博碩士論文 111329007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.138.33.125
姓名 傅冠霖(Guan-Lin Fu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 應用脈衝雷射及電漿輔助原子層沉積搭配離子液體修飾LLZTO/Li界面提升鋰離子電池穩定性
(Enhancing the stability of Li-ion battery by pulse laser and plasma-enhanced atomic layer deposition combined with ionic liquid modification of LLZTO/Li interface)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在固態鋰金屬電池研究中,本研究旨在解決LLZTO固態電解質的兩大挑戰:固-固界面接觸不良和晶界漏電流。研究中分別採用Pulsed laser和PEALD技術對LLZTO表面進行修飾。
首先,利用雷射技術修飾LLZTO表面,並探討不同雷射功率對電池性能的影響。結果顯示,使用2.5 W雷射修飾的LLZTO為最佳條件。SEM分析發現,LLZTO表面的孔隙被有效修補,XRD和Raman光譜則證實未生成LZO相。Li∣IL∣LLZTO(HCl)@L2.5∣IL∣Li電池的臨界電流密度(CCD)明顯提高至1.7 mA/cm2(相較於原先的0.4 mA/cm2)。在長時間循環測試中,極化電壓可穩定維持100小時(原本僅0.5小時即發生短路)。長時間循環後的SEM分析顯示,LLZTO橫截面上的鋰絲沉積顯著減少。
針對Li∣IL∣LLZTO(HCl)@L2.5∣IL∣LFP全電池,其在0.1、0.2、0.5、1、2 C梯度倍率下的比電容量分別為137、135、130、124、120 mAh/g,明顯優於原先的123、121、119、115、108 mAh/g,同時高倍率性能下的容量衰退亦顯著受到抑制。?
接下來,應用PEALD技術在LLZTO表面沉積氧化鋁作為氧化保護層,並探討不同沉積循環數及後處理方式對電池性能的影響。最佳條件為在LLZTO表面沉積25個循環數的氧化鋁,並結合退火及酸蝕處理。XPS分析顯示,PEALD沉積氧化鋁薄膜的同時,會形成碳酸鋰和偏氧酸鋁。退火處理可降低碳酸鋰和氧化鋁的比例,並提高偏鋁酸鋰的比例;Raman分析則證實,酸蝕處理能有效移除表面的碳酸鋰。
在此條件下,Li∣IL∣LLZTO(HCl)@AA25AE∣IL∣Li電池的CCD提高至1.2 mA/cm2(原先為0.8 mA/cm2),且長時間循環測試中,極化電壓穩定維持100小時(原本僅0.5小時即短路)。長時間循環後,SEM分析亦顯示LLZTO橫截面上的鋰絲沉積程度減輕。
綜上所述,經修飾的LLZTO能有效實現充放電過程中的電流均勻分布,大幅提升鋰對稱電池的臨界電流密度和長時間循環性能,同時顯著提高全電池在倍率性能下的比電容量,這是固態鋰金屬電池發展中的重要技術突破。
摘要(英) This study focuses on addressing two critical challenges in solid-state electrolyte lithium metal batteries with LLZTO solid electrolytes: poor solid-solid interfacial contact and grain boundary leakage currents. Surface modifications of LLZTO were carried out using pulsed laser and PEALD techniques. Initially, laser technology was employed to modify the LLZTO surface, and the impact of various laser power levels on battery performance was investigated. The LLZTO modified with a 2.5 W laser demonstrated optimal properties. SEM analysis confirmed that surface pores were effectively repaired, while XRD and Raman spectroscopy verified the absence of LZO.

The Li∣IL∣LLZTO(HCl)@L2.5∣IL∣Li cell exhibited a significant increase in the critical current density (CCD), reaching 1.7 mA/cm2 compared to the initial CCD of 0.4 mA/cm2. During long-term cycling, the polarization voltage remained stable for 100 hours, a substantial improvement over the 0.5 hours observed before short-circuiting. Post-cycling SEM analysis revealed a marked reduction in lithium filament deposition on the LLZTO cross-section.

For the Li∣IL∣LLZTO(HCl)@L2.5∣IL∣LFP cell, the specific capacities at 0.1, 0.2, 0.5, 1, and 2 C were 137, 135, 130, 124, and 120 mAh/g, respectively, surpassing the original values of 123, 121, 119, 115, and 108 mAh/g. Furthermore, the capacity fade under high-rate performance was significantly suppressed.?
The application of PEALD technology involves depositing aluminum oxide as an oxidation protection layer on LLZTO surfaces and examining the effects of deposition cycles and post-treatment methods on battery performance. Optimal conditions were achieved with 25 PEALD cycles, combined with annealing and acid etching. XPS analysis revealed that PEALD forms lithium carbonate and aluminum hydroxide, while annealing reduced these and increased lithium aluminate. Raman analysis confirmed that acid etching effectively removed surface lithium carbonate.

Under these conditions, the CCD of the Li∣IL∣LLZTO(HCl)@AA25AE∣IL∣Li cell increased to 1.2 mA/cm2 (from 0.8 mA/cm2), and the polarization voltage remained stable for 100 hours during cycling (vs. 0.5 hours in the original configuration). SEM analysis post-cycling showed reduced lithium filament deposition on the LLZTO cross-section.

In conclusion, modified LLZTO achieved uniform current distribution during charge-discharge, significantly enhancing critical current density, long-term cycling performance, and specific capacity under high c-rate conditions. This marks a key breakthrough in solid-state lithium-metal battery development.
關鍵字(中) ★ 鋰鑭鋯鉭氧
★ 脈衝雷射
★ 電漿原子層沉積
★ 氧化鋁
★ 偏鋁酸鋰
關鍵字(英) ★ LLZTO
★ pulsed laser
★ plasma-enhanced atomic layer deposition
★ aluminum oxide
★ lithium aluminate
論文目次 摘要 I
誌謝 V
目錄 VII
圖目錄 X
表目錄 XV
第一章、 緒論 1
第二章、 文獻回顧 2
2.1. 鋰離子電池簡介 2
2.1.1. 電池工作原理 2
2.1.2. 電極材料 3
2.2. 電解質材料 4
2.2.1. 液態電解質 4
2.2.2. 固態電解質 6
2.3. LLZO固態電解質及其改善 8
2.3.1. 空氣不穩定性 8
2.3.2. 固-固界面接觸不佳 10
2.3.3. 離子導電性 13
2.3.4. 電子導電性 15
2.4. 使用脈衝雷射修飾LLZTO表面 19
2.4.1. 脈衝雷射製程介紹 19
2.4.2. 脈衝雷射製程用於LLZTO之應用 21
2.5. 使用氧化層修飾LLZTO表面 24
2.5.1. 氧化層改質方法 24
2.5.2. 使用電漿原子層沉積製作氧化層 27
2.6. 研究動機 30
第三章、實驗方法 31
3.1. 實驗藥品 31
3.2. 實驗方法 33
3.2.1. 以酸蝕方式處理LLZTO固態電解質 33
3.2.2. 以脈衝雷射處理LLZTO固態電解質 34
3.2.3. 以氧化鋁改質LLZTO固態電解質 35
3.2.4. 半電池組裝 37
3.2.5. 全電池組裝 38
3.3. 材料分析與鑑定 39
3.3.1. X光繞射儀(X-ray diffractometer, XRD) 39
3.3.2. 拉曼光譜儀(Raman spectroscopy) 39
3.3.3. X射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 40
3.3.4. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 40
3.4. 電化學分析 41
3.4.1. 線性掃描伏安法(Linear sweep voltammetry, LSV) 41
3.4.2. 電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS) 42
3.4.3. 直流極化法(Direct-current polarization method) 43
3.4.4. 臨界電流密度量測(The critical current density measurement) 44
3.4.5. 長時間循環性能(Long-term cycling performance) 44
3.4.6. 倍率性能(C-rate performance) 44
第四章、結果與討論 45
4.1. LLZTO固態電解質酸蝕處理之材料分析 45
4.2. 離子液體與正極之材料分析與電化學分析 48
4.4. 以脈衝雷射處理LLZTO之材料分析 55
4.5. 以脈衝雷射處理LLZTO之電化學分析 61
4.6. 以脈衝雷射處理LLZTO之失效分析 71
4.7. 以氧化保護層改質LLZTO之材料分析 72
4.8. 以氧化保護層改質LLZTO之電化學分析 77
4.9. 以氧化保護層改質LLZTO之失效分析 87
第五章、結論 88
參考文獻 89
參考文獻 [1] S.-J. Park, and M.-K. Seo, Interface science and composites: Academic Press, 2011.
[2] D. Sui, L. Si, C. Li, Y. Yang, Y. Zhang, and W. Yan, “A comprehensive review of graphene-based anode materials for lithium-ion capacitors,” Chemistry, vol. 3, no. 4, pp. 1215-1246, 2021.
[3] X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, and Q. Zhang, “Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries,” Advanced Functional Materials, vol. 27, no. 10, pp. 1605989, 2017.
[4] M. Ghiji, V. Novozhilov, K. Moinuddin, P. Joseph, I. Burch, B. Suendermann, and G. Gamble, “A Review of Lithium-Ion Battery Fire Suppression,” Energies, vol. 13, no. 19, Oct, 2020.
[5] B. Liu, J.-G. Zhang, and W. Xu, “Advancing Lithium Metal Batteries,” Joule, vol. 2, no. 5, pp. 833-845, 2018.
[6] B. Ramasubramanian, S. Sundarrajan, V. Chellappan, M. V. Reddy, S. Ramakrishna, and K. Zaghib, “Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review,” Batteries, vol. 8, no. 10, 2022.
[7] J. Schoberl, M. Ank, M. Schreiber, N. Wassiliadis, and M. Lienkamp, “Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration,” Etransportation, vol. 19, pp. 100305, 2024.
[8] J. Kasnatscheew, S. Roser, M. Borner, and M. Winter, “Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio,” ACS Applied Energy Materials, vol. 2, no. 11, pp. 7733-7737, 2019.
[9] S. Zhang, J. Ma, Z. Hu, G. Cui, and L. Chen, “Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials,” Chemistry of Materials, vol. 31, no. 16, pp. 6033-6065, 2019.
[10] H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, “Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries,” Journal of Power Sources, vol. 233, pp. 121-130, 2013.
[11] 林與絜, “利用?咯烷離子液體修飾鋰離子電池之Li7La3Zr2O12基固態電解質與鋰金屬電極界面,” 國立中央大學材料科學與工程研究所碩士學位論文, 2023.
[12] C. E. Foss, “Thermal Stability and Electrochemical Performance of Graphite Anodes in Li-ion Batteries,” 2014.
[13] Y. Zhu, X. He, and Y. Mo, “First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries,” Journal of Materials Chemistry A, vol. 4, no. 9, pp. 3253-3266, 2016.
[14] Q. Wang, J. Sun, X. Yao, and C. Chen, “Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries,” Journal of The Electrochemical Society, vol. 153, no. 2, pp. A329, 2005.
[15] Z. Chang, H. Yang, X. Zhu, P. He, and H. Zhou, “A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments,” Nat Commun, vol. 13, no. 1, pp. 1510, Mar 21, 2022.
[16] C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, and L. Hu, “Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries,” Chem Rev, vol. 120, no. 10, pp. 4257-4300, May 27, 2020.
[17] N. Zhao, W. Khokhar, Z. Bi, C. Shi, X. Guo, L.-Z. Fan, and C.-W. Nan, “Solid Garnet Batteries,” Joule, vol. 3, no. 5, pp. 1190-1199, 2019.
[18] H. Morimoto, M. Hirukawa, A. Matsumoto, T. Kurahayashi, N. Ito, and S.-i. Tobishima, “Lithium ion conductivities of NASICON-type Li1+ xAlxTi2? x (PO4) 3 solid electrolytes prepared from amorphous powder using a mechanochemical method,” Electrochemistry, vol. 82, no. 10, pp. 870-874, 2014.
[19] L. Jia, J. Zhu, X. Zhang, B. Guo, Y. Du, and X. Zhuang, “Li–Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries,” Electrochemical Energy Reviews, vol. 7, no. 1, 2024.
[20] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami, and S. Deki, “Studies on PVdF-based gel polymer electrolytes,” journal of Power Sources, vol. 88, no. 2, pp. 269-273, 2000.
[21] X. Cheng, J. Pan, Y. Zhao, M. Liao, and H. Peng, “Gel polymer electrolytes for electrochemical energy storage,” Advanced Energy Materials, vol. 8, no. 7, pp. 1702184, 2018.
[22] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, and S. Gopukumar, “LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO 4 cell,” Applied Physics A, vol. 97, pp. 811-819, 2009.
[23] M. Zhang, M. Li, Z. Chang, Y. Wang, J. Gao, Y. Zhu, Y. Wu, and W. Huang, “A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery,” Electrochimica acta, vol. 245, pp. 752-759, 2017.
[24] Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, and G. Guan, “Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review,” Renewable and Sustainable Energy Reviews, vol. 109, pp. 367-385, 2019.
[25] A. R. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications,” ACS Applied Energy Materials, vol. 3, no. 1, pp. 66-98, 2020.
[26] H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, and X. Sun, “In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries,” Nano Energy, vol. 61, pp. 119-125, 2019.
[27] A. R. C. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications,” ACS Applied Energy Materials, vol. 3, no. 1, pp. 66-98, 2020.
[28] R. Ye, M. Ihrig, N. Imanishi, M. Finsterbusch, and E. Figgemeier, “A Review on Li(+) /H(+) Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water,” ChemSusChem, vol. 14, no. 20, pp. 4397-4407, Oct 20, 2021.
[29] S. Vema, F. N. Sayed, S. Nagendran, B. Karagoz, C. Sternemann, M. Paulus, G. Held, and C. P. Grey, “Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes,” ACS Energy Letters, vol. 8, no. 8, pp. 3476-3484, 2023.
[30] H. Zhang, G. Paggiaro, F. Okur, J. Huwiler, C. Cancellieri, L. P. H. Jeurgens, D. Chernyshov, W. van Beek, M. V. Kovalenko, and K. V. Kravchyk, “On High-Temperature Thermal Cleaning of Li7La3Zr2O12 Solid-State Electrolytes,” ACS Applied Energy Materials, vol. 6, no. 13, pp. 6972-6980, 2023.
[31] S. Kim, J. S. Kim, L. Miara, Y. Wang, S. K. Jung, S. Y. Park, Z. Song, H. Kim, M. Badding, J. Chang, V. Roev, G. Yoon, R. Kim, J. H. Kim, K. Yoon, D. Im, and K. Kang, “High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility,” Nat Commun, vol. 13, no. 1, pp. 1883, Apr 6, 2022.
[32] J.-W. Kim, and H.-G. Lee, “Thermal and carbothermic decomposition of Na 2 CO 3 and Li 2 CO 3,” Metallurgical and materials transactions B, vol. 32, pp. 17-24, 2001.
[33] S. T. Montoya, S. A. Shanto, and R. A. Walker, “Lithium Volatilization and Phase Changes during Aluminum-Doped Cubic Li6. 25La3Zr2Al0. 25O12 (c-LLZO) Processing,” Crystals, vol. 14, no. 9, pp. 795, 2024.
[34] Y. Ruan, Y. Lu, Y. Li, C. Zheng, J. Su, J. Jin, T. Xiu, Z. Song, M. E. Badding, and Z. Wen, “A 3D Cross?Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet?Type Solid?State Lithium Batteries,” Advanced Functional Materials, vol. 31, no. 5, 2020.
[35] H. Gao, X. Ai, H. Wang, W. Li, P. Wei, Y. Cheng, S. Gui, H. Yang, Y. Yang, and M. S. Wang, “Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption,” Nat Commun, vol. 13, no. 1, pp. 5050, Aug 27, 2022.
[36] T. Krauskopf, H. Hartmann, W. G. Zeier, and J. Janek, “Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li(6.25)Al(0.25)La(3)Zr(2)O(12),” ACS Appl Mater Interfaces, vol. 11, no. 15, pp. 14463-14477, Apr 17, 2019.
[37] K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, and N. P. Dasgupta, “Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes,” Journal of Materials Chemistry A, vol. 5, no. 23, pp. 11671-11681, 2017.
[38] C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman, and L. Hu, “Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes,” Nano Lett, vol. 17, no. 1, pp. 565-571, Jan 11, 2017.
[39] H. Huo, J. Liang, N. Zhao, X. Li, X. Lin, Y. Zhao, K. Adair, R. Li, X. Guo, and X. Sun, “Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries,” ACS Energy Letters, vol. 5, no. 7, pp. 2156-2164, 2020.
[40] D.-J. Yoo, K. J. Kim, and J. W. Choi, “The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes,” Advanced Energy Materials, vol. 8, no. 11, 2018.
[41] M. M. Raju, F. Altayran, M. Johnson, D. Wang, and Q. Zhang, “Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview,” Electrochem, vol. 2, no. 3, pp. 390-414, 2021.
[42] J. Ko?ir, S. Mousavihashemi, M. Suominen, A. Kobets, B. P. Wilson, E.-L. Rautama, and T. Kallio, “Supervalent doping and its effect on the thermal, structural and electrochemical properties of Li7La3Zr2O12 solid electrolytes,” Materials Advances, 2024.
[43] N. Bernstein, M. D. Johannes, and K. Hoang, “Origin of the structural phase transition in Li7La3Zr2O12,” Phys Rev Lett, vol. 109, no. 20, pp. 205702, Nov 16, 2012.
[44] X. Liu, R. Garcia-Mendez, A. R. Lupini, Y. Cheng, Z. D. Hood, F. Han, A. Sharafi, J. C. Idrobo, N. J. Dudney, C. Wang, C. Ma, J. Sakamoto, and M. Chi, “Local electronic structure variation resulting in Li ′filament′ formation within solid electrolytes,” Nat Mater, vol. 20, no. 11, pp. 1485-1490, Nov, 2021.
[45] Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, and F. Pan, “Revealing the Short?Circuiting Mechanism of Garnet?Based Solid?State Electrolyte,” Advanced Energy Materials, vol. 9, no. 21, 2019.
[46] A. N. Samant, and N. B. Dahotre, “Laser machining of structural ceramics—A review,” Journal of the European Ceramic Society, vol. 29, no. 6, pp. 969-993, 2009.
[47] A. N. Samant, S. P. Harimkar, and N. B. Dahotre, “The laser surface modification of advanced ceramics: a modeling approach,” Jom, vol. 59, pp. 35-38, 2007.
[48] A. De Zanet, V. Casalegno, and M. Salvo, “Laser surface texturing of ceramics and ceramic composite materials – A review,” Ceramics International, vol. 47, no. 6, pp. 7307-7320, 2021.
[49] L. C. Hoff, W. S. Scheld, C. Vedder, and J. Stollenwerk, "Laser sintering of ceramic-based solid-state battery materials." pp. 108-115.
[50] T. Krauskopf, R. Dippel, H. Hartmann, K. Peppler, B. Mogwitz, F. H. Richter, W. G. Zeier, and J. Janek, “Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes,” Joule, vol. 3, no. 8, pp. 2030-2049, 2019.
[51] E. Ramos, A. Browar, J. Roehling, and J. Ye, “CO2 Laser Sintering of Garnet-Type Solid-State Electrolytes,” ACS Energy Letters, vol. 7, no. 10, pp. 3392-3400, 2022.
[52] J.-S. Kim, H. Kim, M. Badding, Z. Song, K. Kim, Y. Kim, D.-J. Yun, D. Lee, J. Chang, and S. Kim, “Origin of intergranular Li metal propagation in garnet-based solid electrolyte by direct electronic structure analysis and performance improvement by bandgap engineering,” Journal of Materials Chemistry A, vol. 8, no. 33, pp. 16892-16901, 2020.
[53] Y. Wei, H. Xu, H. Cheng, W. Guan, J. Yang, Z. Li, and Y. Huang, “An oxygen vacancy-rich ZnO layer on garnet electrolyte enables dendrite-free solid state lithium metal batteries,” Chemical Engineering Journal, vol. 433, 2022.
[54] G. Zhuang, Y. Chen, Z. Zhuang, Y. Yu, and J. Yu, “Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design,” Science China Materials, vol. 63, no. 11, pp. 2089-2118, 2020.
[55] M. Xie, X. Lin, Z. Huang, Y. Li, Y. Zhong, Z. Cheng, L. Yuan, Y. Shen, X. Lu, T. Zhai, and Y. Huang, “A Li–Al–O Solid?State Electrolyte with High Ionic Conductivity and Good Capability to Protect Li Anode,” Advanced Functional Materials, vol. 30, no. 7, 2019.
[56] C.-C. Wang, W.-C. Hsu, C.-Y. Chang, M. Ihrig, N. T. Thuy Tran, S.-k. Lin, A. Windmuller, C.-L. Tsai, R.-A. Eichel, and K.-F. Chiu, “Grain boundary complexion modification for interface stability in garnet based solid-state Li batteries,” Journal of Power Sources, vol. 602, 2024.
[57] H. Xu, M. K. Akbari, and S. Zhuiykov, “2D semiconductor nanomaterials and heterostructures: Controlled synthesis and functional applications,” Nanoscale Research Letters, vol. 16, no. 1, pp. 94, 2021.
[58] N. Heikkinen, L. Keskivali, P. Eskelinen, M. Reinikainen, and M. Putkonen, “The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst,” Catalysts, vol. 11, no. 6, pp. 672, 2021.
[59] 楊紹輝, “ALD 技術平台型企業,半導體 CVD 加持強化成長性 ——微米奈米投資價值分析報告,” 光大證券, 2023.
[60] 廖譽凱, “石榴石型全固態電解質電池製作及其特性分析,” 國立臺灣師範大學理學院物理研究所, 2018.
[61] Y. Zhu, J. Zhang, W. Li, Y. Zeng, W. Wang, Z. Yin, B. Hao, Q. Meng, Y. Xue, and J. Yang, “Enhanced Li+ conductivity of Li7La3Zr2O12 by increasing lattice entropy and atomic redistribution via Spark Plasma Sintering,” Journal of Alloys and Compounds, vol. 967, pp. 171666, 2023.
[62] Y. Zhou, A. Gao, M. Duan, X. Zhang, M. Yang, L. Gong, J. Chen, S. Song, F. Xie, H. Jia, and Y. Wang, “Quasi-In Situ XPS Insights into the Surface Chemistry of Garnet-Type Li(6.4)La(3)Zr(1.4)Ta(0.6)O(12) Solid-State Electrolytes: The Overlooked Impact of Pretreatments and a Direct Observation of the Formation of LiOH,” ACS Appl Mater Interfaces, vol. 15, no. 38, pp. 45465-45474, Sep 27, 2023.
[63] Y. Lu, C. Z. Zhao, H. Yuan, X. B. Cheng, J. Q. Huang, and Q. Zhang, “Critical Current Density in Solid?State Lithium Metal Batteries: Mechanism, Influences, and Strategies,” Advanced Functional Materials, vol. 31, no. 18, 2021.
[64] J. Neises, W. S. Scheld, A.-R. Seok, S. Lobe, M. Finsterbusch, S. Uhlenbruck, R. Schmechel, and N. Benson, “Study of thermal material properties for Ta-and Al-substituted Li 7 La 3 Zr 2 O 12 (LLZO) solid-state electrolyte in dependency of temperature and grain size,” Journal of Materials Chemistry A, vol. 10, no. 22, pp. 12177-12186, 2022.
[65] L. Shi, T. Qu, D. Liu, Y. Deng, B. Yang, and Y. Dai, "Process of thermal decomposition of lithium carbonate." pp. 107-116.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明