2823.
[42] Du, R., Jin, W., Hübner, R., Zhou, L., Hu, Y., Eychmüller, A. Engineering multimetallic aerogels for pH‐universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 10, 1903857.
[43] Wang, C., Xu, H., Shang, H., Jin, L., Chen, C., Wang, Y., Du, Y. Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquid fuel electrocatalysis. Inorg. Chem. 2020, 59, 3321-3329.
[44] Kaushik, P., Kaur, G., Chaudhary, G. R., Batra, U. Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 556, 149769.
[45] Huang, J., Du, C., Dai, Q., Zhang, X., Tang, J., Wang, B., Chen, J. Facile and rapid synthesis of ultrafine RuPd alloy anchored in N-doped porous carbon for superior HER electrocatalysis in both alkaline and acidic media. J. Alloys Compd. 2022, 917, 165447.
[46] Yang, X., Wu, Z., Xing, Z., Yang, C., Wang, W., Yan, R., Zhao, C. IrPd Nanoalloy‐Structured Bifunctional Electrocatalyst for Efficient and pH‐Universal Water Splitting. Small 2023, 19, 2208261.
[47] Fan, J., Wu, J., Cui, X., Gu, L., Zhang, Q., Meng, F., Zheng, W. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 3645-3651.
[48] Li, F., Han, G. F., Noh, H. J., Jeon, J. P., Ahmad, I., Chen, S., Baek, J. B. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 2019, 10, 4060.
[49] Cherevko, S., Geiger, S., Kasian, O., Kulyk, N., Grote, J. P., Savan, A., Mayrhofer, K. J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170-180.
[50] Islam, M., Nguyen, T. H., Tran, D. T., Dinh, V. A., Kim, N. H., Lee, J. H. Bimetallic atom dual-doped MoS2-based heterostructures as a high-efficiency catalyst to boost solar-assisted alkaline seawater electrolysis. ACS Sustainable Chem. Eng. 2023, 11, 6688-6697.
[51] Sun, P., Zheng, X., Chen, A., Zheng, G., Wu, Y., Long, M., Chen, Y. Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution. Adv. Sci. 2024, 2309927.
[52] Fan, J., Cui, X., Yu, S., Gu, L., Zhang, Q., Meng, F., Zheng, W. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 2019, 13, 12987-12995.
[53] Wang, Z., Mao, Y., Zhang, H., Deng, K., Yu, H., Wang, X., Wang, L. Hydrogen-intercalation-induced lattice expansion of mesoporous PtPd nanocrystals for enhanced hydrogen evolution. Sustain. Energy Fuels 2023, 7, 636-640.
[54] Tung, C. W., Huang, Y. P., Hsu, C. S., Chen, T. L., Chang, C. J., Chen, H. M., Chen, H. C. Tracking the in situ generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalytic hydrogen evolution. Catal. Sci. Technol. 2022, 12, 3234-3239.
[55] Zuo, Y., Bellani, S., Saleh, G., Ferri, M., Shinde, D. V., Zappia, M. I., Manna, L. Ru–Cu Nanoheterostructures for Efficient Hydrogen Evolution Reaction in Alkaline Water Electrolyzers. J. Am. Chem. Soc. 2023, 145, 21419-21431.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明