參考文獻 |
[1] S.-J. Park, and M.-K. Seo, Interface science and composites: Academic Press, 2011.
[2] D. Sui, L. Si, C. Li, Y. Yang, Y. Zhang, and W. Yan, “A comprehensive review of graphene-based anode materials for lithium-ion capacitors,” Chemistry, vol. 3, no. 4, pp. 1215-1246, 2021.
[3] X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, and Q. Zhang, “Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries,” Advanced Functional Materials, vol. 27, no. 10, pp. 1605989, 2017.
[4] M. Ghiji, V. Novozhilov, K. Moinuddin, P. Joseph, I. Burch, B. Suendermann, and G. Gamble, “A Review of Lithium-Ion Battery Fire Suppression,” Energies, vol. 13, no. 19, Oct, 2020.
[5] B. Liu, J.-G. Zhang, and W. Xu, “Advancing Lithium Metal Batteries,” Joule, vol. 2, no. 5, pp. 833-845, 2018.
[6] B. Ramasubramanian, S. Sundarrajan, V. Chellappan, M. V. Reddy, S. Ramakrishna, and K. Zaghib, “Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review,” Batteries, vol. 8, no. 10, 2022.
[7] J. Schoberl, M. Ank, M. Schreiber, N. Wassiliadis, and M. Lienkamp, “Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration,” Etransportation, vol. 19, pp. 100305, 2024.
[8] J. Kasnatscheew, S. Roser, M. Borner, and M. Winter, “Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio,” ACS Applied Energy Materials, vol. 2, no. 11, pp. 7733-7737, 2019.
[9] S. Zhang, J. Ma, Z. Hu, G. Cui, and L. Chen, “Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials,” Chemistry of Materials, vol. 31, no. 16, pp. 6033-6065, 2019.
[10] H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, “Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries,” Journal of Power Sources, vol. 233, pp. 121-130, 2013.
[11] 林與絜, “利用?咯烷離子液體修飾鋰離子電池之Li7La3Zr2O12基固態電解質與鋰金屬電極界面,” 國立中央大學材料科學與工程研究所碩士學位論文, 2023.
[12] C. E. Foss, “Thermal Stability and Electrochemical Performance of Graphite Anodes in Li-ion Batteries,” 2014.
[13] Y. Zhu, X. He, and Y. Mo, “First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries,” Journal of Materials Chemistry A, vol. 4, no. 9, pp. 3253-3266, 2016.
[14] Q. Wang, J. Sun, X. Yao, and C. Chen, “Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries,” Journal of The Electrochemical Society, vol. 153, no. 2, pp. A329, 2005.
[15] Z. Chang, H. Yang, X. Zhu, P. He, and H. Zhou, “A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments,” Nat Commun, vol. 13, no. 1, pp. 1510, Mar 21, 2022.
[16] C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, and L. Hu, “Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries,” Chem Rev, vol. 120, no. 10, pp. 4257-4300, May 27, 2020.
[17] N. Zhao, W. Khokhar, Z. Bi, C. Shi, X. Guo, L.-Z. Fan, and C.-W. Nan, “Solid Garnet Batteries,” Joule, vol. 3, no. 5, pp. 1190-1199, 2019.
[18] H. Morimoto, M. Hirukawa, A. Matsumoto, T. Kurahayashi, N. Ito, and S.-i. Tobishima, “Lithium ion conductivities of NASICON-type Li1+ xAlxTi2? x (PO4) 3 solid electrolytes prepared from amorphous powder using a mechanochemical method,” Electrochemistry, vol. 82, no. 10, pp. 870-874, 2014.
[19] L. Jia, J. Zhu, X. Zhang, B. Guo, Y. Du, and X. Zhuang, “Li–Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries,” Electrochemical Energy Reviews, vol. 7, no. 1, 2024.
[20] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami, and S. Deki, “Studies on PVdF-based gel polymer electrolytes,” journal of Power Sources, vol. 88, no. 2, pp. 269-273, 2000.
[21] X. Cheng, J. Pan, Y. Zhao, M. Liao, and H. Peng, “Gel polymer electrolytes for electrochemical energy storage,” Advanced Energy Materials, vol. 8, no. 7, pp. 1702184, 2018.
[22] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, and S. Gopukumar, “LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO 4 cell,” Applied Physics A, vol. 97, pp. 811-819, 2009.
[23] M. Zhang, M. Li, Z. Chang, Y. Wang, J. Gao, Y. Zhu, Y. Wu, and W. Huang, “A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery,” Electrochimica acta, vol. 245, pp. 752-759, 2017.
[24] Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, and G. Guan, “Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review,” Renewable and Sustainable Energy Reviews, vol. 109, pp. 367-385, 2019.
[25] A. R. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications,” ACS Applied Energy Materials, vol. 3, no. 1, pp. 66-98, 2020.
[26] H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, and X. Sun, “In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries,” Nano Energy, vol. 61, pp. 119-125, 2019.
[27] A. R. C. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications,” ACS Applied Energy Materials, vol. 3, no. 1, pp. 66-98, 2020.
[28] R. Ye, M. Ihrig, N. Imanishi, M. Finsterbusch, and E. Figgemeier, “A Review on Li(+) /H(+) Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water,” ChemSusChem, vol. 14, no. 20, pp. 4397-4407, Oct 20, 2021.
[29] S. Vema, F. N. Sayed, S. Nagendran, B. Karagoz, C. Sternemann, M. Paulus, G. Held, and C. P. Grey, “Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes,” ACS Energy Letters, vol. 8, no. 8, pp. 3476-3484, 2023.
[30] H. Zhang, G. Paggiaro, F. Okur, J. Huwiler, C. Cancellieri, L. P. H. Jeurgens, D. Chernyshov, W. van Beek, M. V. Kovalenko, and K. V. Kravchyk, “On High-Temperature Thermal Cleaning of Li7La3Zr2O12 Solid-State Electrolytes,” ACS Applied Energy Materials, vol. 6, no. 13, pp. 6972-6980, 2023.
[31] S. Kim, J. S. Kim, L. Miara, Y. Wang, S. K. Jung, S. Y. Park, Z. Song, H. Kim, M. Badding, J. Chang, V. Roev, G. Yoon, R. Kim, J. H. Kim, K. Yoon, D. Im, and K. Kang, “High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility,” Nat Commun, vol. 13, no. 1, pp. 1883, Apr 6, 2022.
[32] J.-W. Kim, and H.-G. Lee, “Thermal and carbothermic decomposition of Na 2 CO 3 and Li 2 CO 3,” Metallurgical and materials transactions B, vol. 32, pp. 17-24, 2001.
[33] S. T. Montoya, S. A. Shanto, and R. A. Walker, “Lithium Volatilization and Phase Changes during Aluminum-Doped Cubic Li6. 25La3Zr2Al0. 25O12 (c-LLZO) Processing,” Crystals, vol. 14, no. 9, pp. 795, 2024.
[34] Y. Ruan, Y. Lu, Y. Li, C. Zheng, J. Su, J. Jin, T. Xiu, Z. Song, M. E. Badding, and Z. Wen, “A 3D Cross?Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet?Type Solid?State Lithium Batteries,” Advanced Functional Materials, vol. 31, no. 5, 2020.
[35] H. Gao, X. Ai, H. Wang, W. Li, P. Wei, Y. Cheng, S. Gui, H. Yang, Y. Yang, and M. S. Wang, “Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption,” Nat Commun, vol. 13, no. 1, pp. 5050, Aug 27, 2022.
[36] T. Krauskopf, H. Hartmann, W. G. Zeier, and J. Janek, “Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li(6.25)Al(0.25)La(3)Zr(2)O(12),” ACS Appl Mater Interfaces, vol. 11, no. 15, pp. 14463-14477, Apr 17, 2019.
[37] K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, and N. P. Dasgupta, “Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes,” Journal of Materials Chemistry A, vol. 5, no. 23, pp. 11671-11681, 2017.
[38] C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman, and L. Hu, “Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes,” Nano Lett, vol. 17, no. 1, pp. 565-571, Jan 11, 2017.
[39] H. Huo, J. Liang, N. Zhao, X. Li, X. Lin, Y. Zhao, K. Adair, R. Li, X. Guo, and X. Sun, “Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries,” ACS Energy Letters, vol. 5, no. 7, pp. 2156-2164, 2020.
[40] D.-J. Yoo, K. J. Kim, and J. W. Choi, “The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes,” Advanced Energy Materials, vol. 8, no. 11, 2018.
[41] M. M. Raju, F. Altayran, M. Johnson, D. Wang, and Q. Zhang, “Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview,” Electrochem, vol. 2, no. 3, pp. 390-414, 2021.
[42] J. Ko?ir, S. Mousavihashemi, M. Suominen, A. Kobets, B. P. Wilson, E.-L. Rautama, and T. Kallio, “Supervalent doping and its effect on the thermal, structural and electrochemical properties of Li7La3Zr2O12 solid electrolytes,” Materials Advances, 2024.
[43] N. Bernstein, M. D. Johannes, and K. Hoang, “Origin of the structural phase transition in Li7La3Zr2O12,” Phys Rev Lett, vol. 109, no. 20, pp. 205702, Nov 16, 2012.
[44] X. Liu, R. Garcia-Mendez, A. R. Lupini, Y. Cheng, Z. D. Hood, F. Han, A. Sharafi, J. C. Idrobo, N. J. Dudney, C. Wang, C. Ma, J. Sakamoto, and M. Chi, “Local electronic structure variation resulting in Li ′filament′ formation within solid electrolytes,” Nat Mater, vol. 20, no. 11, pp. 1485-1490, Nov, 2021.
[45] Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, and F. Pan, “Revealing the Short?Circuiting Mechanism of Garnet?Based Solid?State Electrolyte,” Advanced Energy Materials, vol. 9, no. 21, 2019.
[46] A. N. Samant, and N. B. Dahotre, “Laser machining of structural ceramics—A review,” Journal of the European Ceramic Society, vol. 29, no. 6, pp. 969-993, 2009.
[47] A. N. Samant, S. P. Harimkar, and N. B. Dahotre, “The laser surface modification of advanced ceramics: a modeling approach,” Jom, vol. 59, pp. 35-38, 2007.
[48] A. De Zanet, V. Casalegno, and M. Salvo, “Laser surface texturing of ceramics and ceramic composite materials – A review,” Ceramics International, vol. 47, no. 6, pp. 7307-7320, 2021.
[49] L. C. Hoff, W. S. Scheld, C. Vedder, and J. Stollenwerk, "Laser sintering of ceramic-based solid-state battery materials." pp. 108-115.
[50] T. Krauskopf, R. Dippel, H. Hartmann, K. Peppler, B. Mogwitz, F. H. Richter, W. G. Zeier, and J. Janek, “Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes,” Joule, vol. 3, no. 8, pp. 2030-2049, 2019.
[51] E. Ramos, A. Browar, J. Roehling, and J. Ye, “CO2 Laser Sintering of Garnet-Type Solid-State Electrolytes,” ACS Energy Letters, vol. 7, no. 10, pp. 3392-3400, 2022.
[52] J.-S. Kim, H. Kim, M. Badding, Z. Song, K. Kim, Y. Kim, D.-J. Yun, D. Lee, J. Chang, and S. Kim, “Origin of intergranular Li metal propagation in garnet-based solid electrolyte by direct electronic structure analysis and performance improvement by bandgap engineering,” Journal of Materials Chemistry A, vol. 8, no. 33, pp. 16892-16901, 2020.
[53] Y. Wei, H. Xu, H. Cheng, W. Guan, J. Yang, Z. Li, and Y. Huang, “An oxygen vacancy-rich ZnO layer on garnet electrolyte enables dendrite-free solid state lithium metal batteries,” Chemical Engineering Journal, vol. 433, 2022.
[54] G. Zhuang, Y. Chen, Z. Zhuang, Y. Yu, and J. Yu, “Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design,” Science China Materials, vol. 63, no. 11, pp. 2089-2118, 2020.
[55] M. Xie, X. Lin, Z. Huang, Y. Li, Y. Zhong, Z. Cheng, L. Yuan, Y. Shen, X. Lu, T. Zhai, and Y. Huang, “A Li–Al–O Solid?State Electrolyte with High Ionic Conductivity and Good Capability to Protect Li Anode,” Advanced Functional Materials, vol. 30, no. 7, 2019.
[56] C.-C. Wang, W.-C. Hsu, C.-Y. Chang, M. Ihrig, N. T. Thuy Tran, S.-k. Lin, A. Windmuller, C.-L. Tsai, R.-A. Eichel, and K.-F. Chiu, “Grain boundary complexion modification for interface stability in garnet based solid-state Li batteries,” Journal of Power Sources, vol. 602, 2024.
[57] H. Xu, M. K. Akbari, and S. Zhuiykov, “2D semiconductor nanomaterials and heterostructures: Controlled synthesis and functional applications,” Nanoscale Research Letters, vol. 16, no. 1, pp. 94, 2021.
[58] N. Heikkinen, L. Keskivali, P. Eskelinen, M. Reinikainen, and M. Putkonen, “The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst,” Catalysts, vol. 11, no. 6, pp. 672, 2021.
[59] 楊紹輝, “ALD 技術平台型企業,半導體 CVD 加持強化成長性 ——微米奈米投資價值分析報告,” 光大證券, 2023.
[60] 廖譽凱, “石榴石型全固態電解質電池製作及其特性分析,” 國立臺灣師範大學理學院物理研究所, 2018.
[61] Y. Zhu, J. Zhang, W. Li, Y. Zeng, W. Wang, Z. Yin, B. Hao, Q. Meng, Y. Xue, and J. Yang, “Enhanced Li+ conductivity of Li7La3Zr2O12 by increasing lattice entropy and atomic redistribution via Spark Plasma Sintering,” Journal of Alloys and Compounds, vol. 967, pp. 171666, 2023.
[62] Y. Zhou, A. Gao, M. Duan, X. Zhang, M. Yang, L. Gong, J. Chen, S. Song, F. Xie, H. Jia, and Y. Wang, “Quasi-In Situ XPS Insights into the Surface Chemistry of Garnet-Type Li(6.4)La(3)Zr(1.4)Ta(0.6)O(12) Solid-State Electrolytes: The Overlooked Impact of Pretreatments and a Direct Observation of the Formation of LiOH,” ACS Appl Mater Interfaces, vol. 15, no. 38, pp. 45465-45474, Sep 27, 2023.
[63] Y. Lu, C. Z. Zhao, H. Yuan, X. B. Cheng, J. Q. Huang, and Q. Zhang, “Critical Current Density in Solid?State Lithium Metal Batteries: Mechanism, Influences, and Strategies,” Advanced Functional Materials, vol. 31, no. 18, 2021.
[64] J. Neises, W. S. Scheld, A.-R. Seok, S. Lobe, M. Finsterbusch, S. Uhlenbruck, R. Schmechel, and N. Benson, “Study of thermal material properties for Ta-and Al-substituted Li 7 La 3 Zr 2 O 12 (LLZO) solid-state electrolyte in dependency of temperature and grain size,” Journal of Materials Chemistry A, vol. 10, no. 22, pp. 12177-12186, 2022.
[65] L. Shi, T. Qu, D. Liu, Y. Deng, B. Yang, and Y. Dai, "Process of thermal decomposition of lithium carbonate." pp. 107-116. |